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ABSTRACT 
System integration is an unavoidable and 
important part of a project. Considerable 
amounts of time and resources are always 
devoted to make sure that all the components in 
a project work not only properly, but also work 
together properly. This work discusses how 
different elements of a robotic platform which  
was designed and constructed at FIU had to be 
controlled to achieve an effective and 
mechanically stable platform. For this purpose, 
we review the platform design, sensor utilization 
and servo control and special software 
developed for this project to improve the system 
performance.  
 
INTRODUCTION 
Robots relate to their environment via sensors 
and actuators.  It therefore follows that any 
shortcoming of either sensors or servos will 
severely affect the capabilities of a robot. 
Besides the almost inevitable noise errors and 
other hitches inherent to electrical circuits 
subject to dynamic loads, there are other 
physical limitations that affect both servos and 
actuators. Knowing the exact position of a 
vehicle is a fundamental problem in mobile 
robotics. In search for a solution, researchers and 
engineers have developed a variety of systems, 
sensors, and techniques for mobile robot 
positioning; yet still there is no truly elegant 
solution for the problem. The many partial 
solutions can be categorized into two groups: 
relative and absolute position measurements. 
Because of the lack of a single good method, 
two methods, one from each group, are usually 
combined to provide reliable positioning [1]. 
Relative position measurements (Odometry and 
Inertial Navigation) are derived from robot 
internal sensors alone and have an uncertainty 

error associated to them; furthermore, this error 
propagates and becomes larger over time [2,3]. 
Absolute positioning methods can be used to 
reduce the error value so that a more accurate 
robot position can be determined.  Absolute 
positioning methods include Magnetic 
Compasses, Active Beacons, Global Positioning 
Systems, Land-mark Navigation and Model 
Matching (or Map Matching) [1].   
 
In a configuration where there is no off-platform 
assistance (active beacons and positioning 
systems are not available), the robot must solely 
rely on its own sensors to navigate in unknown 
terrains and, to the extent possible, to 
compensate for odometry errors.  Although 
techniques like Map-making, Landmark 
Navigation and Map Matching are all heavily 
software dependant and therefore not covered in 
this article, they require reliable sensor input, 
which we will try to optimize.  Extensive sensor 
packages that can provide large amounts of 
information are always desirable when map-
making.  Unfortunately, small platforms seldom 
times have these sensor arrays.  When dealing 
with limited sensor inputs, smart utilization 
becomes paramount  
 
Next, we will briefly review the platform that 
was developed for this project. Followed by a 
more detailed review of the main components 
such as the servos and sensors and how they are 
controlled to make a platform that can use dead 
reckoning and has a sensor package suitable of 
map making.  Finally, some conclusions will be 
drawn as to the quality and precision of a 
platform built with off the shelf components 
meant for hobbyists. 
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PLATFORM 
The platform used in this case is HANCOR 
(Handheld-Controlled Rover), a small rover 
created at Florida International University to test 
the viability of using handheld devices as 
platform controllers.  The platform is based on a 
Pontech SV203 servo controller board that uses 
Sharp GP2D120 infrared ranger sensors to 
detect obstacles and Futaba-type servomotors to 
drive the wheels.  An on-board Palm III 
handheld controls the platform [4,5,6]. 
 

 
Figure 1. HANCOR platform  (handheld 

connected but not mounted). 
 
The servo controller board is based on a 
PIC16C73 microchip; it accepts serial data from 
a host computer (replaced by the Palm III 
handheld in this case) and outputs a Pulse Width 
Modulated (PWM) signal to control up to eight 
RC servo-motors [10].  Two servos, modified 
for continuous rotation, provide power for the 
driving wheels.  Besides servos, up to 5 sensors 
can be connected to the A/D input header, which 
reads analog voltages between 0 and 5 Volts.  
The sensor package of the HANCOR consists of 
two infrared range sensors and one digital 
compass.  The digital compass has a resolution 
of +/- 22o (it detects N, NE, E, SE, etc.), so it 
cannot be used as a reliable sensor input, but can 
later be used as aid during map matching [7].   
The IR sensors are mounted on two small servos 
so that they can pan to any direction in a 135o 
forward-looking field of view  
 
SERVOS 
Small budget platforms like the HANCOR often 
replace expensive servos and position encoders 

with off-the shelf radio controlled servomotors.  
RC servos are cheap, easy to control, come in a 
convenient form factor and are available in 
different sizes, speeds and power ratings. 
Servomotors are generally employed for position 
control; they use a potentiometer as feedback to 
determine their position.  The servo compares its 
current position to an input PWM signal, and 
then moves until its position matches the input 
signal.  Regular servomotors are used for the 
positioning of the range sensors, but controlling 
the driving servos require some modifications. 
 

 
Figure 2.  Futaba-type servo timing diagram. 

 
Futaba-type Servomotors were not developed for 
continuous rotation. In order to utilize servos in 
situations that require continuous rotation they 
have to be modified.  Servos were not designed 
for velocity control either.  The velocity of a 
servo depends on how far it is from the desired 
position.  The servo will spin at top speed until it 
gets close to the desired value, then it will 
quickly slow down to avoid over-shooting the 
target position.  Usually, continuous rotation and 
velocity control go hand in hand.  Servos that 
have been “hacked” for continuous rotation have 
the feedback potentiometer de-coupled from the 
output gear and set to a constant value (for 
example 90o).  The velocity is controlled by 
giving the servo a target position (0 to 180o), but 
since the feedback has been fixed at 90o, the 
servo will spin forever towards the target 
position.  The further the target position from the 
fixed position (90o), the faster the servo will 
spin.   
 
The Pontech SV203 controls its servos via an 8-
bit signal (PWM).  An 8-bit signal can take 28 
values (from 0 to 255).  If we define the 0 signal 
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as 0o and the 255 signal as 180o, then the 90o 
signal will be 128.  As can be seen from the data 
in figure 3, the servo quickly reaches top speed, 
which leaves us with a relatively small range of 
useful bit values (roughly from 90 to 170 in our 
case).  Values outside this range will not result 
in a significant speed variation. 
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Figure 3.   Servo speed measurements. 
 
Servo speeds were measured (in revolutions per 
second) at different bit signals and stored in 
Excel (figure 3).  Data was then transferred to 
Matlab to perform some numerical analyses on 
it; the objective being to find an equation that 
will return the bit value needed to achieve a 
desired rotational velocity.    
 
To effectively approximate the data, it first hat 
to be transformed and formatted.  Two processes 
were required.  First, the order of the data pairs 
was changed so that velocity would be our 
independent variable (input) and the calculated 
bit our dependent variable (output).  Secondly, 
only values in the range of interest were used; 
this helped to generate a tighter-fitting curve, 
since only relevant data was being used (figure 
4).  
 
The 3rd degree polynomial approximation [13] 
that fit the data (from about –0.9 to 0.9) as given 
by Matlab was: 
 
Right bit(v) =31.224v3 + 0.451v2 + 15.72v + 
128.948 
Left bit(v) = -33.272v3 + 1.504v2 -15.294v + 
130.273 

 
 
Figure 4.  Actual values and 3rd degree polynomial 

approximations. 
 
This 3rd degree approximation looked promising 
but when tested on the platform it did not 
perform as well as expected; the platform could 
not describe a straight path.  This approximation 
is not a method that is accurate enough to drive 
the platform. 
 
Another curve-fitting method that can better 
approximate the data is the use of splines [13].  
Splines are polynomial approximations that are 
used to fit sub-regions of the data.  Since the 
section of the curve to be approximated is 
smaller, a much higher degree of accuracy can 
be achieved.   
 

Figure 5.  Close-up of range of interest: Gathered 
data with extracted points superimposed. 
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Data points were chosen subjectively to break up 
the curves in sections that presented similar 
behavior (curvature).  A simple linear 
approximation from one point to the next 
(splines of 1st degree) provided a much better fit 
to the original data (figure 5) than the 3rd degree 
polynomials calculated previously.  Of course, 
this came at the cost of having 9 linear equations 
for each 3rd degree polynomial. 
 
Two observations that persuade against 
searching for more accurate approximations are: 
1, the experimental measurements are subject to 
error; depending on the accuracy of the reading 
or even on the battery charge, values will vary 
slightly from one run to the next.  And 2, bit 
commands are integers; therefore there will be 
gaps in the velocity curves for values that could 
never be reached because they correspond to a 
bit value between two integers.  On the other 
hand, the closeness of the spline approximation 
to the actual data showed that selecting a few 
finite points can offer sufficient control over the 
velocity.   Not using an equation (or several) to 
find the bit value corresponding to a desired 
velocity, results in a crude control over speed 
values; but, by finding the bit values that 
correspond to specific velocities (0.8, 0.6, 0.4, 
0.2, 0.0, -0.2, -0.4, -0.6 and –0.8 rps, per se), the 
velocity of the platform can be properly 
controlled for its full range of values.  
 
 
SENSORS 
The main sensor used by the HANCOR is the 
Sharp GP2D12 analog infrared ranger [10]. 
Sharp IR rangers use triangulation and a small 
linear CCD array to compute the distance or 
presence of objects in the field of view (Figure 
6), which results in greater reliability and 
accuracy than many IR sensors that use time-of-
flight techniques. Also, these new rangers offer 
much better immunity to ambient lighting 
conditions and to the color of the reflected 
surface than other IR sensors [11].  These 
sensors have a minimum range of 10 cm (~ 4in) 
and a maximum range of 80 cm.  The beam is 
very tight, just about 3 cm wide and less than 3 
cm in height at 40 cm.  Such characteristics 
make the sensors quite suitable for 
unidirectional measurements, but not so great for 

general obstacle detection.  Some advantages 
over ultrasound ranger sensors, traditionally 
used for obstacle detection, are:  IR sensors do 
not suffer from ghost images; furthermore, the 
angle at which they face an obstacle can be as 
high as 60o without affecting distance reading 
[11].  IR sensors also have much lower power 
requirement compared to the battery-hungry 
ultrasound sensors.  Finally, price becomes an 
issue when ultrasound sensors are over five 
times more expensive than IR sensors.  Of 
course, sornars will always be great detection 
sensors thanks to their range (2 to 120 cm) and 
their wider detection area.  
 

 
Figure 6.   Distance and angle calculation. 
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Figure 7.   IR distance and approximations. 
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The analog output of the infrared does not 
change linearly with the distance being 
measured; figure 7 shows average values of 
readings taken by the sensors from 10 to 50 cm. 
 
Applying curve-fitting to find an equation that 
will return the actual distance (in centimeters) to 
the obstacle from the sensor value; it was found 
that each sensor requires a different 
approximation.   
 
IR 1(b) = 470*b^(-0.76) 
IR 2(b) = 4700*d^(-1.24) 
 
Note that the approximations make range 
measurements over 45 cm unreliable.  This is 
intentional; the approximations were adjusted to 
make sure that the more critical short-distance 
readings were reliable.  As with the servos, more 
complicated approximation functions were 
shunted, opting for a speedy process. 
  
To turn IR range sensors into effective obstacle 
detectors, the servos must reposition the sensors 
to get several readings of the terrain ahead of the 
robot.  If the sensors have to be reoriented, 
timing becomes an issue.  Several factors have 
to be taken into account to determine the 
frequency at which readings can be taken.  First 
of all, the refresh rate of the IR sensors 
determines the maximum frequency at which 
readings can be taken.  The velocity of the 
servos dictates how long it will take to reach the 
desired orientation.  The response of the 
controller board indicates how long it takes for 
the board to poll the AD header for a new 
reading and return it to the handheld.  The 
handheld connects to the controller board at a 
certain speed. Finally, the Palm has to perform 
many computations, and can only read from the 
serial port every so often.   
 
The IR sensors continuously takes distance 
readings every 38 ms, for a total of about 25 
readings every second (25Hz)[10].  The Hitec 
ht-85 servos have a nominal operating speed of 
0.11sec/60° at 4.8V.  Even though the speed of 
the servo is proportional to the displacement 
covered, the nominal speed can be used to 
approximate the time it takes the servo to move 
a certain arc.  At 9600 baud, which is the 

standard connection speed for the controller 
board, it takes 4ms to transmit a simple output 
command of 4 bytes.  For more complex 
commands it takes the Palm 25ms to transmit 
the command and receive the result as ASCII 
data.  After the data is received, it must then be 
converted to an integer for it to be useful.  In 
practice, is rare to get sensor readings faster than 
50ms.  It is possible to connect the controller 
board to transmit at up to 38400 baud, which 
should reduce considerably the communication 
delays, but since the servo response is the main 
cause for delays in the architecture, it is not 
necessary. 
 
The GP2D12 takes continuous readings, but the 
Palm takes discrete readings.  In order to 
effectively cover the front area of the rover, each 
sensor takes three readings as seen in figure 8.  
Given the Hitec’s nominal velocity, the different 
times it takes a servo to go from one position to 
the next are: Position 1 to Position 2: 46o ~ 
0.084sec; Position 2 to Position 3: 24o ~ 
0.044sec; Position 3 to Position 1: 22o ~ 0.04sec.  
Since the IR ranger takes 38ms to refresh, the 
robot should wait that much longer before 
reading from the sensor.  Therefore, the time 
delay before a reliable reading can be taken is at 
least: 
 
To position 1: 0.040 + 0.038 = 0.079sec 
To position 2: 0.084 + 0.038 = 0.122sec 
To position 3: 0.044 + 0.038 = 0.082sec 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.   Obstacle detection. 
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Unfortunatelly, PalmOS does not have a wait(  ) 
or delay(  ) function, to wait long enough before 
taking the reading.  Fortunately, Palm does have 
a getTicks(  ) and TicksPerSecond(  ) functions.  
With these two an approximate waiting function 
can be written: 
 

void WaitMS( int milisecs) 
{ 

UInt start; 
start = TimGetTicks( );    

//get ticks until milisecs eleapses 
do {/*nothing*/}    
while(TimGetTicks() - start < (milisecs / 

1000.0) * SysTicksPerSecond( )); 
} 

 
This function will do nothing other than check 
the current “tick” until the predetermined value 
(obtained from the wait time) is reached.  I 
should be noted that there are 100 ticks/ sec 
when running on a Palm, which means that the 
function is only accurate to 10 milliseconds.   
 

 
Figure 9.   Obstacle detection. 

 
This means that the HANDCOR needs at least 
0.015 + 0.079 + 0.122 + 0.082  = 298ms to 
gather the readings for the obstacle avoidance 
subroutine.  If an object were to appear 
immediately after a reading is taken, it would 
take one full cycle before that object is detected. 
A full cycle is 298 ms plus the time it takes the 
palm to run any internal functions (this varies, 
but is generally less than 50 ms. Given that the 
effective range of the sensor is about 40 cm the 
sensor refresh rate limits the forward speed of 

the robot to 40 cm in 300 ms, or it would be 
possible to hit an object before seeing it.  The 
driving servos’ maximum speed is under 0.89 
revolutions per second; with a wheel diameter of 
7.6cm (3in), the maximum velocity the robot can 
achieve is under 24 cm in 1 second, which is 
well within safe range.   
 
Another advantage to having both sensors 
mounted on servos is that they can be directed, 
and they can be combined for greater accuracy.  
By using trigonometry [12], two readings can be 
taken from the same obstacle and then compared 
to determine its distance with greater accuracy.  
If a sensor detects an obstacle at a distance dR 
when its orientation is θR <1> (figure 9) it is 
very simple to convert it to coordinates relative 
to the robot < 2 >, and then to coordinates 
relative to the other sensor < 3 >.   
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Finally, θL is 
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From the platform, UR = UL = 4 cm and the 
angles φR = 35o φL = -35o.  Back substituting into 
< 4 > 
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Assuming that there is no other obstacle between 
the second sensor and the original obstacle, θL 
can be used to get a second reading, dL from the 
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obstacle, which can then be transformed to a 
second distance reading D2.  The redundant 
distance readings should result in a more 
accurate reading when compiling maps.   

 
CONCLUSIONS 
Radio-controlled Servos are a low cost and 
simple to control alternative to steppers and 
servos, but they do not allow for fine control of 
position or motion and therefore should not be 
used in places where precision is critical.  RC 
servos worked great to orient the sensors, but 
they were not nearly as fast as the nominal 
values.  During testing, the servos took as much 
as 500ms to move from one position to the next, 
which means that faster servos are needed to 
properly implement some sweeping sensors as 
discussed above.  Using RC servos to drive the 
rover, resulted in a difficult to control platform 
that had trouble maintaining a straight path over 
long distances. 
 
Infrared rangers worked consistently and could 
deliver data extremely fast, but they had to be 
timed so that the servo would reach the desired 
position before readings were taken.  Sharp 
infrared sensors are know for being fairly 
constant from part to part, the differences in 
readings from the two sensors was very 
suspicious, but when the sensor headers were 
exchanged.  Values from sensor 1 resembled 
those of sensor 2 and vice versa, which meant 
that the controller board is responsible for the 
odd reading values. 
 
The main source of errors is believed to be the 
power supply.  Having three elements (servos, 
sensor and board) that draw relatively high 
currents connected to the same power supply 
resulted in slow servo velocity, and unstable 
sensor signals. 
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