
Proceedings of the Florida Conference on Recent Advances in Robotics, FCRAR, Boca Raton, Florida, May 8-9, 2003.

RC-SERVO AND IR-SENSOR CONTROL ON MOBILE PLATFORMS

Jorge Blanch and Sabri Tosunoglu

Florida International University
Department of Mechanical Engineering

10555 West Flagler Street
Miami, Florida 33174

ABSTRACT
System integration is an unavoidable and
important part of a project. Considerable
amounts of time and resources are always
devoted to make sure that all the components in
a project work not only properly, but also work
together properly. This work discusses how
different elements of a robotic platform which
was designed and constructed at FIU had to be
controlled to achieve an effective and
mechanically stable platform. For this purpose,
we review the platform design, sensor utilization
and servo control and special software
developed for this project to improve the system
performance.

INTRODUCTION
Robots relate to their environment via sensors
and actuators. It therefore follows that any
shortcoming of either sensors or servos will
severely affect the capabilities of a robot.
Besides the almost inevitable noise errors and
other hitches inherent to electrical circuits
subject to dynamic loads, there are other
physical limitations that affect both servos and
actuators. Knowing the exact position of a
vehicle is a fundamental problem in mobile
robotics. In search for a solution, researchers and
engineers have developed a variety of systems,
sensors, and techniques for mobile robot
positioning; yet still there is no truly elegant
solution for the problem. The many partial
solutions can be categorized into two groups:
relative and absolute position measurements.
Because of the lack of a single good method,
two methods, one from each group, are usually
combined to provide reliable positioning [1].
Relative position measurements (Odometry and
Inertial Navigation) are derived from robot
internal sensors alone and have an uncertainty

error associated to them; furthermore, this error
propagates and becomes larger over time [2,3].
Absolute positioning methods can be used to
reduce the error value so that a more accurate
robot position can be determined. Absolute
positioning methods include Magnetic
Compasses, Active Beacons, Global Positioning
Systems, Land-mark Navigation and Model
Matching (or Map Matching) [1].

In a configuration where there is no off-platform
assistance (active beacons and positioning
systems are not available), the robot must solely
rely on its own sensors to navigate in unknown
terrains and, to the extent possible, to
compensate for odometry errors. Although
techniques like Map-making, Landmark
Navigation and Map Matching are all heavily
software dependant and therefore not covered in
this article, they require reliable sensor input,
which we will try to optimize. Extensive sensor
packages that can provide large amounts of
information are always desirable when map-
making. Unfortunately, small platforms seldom
times have these sensor arrays. When dealing
with limited sensor inputs, smart utilization
becomes paramount

Next, we will briefly review the platform that
was developed for this project. Followed by a
more detailed review of the main components
such as the servos and sensors and how they are
controlled to make a platform that can use dead
reckoning and has a sensor package suitable of
map making. Finally, some conclusions will be
drawn as to the quality and precision of a
platform built with off the shelf components
meant for hobbyists.

Proceedings of the Florida Conference on Recent Advances in Robotics, FCRAR, Boca Raton, Florida, May 8-9, 2003.

PLATFORM
The platform used in this case is HANCOR
(Handheld-Controlled Rover), a small rover
created at Florida International University to test
the viability of using handheld devices as
platform controllers. The platform is based on a
Pontech SV203 servo controller board that uses
Sharp GP2D120 infrared ranger sensors to
detect obstacles and Futaba-type servomotors to
drive the wheels. An on-board Palm III
handheld controls the platform [4,5,6].

Figure 1. HANCOR platform (handheld

connected but not mounted).

The servo controller board is based on a
PIC16C73 microchip; it accepts serial data from
a host computer (replaced by the Palm III
handheld in this case) and outputs a Pulse Width
Modulated (PWM) signal to control up to eight
RC servo-motors [10]. Two servos, modified
for continuous rotation, provide power for the
driving wheels. Besides servos, up to 5 sensors
can be connected to the A/D input header, which
reads analog voltages between 0 and 5 Volts.
The sensor package of the HANCOR consists of
two infrared range sensors and one digital
compass. The digital compass has a resolution
of +/- 22o (it detects N, NE, E, SE, etc.), so it
cannot be used as a reliable sensor input, but can
later be used as aid during map matching [7].
The IR sensors are mounted on two small servos
so that they can pan to any direction in a 135o
forward-looking field of view

SERVOS
Small budget platforms like the HANCOR often
replace expensive servos and position encoders

with off-the shelf radio controlled servomotors.
RC servos are cheap, easy to control, come in a
convenient form factor and are available in
different sizes, speeds and power ratings.
Servomotors are generally employed for position
control; they use a potentiometer as feedback to
determine their position. The servo compares its
current position to an input PWM signal, and
then moves until its position matches the input
signal. Regular servomotors are used for the
positioning of the range sensors, but controlling
the driving servos require some modifications.

Figure 2. Futaba-type servo timing diagram.

Futaba-type Servomotors were not developed for
continuous rotation. In order to utilize servos in
situations that require continuous rotation they
have to be modified. Servos were not designed
for velocity control either. The velocity of a
servo depends on how far it is from the desired
position. The servo will spin at top speed until it
gets close to the desired value, then it will
quickly slow down to avoid over-shooting the
target position. Usually, continuous rotation and
velocity control go hand in hand. Servos that
have been “hacked” for continuous rotation have
the feedback potentiometer de-coupled from the
output gear and set to a constant value (for
example 90o). The velocity is controlled by
giving the servo a target position (0 to 180o), but
since the feedback has been fixed at 90o, the
servo will spin forever towards the target
position. The further the target position from the
fixed position (90o), the faster the servo will
spin.

The Pontech SV203 controls its servos via an 8-
bit signal (PWM). An 8-bit signal can take 28
values (from 0 to 255). If we define the 0 signal

Proceedings of the Florida Conference on Recent Advances in Robotics, FCRAR, Boca Raton, Florida, May 8-9, 2003.

as 0o and the 255 signal as 180o, then the 90o
signal will be 128. As can be seen from the data
in figure 3, the servo quickly reaches top speed,
which leaves us with a relatively small range of
useful bit values (roughly from 90 to 170 in our
case). Values outside this range will not result
in a significant speed variation.

Servo speed

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 100 200
Bit value

re
vo

lu
tio

ns
 p

er
 s

ec
on

d

left
right

Figure 3. Servo speed measurements.

Servo speeds were measured (in revolutions per
second) at different bit signals and stored in
Excel (figure 3). Data was then transferred to
Matlab to perform some numerical analyses on
it; the objective being to find an equation that
will return the bit value needed to achieve a
desired rotational velocity.

To effectively approximate the data, it first hat
to be transformed and formatted. Two processes
were required. First, the order of the data pairs
was changed so that velocity would be our
independent variable (input) and the calculated
bit our dependent variable (output). Secondly,
only values in the range of interest were used;
this helped to generate a tighter-fitting curve,
since only relevant data was being used (figure
4).

The 3rd degree polynomial approximation [13]
that fit the data (from about –0.9 to 0.9) as given
by Matlab was:

Right bit(v) =31.224v3 + 0.451v2 + 15.72v +
128.948
Left bit(v) = -33.272v3 + 1.504v2 -15.294v +
130.273

Figure 4. Actual values and 3rd degree polynomial

approximations.

This 3rd degree approximation looked promising
but when tested on the platform it did not
perform as well as expected; the platform could
not describe a straight path. This approximation
is not a method that is accurate enough to drive
the platform.

Another curve-fitting method that can better
approximate the data is the use of splines [13].
Splines are polynomial approximations that are
used to fit sub-regions of the data. Since the
section of the curve to be approximated is
smaller, a much higher degree of accuracy can
be achieved.

Figure 5. Close-up of range of interest: Gathered
data with extracted points superimposed.

Range of interest

RPS

B
it

Va
lu

e

Left and Right wheel velocities

RPS

B
it

Va
lu

e

Left and Right wheel velocities

Proceedings of the Florida Conference on Recent Advances in Robotics, FCRAR, Boca Raton, Florida, May 8-9, 2003.

Data points were chosen subjectively to break up
the curves in sections that presented similar
behavior (curvature). A simple linear
approximation from one point to the next
(splines of 1st degree) provided a much better fit
to the original data (figure 5) than the 3rd degree
polynomials calculated previously. Of course,
this came at the cost of having 9 linear equations
for each 3rd degree polynomial.

Two observations that persuade against
searching for more accurate approximations are:
1, the experimental measurements are subject to
error; depending on the accuracy of the reading
or even on the battery charge, values will vary
slightly from one run to the next. And 2, bit
commands are integers; therefore there will be
gaps in the velocity curves for values that could
never be reached because they correspond to a
bit value between two integers. On the other
hand, the closeness of the spline approximation
to the actual data showed that selecting a few
finite points can offer sufficient control over the
velocity. Not using an equation (or several) to
find the bit value corresponding to a desired
velocity, results in a crude control over speed
values; but, by finding the bit values that
correspond to specific velocities (0.8, 0.6, 0.4,
0.2, 0.0, -0.2, -0.4, -0.6 and –0.8 rps, per se), the
velocity of the platform can be properly
controlled for its full range of values.

SENSORS
The main sensor used by the HANCOR is the
Sharp GP2D12 analog infrared ranger [10].
Sharp IR rangers use triangulation and a small
linear CCD array to compute the distance or
presence of objects in the field of view (Figure
6), which results in greater reliability and
accuracy than many IR sensors that use time-of-
flight techniques. Also, these new rangers offer
much better immunity to ambient lighting
conditions and to the color of the reflected
surface than other IR sensors [11]. These
sensors have a minimum range of 10 cm (~ 4in)
and a maximum range of 80 cm. The beam is
very tight, just about 3 cm wide and less than 3
cm in height at 40 cm. Such characteristics
make the sensors quite suitable for
unidirectional measurements, but not so great for

general obstacle detection. Some advantages
over ultrasound ranger sensors, traditionally
used for obstacle detection, are: IR sensors do
not suffer from ghost images; furthermore, the
angle at which they face an obstacle can be as
high as 60o without affecting distance reading
[11]. IR sensors also have much lower power
requirement compared to the battery-hungry
ultrasound sensors. Finally, price becomes an
issue when ultrasound sensors are over five
times more expensive than IR sensors. Of
course, sornars will always be great detection
sensors thanks to their range (2 to 120 cm) and
their wider detection area.

Figure 6. Distance and angle calculation.

Infrared Readings

5

15

25

35

45

55

65

0 50 100 150

Signal (bit value)

D
is

ta
nc

e
(c

m
)

IR 2 4700*x^(-1.24)

IR 1 470*s^(-0.76)

Figure 7. IR distance and approximations.

Proceedings of the Florida Conference on Recent Advances in Robotics, FCRAR, Boca Raton, Florida, May 8-9, 2003.

The analog output of the infrared does not
change linearly with the distance being
measured; figure 7 shows average values of
readings taken by the sensors from 10 to 50 cm.

Applying curve-fitting to find an equation that
will return the actual distance (in centimeters) to
the obstacle from the sensor value; it was found
that each sensor requires a different
approximation.

IR 1(b) = 470*b^(-0.76)
IR 2(b) = 4700*d^(-1.24)

Note that the approximations make range
measurements over 45 cm unreliable. This is
intentional; the approximations were adjusted to
make sure that the more critical short-distance
readings were reliable. As with the servos, more
complicated approximation functions were
shunted, opting for a speedy process.

To turn IR range sensors into effective obstacle
detectors, the servos must reposition the sensors
to get several readings of the terrain ahead of the
robot. If the sensors have to be reoriented,
timing becomes an issue. Several factors have
to be taken into account to determine the
frequency at which readings can be taken. First
of all, the refresh rate of the IR sensors
determines the maximum frequency at which
readings can be taken. The velocity of the
servos dictates how long it will take to reach the
desired orientation. The response of the
controller board indicates how long it takes for
the board to poll the AD header for a new
reading and return it to the handheld. The
handheld connects to the controller board at a
certain speed. Finally, the Palm has to perform
many computations, and can only read from the
serial port every so often.

The IR sensors continuously takes distance
readings every 38 ms, for a total of about 25
readings every second (25Hz)[10]. The Hitec
ht-85 servos have a nominal operating speed of
0.11sec/60° at 4.8V. Even though the speed of
the servo is proportional to the displacement
covered, the nominal speed can be used to
approximate the time it takes the servo to move
a certain arc. At 9600 baud, which is the

standard connection speed for the controller
board, it takes 4ms to transmit a simple output
command of 4 bytes. For more complex
commands it takes the Palm 25ms to transmit
the command and receive the result as ASCII
data. After the data is received, it must then be
converted to an integer for it to be useful. In
practice, is rare to get sensor readings faster than
50ms. It is possible to connect the controller
board to transmit at up to 38400 baud, which
should reduce considerably the communication
delays, but since the servo response is the main
cause for delays in the architecture, it is not
necessary.

The GP2D12 takes continuous readings, but the
Palm takes discrete readings. In order to
effectively cover the front area of the rover, each
sensor takes three readings as seen in figure 8.
Given the Hitec’s nominal velocity, the different
times it takes a servo to go from one position to
the next are: Position 1 to Position 2: 46o ~
0.084sec; Position 2 to Position 3: 24o ~
0.044sec; Position 3 to Position 1: 22o ~ 0.04sec.
Since the IR ranger takes 38ms to refresh, the
robot should wait that much longer before
reading from the sensor. Therefore, the time
delay before a reliable reading can be taken is at
least:

To position 1: 0.040 + 0.038 = 0.079sec
To position 2: 0.084 + 0.038 = 0.122sec
To position 3: 0.044 + 0.038 = 0.082sec

Figure 8. Obstacle detection.

Position 1

Position 3
-30o

-54o 54o

-8o 8o

30o

0o 0o

46o

22o
24o Position 2

Proceedings of the Florida Conference on Recent Advances in Robotics, FCRAR, Boca Raton, Florida, May 8-9, 2003.

Unfortunatelly, PalmOS does not have a wait()
or delay() function, to wait long enough before
taking the reading. Fortunately, Palm does have
a getTicks() and TicksPerSecond() functions.
With these two an approximate waiting function
can be written:

void WaitMS(int milisecs)
{

UInt start;
start = TimGetTicks();

//get ticks until milisecs eleapses
do {/*nothing*/}
while(TimGetTicks() - start < (milisecs /

1000.0) * SysTicksPerSecond());
}

This function will do nothing other than check
the current “tick” until the predetermined value
(obtained from the wait time) is reached. I
should be noted that there are 100 ticks/ sec
when running on a Palm, which means that the
function is only accurate to 10 milliseconds.

Figure 9. Obstacle detection.

This means that the HANDCOR needs at least
0.015 + 0.079 + 0.122 + 0.082 = 298ms to
gather the readings for the obstacle avoidance
subroutine. If an object were to appear
immediately after a reading is taken, it would
take one full cycle before that object is detected.
A full cycle is 298 ms plus the time it takes the
palm to run any internal functions (this varies,
but is generally less than 50 ms. Given that the
effective range of the sensor is about 40 cm the
sensor refresh rate limits the forward speed of

the robot to 40 cm in 300 ms, or it would be
possible to hit an object before seeing it. The
driving servos’ maximum speed is under 0.89
revolutions per second; with a wheel diameter of
7.6cm (3in), the maximum velocity the robot can
achieve is under 24 cm in 1 second, which is
well within safe range.

Another advantage to having both sensors
mounted on servos is that they can be directed,
and they can be combined for greater accuracy.
By using trigonometry [12], two readings can be
taken from the same obstacle and then compared
to determine its distance with greater accuracy.
If a sensor detects an obstacle at a distance dR
when its orientation is θR <1> (figure 9) it is
very simple to convert it to coordinates relative
to the robot < 2 >, and then to coordinates
relative to the other sensor < 3 >.









⋅
⋅

=







=

)sin(
)cos(

R

R

RY

RX
R d

d
d
d

d
θ
θ

 < 1 >









+








=








=

RY

RX

RY

RX

Y

X

d
d

U
U

D
D

D < 2 >









−








=








=

LY

LX

Y

X

LY

LX
L U

U
D
D

d
d

d < 3 >

Finally, θL is









=

LY

LY
L d

darctanθ < 4 >

From the platform, UR = UL = 4 cm and the
angles φR = 35o φL = -35o. Back substituting into
< 4 >









−+
−+

=








LYRYRY

LXRXRX

LY

LX

UdU
UdU

d
d









−⋅−⋅+⋅

−⋅−⋅+⋅
=

)35cos(4)cos()35cos(4
)35sin(4)sin()35sin(4arctan

R

R
L d

d
θ
θθ

Assuming that there is no other obstacle between
the second sensor and the original obstacle, θL
can be used to get a second reading, dL from the

X

Y

dR

θR

dL

θL
D

φ
xL

yL

xR

yR

UR

UL

φR

φL

Proceedings of the Florida Conference on Recent Advances in Robotics, FCRAR, Boca Raton, Florida, May 8-9, 2003.

obstacle, which can then be transformed to a
second distance reading D2. The redundant
distance readings should result in a more
accurate reading when compiling maps.

CONCLUSIONS
Radio-controlled Servos are a low cost and
simple to control alternative to steppers and
servos, but they do not allow for fine control of
position or motion and therefore should not be
used in places where precision is critical. RC
servos worked great to orient the sensors, but
they were not nearly as fast as the nominal
values. During testing, the servos took as much
as 500ms to move from one position to the next,
which means that faster servos are needed to
properly implement some sweeping sensors as
discussed above. Using RC servos to drive the
rover, resulted in a difficult to control platform
that had trouble maintaining a straight path over
long distances.

Infrared rangers worked consistently and could
deliver data extremely fast, but they had to be
timed so that the servo would reach the desired
position before readings were taken. Sharp
infrared sensors are know for being fairly
constant from part to part, the differences in
readings from the two sensors was very
suspicious, but when the sensor headers were
exchanged. Values from sensor 1 resembled
those of sensor 2 and vice versa, which meant
that the controller board is responsible for the
odd reading values.

The main source of errors is believed to be the
power supply. Having three elements (servos,
sensor and board) that draw relatively high
currents connected to the same power supply
resulted in slow servo velocity, and unstable
sensor signals.

REFERENCES
[1] Borenstein J. and Feng L., “Measurement

and correction of systematic odometry
errors in mobile robots,” IEEE Trans.
Robot. Automat., vol. 12, pp. 869–880,
Dec. 1996.

[2] Martinelli A., “The Odometry Error of a
Mobile Robot With a Synchronous Drive

System” IEEE transactions on robotics and
automation, vol. 18, no. 3, June 2002.

[3] Kelly A., “General solution for linearized
systematic error propagation in vehicle
odometry,” in Proc. Int. Conf. Intelligent
Robot and Systems (IROS01), Maui, HI,
Oct. 29–Nov. 3 2001, pp. 1938–1945.

[4] Blanch J., and Tosunoglu S., “Hand-Held
Computers as Mobile Platform
Controllers,” Florida Conference on Recent
Advances in Robotics, Florida State
University, Tallahassee, Florida, May 10-
11, 2001.

[5] Blanch J., and Tosunoglu S., “Enhanced
Small Mobile Platforms Controlled by
Hand-Held Computers,” IASTED
International Conference on Robotics and
Application (RA 2001), Tampa, Florida,
November 19-22, 2001.

[6] Blanch J., and Tosunoglu S., “Control of
Mobile Platforms via Hand-Held PDA’s,”
the 15th Florida Conference on Recent
Advances in Robotics, Florida International
University, Miami, Florida, May 23-24,
2002.

[7] Varveropoulos V., “Robot Localization and
Map Construction Using Sonar Data.” The
Rossum Project, available at
http://rossum.sourceforge .net/ accessed on
December 2002.

[8] “Futaba Servo Motors,” accessed from
www.futaba-rc.com/servos/futm0029.html,
accessed on October 2002.

[9] Pontech SV203 Servo motor controller
board user manual. Available online at
www.pontech. com. Accessed on
December 2002.

[10] “Acroname Articles Demystifying the
Sharp IR Rangers,” accessed from
www.acroname.com/
robotics/info/articles/sharp/sharp.html.
Accessed on October 2002.

[11] Technical info for the PPRK http://www-
2.cs. cmu.edu/~pprk/, January 2003.

[12] Leon, S. J. “Linear Algebra with
Applications.” Upper Saddle River, New
Jersey. Prentice Hall, Inc. 1998.

[13] Gerald C. F., and Wheatley P. P., “Applied
Numerical Analysis.” Reading,
Massachusetts. Addison Wesley Longman,
Inc. 1999.

