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Abstract --It will be shown that each bit of information at most doubles 
the resulting wealth in the general stock market setup. This information 
bound on the growth of wealth is actually' attained for certain probability 
distributions on the market investigated by Kelly. The bound will be shown 
to be a special case of the result that the increase in exponential growth of 
wealth achieved with true knowledge of the stock market distribution F 
over that achieved with incorrect knowledge G is bounded above by 
D( FllG), the entropy of F relative to G. 

I. INTRODUCTION 
Let X 2 0, X E R"' denote a random stock market vector, with 

the interpretation that X, is the ratio of the price of the ith stock 
at the end of an investment period to the price at the beginning. 
Let B = { b E R": b, 2 0, Ey-lbl =1}, be the set of all portfolios 
b, where b, is the proportion of wealth invested in the ith stock. 
The resulting wealth is 

m 

S -  blX,  = b r X .  (1) 
r = l  

This is the wealth resulting from a unit investment allocated to 
the rn stocks according to the portfolio b. 

11. DOUBLING RATE 
Now let F ( x )  be the probability distribution function of the 

stock vector X .  We define the doubling rate W ( X )  for the market 
by 

W( X )  = max 1 log b'xdF( x) . ( 2) b € B  

The units for W are "doubles per investment." All logarithms in 
this correspondence are to the base 2. Let b* = b*( F )  denote a 
portfolio achieving W( X ) .  Note that W( X) is a real number, a 
functional of F; the apparent dependence of W on X is for 
notational convenience. 

Necessary and sufficient conditions for b to maximize E log brX 
are 

4 

x, 

E -  =1, forb, > 0 

E-  <1, for b, = 0. 
brX - 

brX 

( 3 )  

These are the Kuhn-Tucker conditions characterizing b*( F )  (see 
Bell and Cover [ 3 ] ,  Cover [4], and Finkelstein and Whitley [5]). 

If current wealth is reallocated according to b* in repeated 
independent investments against stock vectors XI ,  X , ,  . . . inde- 
pendent identically distributed (i.i.d.) according to F( x), then the 
wealth S,* at time n is given by 

n 

S,* = n b*'X, . (4) 
i = l  
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The strong law of large numbers for products yields 

with probability one. Moreover, no other portfolio achieves a 
higher exponent (Breiman [l]; Algoet and Cover [9]). 

Now suppose side information Y is available. Here Y could be 
world events, the behavior of a correlated market, or past infor- 
mation on previous outcomes X .  Again we define the maximum 
expected logarithm of the wealth, but this time we allow the 
portfolio b to depend on Y. Let the doubling rate for side 
information be 

and let b * ( y )  = b * ( F x I , )  be the portfolio achieving W ( X l Y ) .  It 
can be shown that b * ( y )  maximizes the conditional expected 
logarithm of the wealth E{logb'XIY= y } .  

In repeated investments against X,,  X , ,  . . . , X,, where ( X , ,  y) 
are i.i.d. - F( x, y ) ,  and b*( x )  is the portfolio used at investment 
time i given side information x ,  we have resulting wealth 

S , * * = n b * ' ( y ) X ,  ( 7) 
i = l  

with asymptotic behavior 

with probability one. It follows that the ratio of wealth with side 
information to that without side information has limit 

with probability one. 

of wealth with Y and without Y be 
Let the difference between the maximum expected logarithm 

Thus A is the increment in doubling rate due to the side 
information Y. It is this difference that we wish to bound. As an 
example, if A =1 then &e information Y yields an additional 
doubling of the capital in each investment period. Finally, we 
observe from (6) and (2) that A 2 0. Information never hurts. 
Kelly [6] identified A with the mutual information for a "horse- 
race" stock market, a result we will generalize here. 

111. MUTUAL INFORMATION AND RELATIVE ENTROPY 
The relative entropy (or Kullback Leibler information number) 

of probability distributions F and G is 

where f and g are the respective densities with respect to any 
dominating measure. (Note: D is infinite if g( x) is zero on a set 
of positive probability with respect to F.) 

The relative entropy may be interpreted as the error exponent 
for the hypothesis test F versus G (Stein's lemma; see Chernoff 
[2]). Another interpretation of the relative entropy for a discrete 
random vector X -  P is that D( PllQ) is the expected increase in 
description length of the Shannon-Fano code based on the 
incorrect distribution Q. 

Let X ,  Y be two random variables with joint distribution Pxy .  
The relative entropy between the conditional distribution PXly 
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and the marginal distribution Px is the mutual information 

I ( X ;  Y )  =/o(P*,v=,, lIP,)P,(d~,)  =D(Px,IIPxP,). (12) 

Of the many alternative expressions for I ,  the most evocative is 
the identity 

I (  X; Y )  = H( X) - H (  X l Y )  (13) 

where H( X) is the entropy of X and H( X l Y )  is the conditional 
entropy. Thus I is the amount the entropy of X is decreased by 
knowledge of Y. One can compare (13) with (10) to see why a 
relationship between A and I might be expected. 

The mutual information I can also be interpreted as the 
information rate achievable in communication over the commu- 
nication channel P ( x ,  y ) .  There is also an interpretation of 
Z( X; Y )  in terms of efficient descriptions. Since H( X )  bits are 
required to describe the value of the random variable X (if X is 
discrete), and since H( XlY)  bits are required to describe X given 
knowledge of Y,  the decrement in the expected description length 
of X i s  given by H ( X ) -  H ( X I Y )  = Z ( X ;  Y ) .  

In summary, the mutual information I (  X, Y)  is 1) the decrease 
in the entropy of X when Y is made available, 2) the number of 
bits by which the expected description length of X is reduced by 
knowledge of Y,  3) The rate in bits at which Y can communicate 
with X by appropriate choice of Y,  4) the error exponent for the 
hypothesis test ( X ,  Y )  independent versus ( X ,  Y )  dependent. 

Iv .  PORTFOLIOS BASED ON INCORRECT DISTRIBUTIONS 
Suppose that it is believed that X - C(x) when in fact X - 

F ( x ) .  Thus the incorrect portfolio b*(G)  is used instead of 
b*(F) .  The doubling rate associated with portfolio b and distri- 
bution F can be written 

W ( b , F )  =/logb'xdF(x) (14) 

with resulting growth of wealth 

(15) s, L y W h .  F )  

The decrement in exponent from using b*( C )  is 

AW( F ,  C )  = W( b*( F ) ,  F )  - W( b*( G ) ,  F ) .  (16) 

The following theorem is central to our results 

Theorem I :  

0 I A"( F ,G) I D( ~ 1 1 ~ ) .  (17) 

Proof: The first inequality 0 I A follows by the optimality of 
b*( F )  for the distribution F. The second inequality A 5 D is 
shown to be a consequence of the optimality of b*(G) for the 
distribution G. Let F and G have densities f and g with respect 
to some dominating measure. The result A I D is trivially true if 
D( FllG) = cc, so it is henceforth assumed that D is finite (whence 
F << C ) .  

Let 

S: = b*r( F )  X S, = b*'( C )  X (18) 

be the wealth factors corresponding to the optimal portfolios 
with respect to F and G. From the Kuhn-Tucker conditions the 
wealth factor S, is strictly positive with probability one with 
respect to G (and with respect to F since F << G). It follows 
(again since F << G )  that the set A = (x: S, > 0. f ( x )  > 0. 

g(  x)  > 0 )  has probability one with respect to F. Then 

5 D( FllG) (19) 
where the first inequality follows from the concavity of the 
logarithm and the second from the Kuhn-Tucker conditions for 
the optimality of b*(G) for the distribution G. 

We can improve Theorem 1 by normalizing X. Let f denote 
the distribution of X/EX,. We note that E(1og b : X / b ; X )  de- 
pends on the _distribution F ( x )  only through the distribution of 
X / E r =  X, - F. 

Corollary: 
A"( F ,  G) I D( FIlc). 

Remark: Another relationship between W and D is shown by 
Mbri [13]. The doubling rate W =  W(b*(F) ,  F )  is equal to the 
minimum of D( FllG) over all distributions G for which EG X, I 1, 
for i = 1 , 2 ; . . , m .  

V. THE INFORMATION BOUND FOR SIDE INFORMATION 
We now ask how A and I are related for the stock market. We 

have 

and 

where ( X ,  Y )  - F ( x ,  y ) .  The first involves wealth and depends 
on the values X takes on. The second involves information and 
depends on X and Y only through the density f ( x ,  y ) .  The 
following theorem establishes that the increment A in the dou- 
bling rate resulting from side information Y is less than or equal 
to the mutual information I .  

Theorem 2: 
0 I A I I (  X ;  Y ) .  (22) 

Proof: For any y ,  let PxI, be the conditional distribution for 
X given that Y = y and let Px be the marginal distribution for X .  
Also let b** = b*(Px, , ) .  Apply Theorem 1, with PxI, and Px in 
place of F and G ,  respectively, to obtain 

Averaging with respect to the distribution of Y yields 

( 24) O I A I I .  

Remark: An alternative proof of this theorem, based on money 
ratio tests and Stein's lemma, appears in [7 ] .  

VI. SEQUENTIAL PORTFOLIO ESTIMATION 
Here we show that a good sequence of estimates of the true 

market distribution leads to asymptotically optimal growth rate 
of wealth. First we generalize Theorem 1 to handle the sequential 
setting. 
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Let X,, X,, . . -, X,, be a sequence of random stock vectors with 
joint probability distribution P". The log-optimal sequential 
strategy uses the portfolio b: = b*( Px,lxl,x2, ,x, which maxi- 
mizes the conditional expected value of logb'x, gwen that X,.= 
fl,. . . , X, , = x, - ,. Suppose that instead of b*, we use portfohos 
b, = b*(Qx,,xl, ,x,-l) which are optimal for an incorrect distribu- 
tion Q" for the sequence X, , . . . , X,. 

Let Px,lxl, , x, and , x,-l be the regular conditional 
distributions associated with P" and Q", respectively. We com- 
pare the resulting wealth 

n 

gn = n qx, (25) 
r = l  

with the wealth 
n 

s,* = n b?TX,. (26) 
1-1 

Theorem 3: 

(27) 
s,* 
Sn 

0 I E log -r I D( P"1lQ"). 

Proof: Application of Theorem 1 shows that 

5 D(Px, lx~-~I lQx,~x~-~) .  (28) 

Averaging with respect to the distribution of XI-' = (X,; . ., 
XI-,)and thensummingfori=1,2;..,n yields 

0 1  E ( log- ;;) 
I =1  

n 

- < C E D ( P ~ , I x ~ - ~ I I Q x , ~ x ~ - ~ )  

= D( P"llQ") (29) 

r = l  

by the chain d e ,  completing the proof. 

Suppose X,, X,, . . . are independent with unknown density 
p ( x ) .  Clearly, the optimal portfolio b* does not depend on the 
time i or on the past. However, if p ( x )  is unknown, a series of 
estimators of the distribution P,( .) corresponding to density 
estimators j , ( x )  based on the pas; XI-' p a y  be used to obtain 
asymptotically optimal portfolios b, = b*(P,). It is often the case 
(;ee Barron [ll],  [12]) that there exists a sequ:nce of estimators 
Pn converging to P in the sense that ED( PI( P,) + 0, at least in 
the Cesaro sense, i.e., 

1 "  
lim - ED( pili,) = 0. (30) 

n - m  n r = l  

In this ca;e Theorem 3 applies with Qx,!x,-~ given by the 
estimator P, ( -) to yield 

1 s,* 
n Sn 

l i m E - l o g T = O .  (31) 

It follows that the actual wealth $, is close to the log-optimal 
wealth S,* as shown in the following theorem. 

Theorem 4: Let X,, X,, . . . be i.i.d. - P. Let in be a sequence 
of estimators of the true distribution P such that 

and let 
n 

$, = n ex, 
i = l  

(33) 

where 

Let 
n 

(35) s,: = n b*'( P)X, 
I =1 

be the optimal wealth sequence. Then 
$ = sn*2no(1) 

n , ( 36) 
where o(1) + 0 in probability. 

$, has the same asymptotic exponent. 

serve that by Markov's inequality 

Consequently, if S,* has an exponential growth rate w*, then 

Proof: To see that $/S,* = 2"'(l) in probability, first ob- 

(37) 

where the inequality E($,/S,*) 5 1 follows from the Kuhn- 
Tucker conditions for the optimality of b* (see Bell and Cover 

On the other hand, using the notation y +  = max (0 ,  y}, y -  = 
[SI>. 

max(0, - r}, 

I 1 [ 1 E log? + '1 (38) c n  

where the first inequality follows from Markov's inequality and 
the second from 

E( log S,*/$,) - = E logmax { in /S,*, 1 } 
IElog(1+in /S ,*)  

I l o g ( l +  E($/S,*)) <log2=1 (39) 

by the concavity of the logarithm and the KuhpTucker condi- 
tions. Combining (31), (37) and (38), we have S,,/S,* = 2"'(l) in 
probability, as claimed. 

VII. EXAMPLES 

We first give an example due to Kelly [6] in which A = I .  Here 
the stock market is a horse race, which, in the setup of (l), 
consists of a probability mass function P( X = Ole, } = pI ,  i = 
1,2,. . . , *i, where E, is a imit vector with a 1 in the i th p!ace a i d  
0's elsewhere, 0, equals the win odds (0, for l),  and p, is the 
probability that the i th horse wins the race. 

Then 

w( X)  = max E log b'X 
b 

m 

= max p,  log b, 0, 
b r = l  

= CP, logo, - H ( X )  (40) 

where H ( X )  = - - Z ~ ~ , p ,  logp,. Also b * = p ,  i.e., the optimal 



1100 IEEE TRANSACTIONS ON IN~ORMATION THEORY, VOL. 34, NO. 5 ,  SEPTEMBER 1988 

portfolio is to bet in proportion to the win probabilities, regard- 
less of the odds. 

For side information Y ,  where ( X ,  Y )  has a given distribution, 
a similar calculation yields 

W ( X l Y )  =Cp, logO,  - H ( X I Y )  (41) 

and 
b: = P ( X = O , e , l y ) ,  i=1 ,2 ; . . ,m .  

Here the optimal portfolio is to bet in proportion to the 
conditional probabilities, given Y.  Subtracting (40) from (41), we 
have 

A = W( X l Y )  - W( X )  = H( X )  -- H( X l Y )  = I (  X ;  Y ) .  (42) 
Consequently, the information bound on A is tight. 

Of course, it sometimes happens that the information Y about 
the market is useless for investment purposes. The next example 
has A = 0, I=1. Let X =  (1,1/2) with probability 1/2, and 
X = (1,3/4) with probability 1/2. Let Y = X .  An investment in 
the first stock always returns the investment, but an investment 
in the second stock may cut the investment capital to either 1/2 
or 3/4 depending on the outcome X .  It would be foolish to invest 
in the second stock, since the first stock dominates its perfor- 
mance. Thus b*=b*(y)=(l ,O) for all y ,  and A = O .  On the 
other hand, since the outcomes of X are equally likely, and 
Y = X, we see 

I (  x ;  Y )  = I (  x ;  X )  = H (  x )  - H( X l X )  

= H( X )  =1 bit. (43) 
Thus a bit of information is available, but A = 0 and the growth 
rate is not improved. 

VIII. CONCLUSION 
We offer one final interpretation. Recall that H ( X ) -  H ( X I Y )  

= I ( X ;  Y )  is the decrement in the expected description length of 
X due to the side information Y. Hence the inequality A I I has 
the interpretation that the increment in the doubling rate of the 
market X is less than the decrement in the description rate of X .  
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Code Construction for the Noiseless Binary 
Switching Multiple-Access Channel 

PETER VANROOSE 

Abstract -The noiseless coding problem is considered for a recently 
introduced discrete memoryless multiple-access channel that is a counter- 
part to the well-known binary adder channel. Upper and lower bounds on 
the number of codewords in a uniquely decodable code pair are given, from 
which the zero-error capacity region of this channel is derived. This region 
coincides with the classical capacity region of this channel. The proof uses 
the new notion of second-order distance of a code. For several values of n 
and k ,  good code pairs of block length n are constructed with the first 
code being [n, k]-linear. Some of these are found to be optimal. Further- 
more, some convolutional codes are investigated that yield additional good 
rate pairs. 

I. THE BINARY SWITCHING MULTIPLE-ACCESS CHANNEL 
Consider the classical two-access communication situation of 

Fig. 1, where two separate senders attempt to communicate to a 
third user, the receiver. The channel accepts two binary input 
streams, transmitted at the same symbol rate and divided into 
blocks of the same length n (assuming bit and block synchro- 
nism), and outputs a ternary stream according to the bitwise 
deterministic transitions depicted in Fig. 2: y = x, / x 2 ,  where 
division by 0 gives 00. We call this channel the binary switching 
multiple-access channel (BS-MAC). Note that this model is com- 
pletely noiseless. We will consider the problem where the decoder 
has to reconstruct the two messages error-free. This of course 
restricts the information rate of the input streams. 

SINK 1 

SINK 2 

Fig. 1. Two-access communication system 

The only other deterministic binary two-input multiple-access 
channel (2-MAC) with ternary output is the binary adder channel 
(BAC), where the channel operation is y =xl + x2. Noiseless 
coding for this channel has been studied by various authors (e.g. 
[1]-[3]). Surprisingly, the channels differ in many ways which will 
become clear in this correspondence. 

Its relationship to the BAC was the first reason for studying 
the BS-MAC. Because both channels have the same input and 
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