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1 Introduction

The market for longevity-linked securities and derivatives has recently experienced a

surge in transactions in longevity swaps. These are agreements between two parties to

exchange fixed payments against variable payments linked to the number of survivors in

a reference population (see Dowd et al., 2006). Table 1 presents a list of recent deals

that have been publicly disclosed. So far, deals have mainly involved pension funds and

annuity providers wanting to hedge their exposure to longevity risk but without having to

bear any basis risk; this means that the variable payments in longevity swaps are driven

by the mortality experience of each individual hedger (hence the name indemnity-based,

or bespoke, longevity swaps). This type of transaction is essentially a form of longevity

risk insurance, similar to annuity reinsurance in reinsurance markets.

A fundamental difference, however, is that longevity swaps are typically collateral-

ized, whereas insurance/reinsurance transactions are not.1 The reason is that hedgers

have been placing increasing emphasis on the issue of counterparty risk2 and look to

the fixed-income markets to provide a reference model. In swap markets, for example,

the most common form of credit enhancement is the posting of collateral. According to

ISDA (2010b), almost every swap at major financial institutions is ‘bilaterally’ collat-

eralized, meaning that either party is required to post collateral depending on whether

the market value of the swap is positive or negative.3 The vast majority of transactions

is collateralized according to the Credit Support Annex to the Master Swap Agreement

introduced by the International Swap and Derivatives Association (ISDA) (see ISDA,

1One rationale for this is that reinsurers pool several uncorrelated risks and diversification benefits
compensate for the absence of collateral.

2Basel II (2006, Annex 4) defines counterpary default risk as “the risk that the counterparty to a
transaction could default before the final settlement of the transaction’s cash flows”. The recent Solvency
II proposal makes explicit allowance for a counterparty risk module in its ‘standard formula’ approach;
see CEIOPS (2009).

3“Unlike a firm’s exposure to credit risk through a loan, where the exposure to credit risk is unilateral
and only the lending bank faces the risk of loss, counterparty credit risk creates a bilateral risk of loss:
the market value of the transaction can be positive or negative to either counterparty to the transaction.
The market value is uncertain and can vary over time with the movement of underlying market factors.”
(Basel II, 2006, Annex 4).
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1994). The Global Banking Crisis of 2008-09 highlighted the importance of bilateral

counterparty risk and collateralization for over-the-counter markets, spurring a number

of responses (e.g, ISDA, 2009; Brigo and Capponi, 2009; Brigo et al., 2010). The Dodd-

Frank Wall Street Reform and Consumer Protection Act (signed into law by President

Barack Obama on July 21, 2010) is likely to have a major impact on the way financial

institutions will manage counterparty risk in the coming years.4 The recently founded

Life and Longevity Markets Association5 has collateralization rules at the center of its

agenda, and will certainly draw extensively from the experience garnered in fixed-income

and credit markets.

The design of collateralization strategies addresses the concerns aired by pension

trustees regarding the efficacy of longevity swaps. At the same time, it introduces an-

other dimension in the traditional pricing framework used for insurance transactions.

The ‘insurance premium’ embedded in a longevity swap rate reflects not only the aver-

sion (if any) of the hedge supplier to the risk taken on or the regulatory capital needed

to support the transaction, but also the expected costs (gains) to be incurred (made)

from posting (holding) collateral during the life time of the swap. To understand the

role of collateral, let us first take the perspective of a hedger (pension fund or annuity

provider) acquiring protection through a collateralized longevity swap: whenever the

swap is (sufficiently) in the money, the hedge supplier (reinsurer or investment bank) is

required to post collateral, which can be used by the hedger to mitigate losses in the

event of default. Although interest on collateral is (partially) rebated, there is a gain

from holding collateral since the hedger benefits from capital relief in regulatory valu-

ations and may re-pledge collateral for other purposes.6 On the other hand, whenever

the swap is sufficiently out of the money, the hedger will have to deposit collateral with

4See, for example, “Berkshire may scale back derivative sales after Dodd-Frank”, Bloomberg, Au-
gust 10, 2010.

5See http://www.llma.org.
6In interest-rate swap markets, the vast majority of collateral is indeed rehypothecated for other

purposes (e.g., ISDA, 2010b). Currently, collateral can be re-pledged under the New York Credit Support
Annex, but not under the English Credit Support Deed (see ISDA, 2010a).
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the counterparty, thus incurring an opportunity cost. This opportunity cost is particu-

larly relevant if we take the symmetric perspective of the hedge supplier, as longevity

protection is very capital intensive.

The objective of our study is to provide a valuation framework for longevity swaps in

the presence of (bilateral) counterparty default risk, and to show how collateralization

rules affect longevity swap rates. In particular, we discuss tools to quantify the trade-

off between the cost of a longevity swap as measured by the swap rate and the credit

enhancement offered by tighter collateralization rules. Our results are consistent with the

empirical observation that hedge suppliers are able to outbid competitors on longevity

swap rates, and still secure a deal, by committing to tighter collateralization rules.

We show that, in the presence of longevity risk neutrality and absence of collateral,

longevity swap rates depend on best estimate survival probabilities and on the degree of

covariation between the floating leg and the defaultable term structure of interest rates

facing both the hedger and the hedge supplier. This means that when the hedger is

a pension plan, a proper analysis of the longevity swap cannot disregard the sponsor’s

covenant (see The Pensions Regulator, 2009, and Section 4 below). When collateral

is introduced, longevity swap rates are also shaped by the expected gains/costs from

holding/posting collateral. We show that collateralization means that the valuation of

longevity swaps needs to allow for a discount rate that reflects the opportunity cost

of collateral. This means, in particular, that default-free valuation formulae are not

appropriate even in the presence of full collateralization and the corresponding absence

of default losses.

We devote part of the article to examining relevant special cases, in order to un-

derstand how different collateral rules might affect longevity swap rates. A number of

studies have recently addressed the issue of how to quantify longevity swap rates by

calibrating to primary/secondary market prices or using approximate hedging methods

(e.g., Dowd et al., 2006; Bauer et al., 2010; Biffis et al., 2010; Chen and Cummins, 2010;
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Cox et al., 2010). As it is by no means clear how risk aversion plays a role in these

transactions, we abstract from longevity risk aversion and focus on how counterparty

default risk and collateral requirements might shape longevity swap rates. Our analysis

shows that in stylized but realistic situations, longevity swap rates embed a margin for

the cost of collateral.

The article is organized as follows. In the next section, we formalize the payoffs on

longevity swaps, providing expressions for swap rates in the case of both indemnity-based

and index-based swaps. In section 3, we examine the marking to market of a longevity

swap during its life time to show the impact of default risk on its hedge effectiveness. Sec-

tion 4 introduces bilateral counterparty risk into the longevity swap valuation formulae,

identifying the main channels through which default risk may affect swap rates. Section 5

introduces credit enhancement in the form of collateral and shows how longevity swap

rates are affected even in the presence of full collateralization. Several stylized examples

are provided to understand how different collateralization rules may affect swap rates.

Concluding remarks are offered in section 6. Further details and technical remarks are

collected in an appendix.

2 Longevity swaps

We consider a hedger (pension fund, insurer), referred to as party A, and a hedge supplier

(reinsurer, investment bank), referred to as counterparty B. Agent A has the obligation to

pay a unitary amount to the survivors at some future time T > 0 of an initial population

of n individuals (annuitants or pensioners) alive at time zero. Party A’s liability is

therefore given by n−NT , where the random variable NT counts the number of deaths

experienced by the population during the period [0, T ]. Assuming that the individuals

have death times with common intensity (µt)t≥0,
7 the expected numbers of survivors at

7Intuitively, µt represents the instantaneous conditional death probability for an individual alive at
time t.
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T can be written as EP [n−NT ] = npPT , with pPT given by (see appendix A for details)

pPT := EP

[

exp

(

−

∫ T

0
µtdt

)]

. (2.1)

Here and in the following, P denotes the real-world probability measure. The intensity

could be modeled explicitly, for instance by using any of the stochastic mortality models

in Cairns et al. (2009). For our examples, we will rely on the simple Lee-Carter model.

Let us now consider a financial market and introduce the risk-free rate process (rt)t≥0.

We assume that a market-consistent price of the liability can be computed by using a risk-

neutral measure Q, equivalent to P, such that the death times still admit the intensity

(µt)t≥0; see Biffis et al. (2010) for details. The liability therefore has time-zero price

EQ

[

exp

(

−

∫ T

0
rtdt

)

(n−NT )

]

= nEQ

[

exp

(

−

∫ T

0
(rt + µt)dt

)]

. (2.2)

We consider two instruments which A can enter into with B to hedge its exposure:

an indemnity-based longevity swap and an index-based longevity swap. In this section,

we ignore default risk and for simplicity we consider single payment instruments (i.e.,

forward contracts); the extension to multiple payments is immediate and covered in some

of our numerical examples. In what follows, we always take the perspective of the hedger.

2.1 Indemnity-based longevity swap

This instrument allows A to pay a fixed rate pN ∈ (0, 1) against the realized survival

rate experienced by the population between time zero and time T . Assuming a notional

amount equal to the initial population size, n, the net payout to the hedger at time T is

n

(

n−NT

n
− pN

)

,
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i.e., the difference between the realized number of survivors and the fixed rate npN locked

in at inception. Letting S0 denote the market value of the swap at inception, we have

S0 = nEQ

[

exp

(

−

∫ T

0
rtdt

)(

n−NT

n
− pN

)]

= nEQ

[

exp

(

−

∫ T

0
(rt + µt)dt

)]

− nB(0, T )pN ,

(2.3)

with B(0, T ) denoting the time-zero price of a zero-coupon bond maturing at T . Setting

S0 = 0, we obtain the following expression for the swap rate:

pN = p
Q
T +B(0, T )−1CovQ

(

exp

(

−

∫ T

0
rtdt

)

, exp

(

−

∫ T

0
µtdt

))

, (2.4)

where the risk-adjusted survival probability pQT is defined analogously to (2.1).

2.2 Index-based longevity swap

This standardized instrument allows A to pay a fixed rate p ∈ (0, 1) against the realized

value of a survival index at time T . The latter might reflect the mortality experience of

a reference population closely matching that of the liability portfolio. Examples are rep-

resented by the LifeMetrics index developed by J.P. Morgan.8 We assume that the index

admits the representation exp(−
∫ t

0 µ
I
sds), where (µIt )t≥0 is the intensity of mortality of

the reference population. Expression (2.4), for example, is then replaced by

pI = p
I,Q
T +B(0, T )−1CovQ

(

exp

(

−

∫ T

0
rtdt

)

, exp

(

−

∫ T

0
µItdt

))

. (2.5)

The relative advantages and disadvantages of this instrument with respect to the indemnity-

based swap are discussed in Biffis and Blake (2010b).

8See www.lifemetrics.com.
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2.3 Swap rates

Expressions (2.4)-(2.5) show that if the intensity of mortality is uncorrelated with the

bond/swap market (a reasonable first-order approximation), swap rates are just the risk-

adjusted survival probabilities pQT and p
I,Q
T . If longevity risk is not priced under Q, we

simply set p = pPT and pI = p
I,P
T . A number of studies have recently addressed the issue

of how to quantify p
I,Q
T , for example, by calibration to annuity market prices, books

of policies traded in secondary markets, or by use of approximate hedging methods (see

references in Section 1). As it is not clear how longevity risk is priced in a longevity swap

transaction (there is essentially no publicly available information on swap rates), we will

suppose a baseline case in which pPT = p
Q
T or pI,QT = p

I,P
T and focus on how counterparty

default risk and collateral requirements may shape longevity swap rates. Similarly, Biffis

and Blake (2010a, 2009) endogenize longevity risk premia by introducing asymmetric

information and capital requirements in a risk-neutral setting.

2.4 More general structures

In practice, the floating payment of a longevity swap has a LIBOR component which

typically makes the covariance term appearing in (2.4)-(2.5) non null. In what follows, we

mainly concentrate on longevity risk and will typically ignore the interest-rate component

of the variable payment. To keep the setup general, however, we will consider instruments

with a generic variable payment, P , which may include a LIBOR component, as well as

survival indexation rules different from the ones considered above. In this case, we will

write the market value of the swap and the swap rates as

S0 = nEQ

[

exp

(

−

∫ T

0
rtdt

)

(P − p)

]

, (2.6)

p = EQ [P ] +B(0, T )−1CovQ
(

exp

(

−

∫ T

0
rtdt

)

, P

)

. (2.7)
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3 Marking to market

Longevity swaps are not currently exchange traded and so there is no commonly accepted

framework for counterparties to mark to market their positions. The presence of coun-

terparty default risk and collateralization rules, however, makes the marking-to-market

procedure an important feature of these transactions. The role of collateral is examined

later on; here, we show how the hedging instrument operates from the point of view of

the hedger. In the case of an indemnity-based solution, at each time t in [0, T ], the value

of the swap can be computed by using the valuation formula

St = nE
Q
t

[

exp

(

−

∫ T

t

rsds

)(

n−NT

n
− pN

)]

=nEQ
t

[

exp

(

−

∫ T

t

rsds

)(

n−Nt

n
exp

(

−

∫ T

t

µsds

))]

− nB(t, T )pN ,

(3.1)

where B(t, T ) denotes the market value of a ZCB with time to maturity T − t. The

extension to multiple payments or to index-based swaps is immediate.

The analysis of the market value of a longevity swap over its life time is important for

at least three reasons. First, at each payment date, the difference between the variable

and fixed payment generates a cash inflow or outflow to the hedger, depending on the

evolution of mortality. In the absence of basis risk (which is the case for indemnity-based

solutions), these differences show a pure ‘cashflow hedge’ of the longevity exposure in

operation. Second, as market conditions change (e.g., mortality patterns, counterparty

default risk), the marking-to-market procedure will result in the swap qualifying as

an asset or a liability in the hedger’s balance sheet. This may have the implication

that, even if the swap payments are expected to provide a good hedge against longevity

risk, the hedger’s position may still turn into a liability if, for example, deterioration

in the hedge supplier’s credit quality shrinks the expected present value of the variable

payments. Third, for solvency requirements, it is important to value a longevity swap

under extreme market/mortality scenarios (‘stress testing’). This means, for example,

9



that even if a longevity swap qualifies as a liability on a market-consistent basis, it might

still provide considerable capital relief when valued on a regulatory basis.

To illustrate these points, let us consider the hypothetical situation of an insurer A

with a liability represented by a group of ten thousand 65-year-old annuitants drawn

from the population of England & Wales in 1980. We assume that A enters a 15-year

pure longevity swap in 1980 and we follow the evolution of the contract until maturity.

The population is assumed to evolve according to the death rates reported in the Human

Mortality Database (HMD) for England & Wales. We assume that interest-rate risk is

hedged away through interest rate swaps, locking in a rate of 5% throughout the life of

the swap. As a simple benchmark case, we assume that longevity swap rates at each

marking-to-market date (including inception) are based on Lee-Carter forecasts using

the latest HMD information available. Figure 1 illustrates the evolution of swap survival

rates for an England & Wales cohort tracked from age 65 in 1980 to age 80 in 1995 (see

Dowd et al., 2010a,b, for a comprehensive analysis of different mortality models).

< Figure 1 about here >

It is clear that the systematic underestimation of mortality improvements by the

Lee-Carter model in this particular example will mean that the hedger’s position will

become increasingly in the money as the swap matures. This is shown in Figure 2. In

practice the contract may allow the counterparty to cancel the swap / reset the fixed

leg for a nonnegative fee; we ignore these features in this example. Figure 2 also reports

the sequence of cash inflows and outflows generated by the swap, which are lower ex-

post than what was anticipated from an examination of the marking-to-market basis.

As interest rate risk is hedged - and again ignoring default risk for the moment - cash

inflows/outflows arising in the backtesting exercise only reflect the difference between

realized survival rates and swap rates. On the other hand, the swap’s market value

reflects changes in survival swap rates, which follow the updated Lee-Carter forecasts
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depicted in Figure 1 and differ from realized survival rates. Marking-to-market profits

and losses can jeopardize a well structured hedging position. As a simple example which

predicts the next section, let us introduce credit risk and assume that in 1988 the credit

spread of the hedge supplier widens across all maturities by 50 and 100 basis points.

The impact of such a scenario on the hedger’s balance sheet is dramatic, as shown in

Figure 3.

< Figure 2 about here >

< Figure 3 about here >

4 Counterparty default risk

The backtesting exercise of the previous section has emphasized the importance of mark-

ing to market and default risk in assessing the value of a longevity swap to the hedger.

As was emphasized in the introduction, however, a proper valuation should allow for

bilateral counterparty default risk. This is the case even when the hedger is a pension

plan. Private sector defined benefit pension plans in countries such as the UK rely on a

promise by the sponsoring employer to pay the benefits to plan members. This promise

is known as the ’sponsor covenant’. The Actuarial Profession (2005, par. 3.2) defined

the sponsor covenant as: “the combination of (a) the ability and (b) the willingness of

the sponsor to pay (or the ability of the trustees to require the sponsor to pay) sufficient

advance contributions to ensure that the scheme’s benefits can be paid as they fall due.”

The strength of the sponsor covenant therefore depends on both the financial strength

of the employer and the employer’s commitment to the scheme. The sponsor covenant

plays the same role in defined benefit pension plans as, say, capital in life insurance

company annuity provision or collateral and margin payments in derivatives contracts

(such as swaps and options). This is why pension funds in the UK do not have formal
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capital requirements or collateralization agreements in place. It is also why they have a

different regulator - The Pensions Regulator - from the rest of the financial services in-

dustry - which is regulated by the Financial Services Authority. However, the regulatory

capital requirements for insurers are precisely laid down. Life insurance companies need

to have sufficient capital in place to remain solvent over a 12-month period with 99.5%

probability (i.e., they need to have sufficient capital to survive a 1-in-200-year event). By

contrast, the sponsor’s obligations to make contributions into a pension plan is typically

not well defined in the trust deeds. This is why The Actuarial Profession (2005, p. 4)

admits that its definition refers to vague and difficult-to-measure concepts such as ’will-

ingness’ or ’ability’. In June 2009, The Pensions Regulator (2009) issued a statement

inviting trustees to consider the sponsor covenant when setting prudent funding targets

and suitable recovery plans in response to lower asset values and higher deficits following

the Global Banking Crisis. In June 2010, The Pensions Regulator (2010) launched a

campaign to improve the monitoring of the sponsor covenant by scheme trustees on an

ongoing basis.

The following analysis shows that a proper valuation of default risk in longevity

swaps must take into account the value of the sponsor covenant. For the latter, we

use the sponsor’s default intensity, and refer to it as party A’s intensity of default. For

large corporate pension plans, the intensity can be derived/extrapolated from spreads

observed in corporate bond and CDS markets. For smaller plans, an analysis of the

funding level and strategy of the scheme is required.

Assume that both A (the hedger) and B (the hedge supplier) may default at random

times τA, τB admitting default intensities (λAt )t≥0, (λ
B
t )t≥0. Assume further that on the

default event t = min(τA, τB) ≤ T , the nondefaulting counterparty receives a fraction

ψi ∈ [0, 1] (i ∈ {A,B}) of the market value of the swap before default, St−, if she is

in the money, otherwise she has to pay the full pre-default market value St− to the

defaulting counterparty. We can then write the market value of the swap as (e.g., Duffie
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and Huang, 1996):

S0 =nE
Q
0

[

exp

(

−

∫ T

0
(rt + (1− ψA)λAt + (1− ψB)λBt )dt

)

(P − p)

]

, (4.1)

where P denotes the variable payment (see section 2.4). The swap rate then admits the

representation

p = EQ[P ] +
CovQ

(

exp
(

−
∫ T

0 (rt + (1− ψA)λAt + (1− ψB)λBt )dt
)

, P
)

EQ

[

exp
(

−
∫ T

0 (rt + (1− ψA)λAt + (1− ψB)λBt )dt
)] , (4.2)

showing that swap rates depend in a complex way on the interaction between the variable

payments and economic variables such as interest rates, default intensities and recovery

rates. When P does not include a demographic component, as in interest rate swaps,

the covariance term is typically negative (e.g., Johannes and Sundaresan, 2007). When

P only includes a demographic component, as in Sections 2.1-2.2, we may expect the co-

variance term also to be negative, as longevity-linked payments are likely to be positively

correlated with the yields on the bonds issued by companies with significant pension lia-

bilities.9 The joint case of floating payments linked to both mortality and interest rates

would appear to suggest a swap rate p < EQ[P ]. In the next section, we will show that,

consistent with what is observed in the longevity swap market, this is not necessarily

the case. To understand why, observe that in the case of full recovery (ψA = ψB = 1),

expression (4.1) reduces to a default-free risk-neutral valuation formula, irrespective of

the default intensities of the counterparties. This is misleading, as different credit en-

hancement strategies/tools carry a cost that is not explicitly captured by (4.1)-(4.2).

The next section addresses this issue.

9On the hedge supplier’s side, this is a reasonable assumption for monoline insurers such as pension
buyout firms. The assumption is clearly questionable for well diversified reinsurers. In the latter case,
however, the covariance is still likely to be negative due to the positive dependence on the hedger’s side.
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5 Collateralization

Counterparty risk can be mitigated through a number of credit enhancement techniques,

such as termination rights (e.g., credit puts and break clauses) or credit derivatives (e.g.,

CDSs and credit spread options). Here we focus on collateralization, a form of direct

credit support requiring each party to post cash or securities when either party is out of

the money. For simplicity, we consider the case of cash, which is by far the most common

type of collateral (e.g., ISDA, 2010a) and allows us to disregard close-out risk (i.e., the

risk that the value of collateral may change at default).

Collateral agreements reflect the amount of acceptable credit exposure each party

agrees to take on. We will consider simple collateral rules capturing the main features

of the problem. Formally, let us introduce a collateral process (Ct)t∈[0,T ] indicating how

much cash Ct to post at each time t in response to changes in market conditions and, in

particular, the market value of the swap (we provide explicit examples below). Again,

we develop our analysis from the point of view of the hedger, so that Ct > 0 (Ct < 0)

means that agent A is holding (posting) collateral. For simplicity, we assume that each

party recovers/loses nothing more than the collateral held/posted upon default of the

counterparty:

• On {τA ≤ min(τB, T )} (hedger’s default), party B seizes any collateral received by

the hedger an instant prior to default, max(−CτA−, 0), and looses any collateral

posted with A; hence A recovers CτA− = max(CτA−, 0) + min(CτA−, 0).

• On {τB ≤ min(τA, T )} (hedge supplier’s default), party A seizes any collateral

received by B an instant prior to default, max(CτB−, 0), and looses any collateral

posted with B; hence A recovers CτB− = max(CτB−, 0) + min(CτB−, 0).

To obtain neater results, it is convenient to express the collateral before default of
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either party as10

Ct =
(

c1t 1{St≥0} + c2t 1{St<0}

)

St, (5.1)

where c1, c2 are two nonnegative processes expressing collateral as a fraction of the mar-

ket value of the swap, when marking to market an asset or a liability for A. Finally,

we introduce two nonnegative processes (δ1t )t≥0, (δ
2
t )t≥0 representing the yield on and

opportunity cost of collateral (they are assumed to be the same for both parties), in the

sense that holding/posting collateral of amount Ct yields/costs

(

δ1t c
1
t 1{St≥0} + δ2t c

2
t 1{St<0}

)

St.

As shown in the appendix, under our assumptions the market value of the swap can be

written as

S0 = nEQ

[

exp

(

−

∫ T

0
(rt + Γt)dt

)

(P − p)

]

, (5.2)

where the spread (Γt)t∈[0,T ] admits the explicit expression

Γt =λ
A
t (1− c1t 1{St≥0} − c2t 1{St<0}) + λBt (1− c1t 1{St≥0} − c2t 1{St<0})

−
(

δ1t c
1
t 1{St≥0} + δ2t c

2
t 1{St<0}

)

,

(5.3)

and the swap rate can be written as

p = EQ[P ] +
CovQ

(

exp
(

−
∫ T

0 (rt + Γt)dt
)

, P
)

EQ

[

exp
(

−
∫ T

0 (rt + Γt)dt
)] . (5.4)

We elaborate on formula (5.4) by examining simple special cases.

10The indicator function 1H takes the value of unity if the event H is true, zero otherwise.
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5.1 Full collateralization

Consider the collateral rule c1t = 1, c2t = 1, implying that the full market value of the

swap is received/posted as collateral depending on whether St is positive/negative. As

there is full recovery of collateral, default is immaterial. In contrast to expression (4.1),

however, expression (5.2) does not reduce to the usual default-free, risk-neutral valuation

formula, unless collateral is costless. For example, assuming that collateral yields/costs

are symmetric and equal to δt, we obtain

S0 = nEQ

[

exp

(

−

∫ T

0
(rt − δt)dt

)

(P − p)

]

, (5.5)

which reduces to the usual default-free valuation formula only if collateral costs are zero.

If the net cost of collateral is positively related to interest rates and default intensities,

we expect the swap rate to be higher than the one given by expression (4.2), reflecting

the fact that (costly) collateralized protection commands a premium (see Johannes and

Sundaresan, 2007, for the case of interest rate swaps). As in the longevity space the

cost of collateral is positively dependent on mortality improvements, and typically much

higher than the short rate, we expect the covariance term in (5.4) to be positive, giving

p > EQ[P ].

5.2 Collateral rules

According to ISDA (2010a), it is very common for collateral agreements to specify col-

lateral triggers based on the market value of the swap crossing pre-specified threshold

levels. The following are relevant (although stylized) examples for our discussion:

a) c1t = 1{St>s} and c2t = 1{St<s} (with s < s), meaning that the hedge supplier

(hedger) is required to post full collateral if the swap’s market value is above

(below) a given threshold s (s).
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b) c1t = 1{Nt<α} and c2t = 1{Nt>β} (with 0 ≤ α < β ≤ n), meaning that the hedge

supplier (hedger) is required to post full collateral if realized deaths are below

(above) a given threshold α (β). The strategy can be used for an index-based

swap by setting c1t = 1{
∫
t

0
µI
sds<a} and c2t = 1{

∫
t

0
µI
sds>b} (with 0 ≤ a < b), meaning

that collateral posting is triggered when the path of the longevity index exits a

pre-specified range [exp(−b), exp(−a)].

c) As the severity of counterparty risk depends on the credit quality of the counterpar-

ties, collateralization agreements typically set collateral thresholds that explicitly

depend on credit ratings or CDS spreads.11 A simple example of this practice is

the collateralization rule c1t = 1{Nt<α}∪{λB
t
>γ}, c

2
t = 1{Nt>β} (with γ ≥ 0), meaning

that the hedger receives collateral when either realized deaths fall below a given

level α < β or the hedge supplier’s default intensity overshoots a threshold γ.

As was evident from the examples in section 3, the credit exposure of a longevity

swap is close to zero at inception and at maturity, but may be sizable during the life of

the swap, depending on the trade-off between changes in market/mortality conditions

and the residual swap payments (amortization effect). In practice, the threshold levels

α, β, a, b, γ will be set so as to ensure that the size and dynamics of the credit risk

exposure are acceptable for both parties.

5.3 Some numerical examples

As a simple example, consider the case in which the short rate is a constant r > 0, both

parties have the same default intensity λ > 0, and collateral yields/costs are symmetric

and equal to δ > 0. In this setting the market value of the swap can only change in

response to the evolution of mortality. The collateralization rule described in example (b)

11According to responses collected by ISDA in the 2010 Margin Survey, 86% of firms use credit ratings
to set collateral thresholds, 12% use CDS spreads. The percentages increase to 100% and 27% for the
14 largest dealer banks. See ISDA (2010b).
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above is therefore appropriate to proxy changes in the swap’s market value. Assuming

that longevity risk is not priced under Q (i.e., pQT = pPT ) and that collateral is posted if

Nt < α or Nt > β (with 0 ≤ α < β ≤ n), we can write expression (5.2) as

S0 =n exp (−T (r + 2λ))

EP

[

exp

(

(2λ+ δ)

∫ T

0

(

1{Nt<α}1{St≥0} + 1{Nt>β}1{St<0}

)

dt

)(

n−NT

n
− pN

)]

,

(5.6)

obtaining the following expression for the longevity swap rate:

pN = pPT +
CovP

(

exp
(

(2λ+ δ)
∫ T

0

(

1{Nt<α}1{St≥0} + 1{Nt>β}1{St<0}

)

dt
)

, n−NT

n

)

EP

[

exp
(

(2λ+ δ)
∫ T

0

(

1{Nt<α}1{St≥0} + 1{Nt>β}1{St<0}

)

dt
)] .

(5.7)

Depending on how the thresholds α and β are set, the covariance term can have different

sign. Table 2 reports some examples for different values of α, β, λ and δ.

In practice, it is not uncommon for hedge suppliers to agree to one-way collateral-

ization to secure a deal, meaning that they will bear the burden of posting collateral if

the swap’s market value moves against them. Setting β = n (so that 1Nt>β = 0 almost

surely) in the above formula yields:

pN = pPT +
CovP

(

exp
(

(2λ+ δ)
∫ T

0

(

1{Nt<α}1{St≥0}

)

dt
)

, n−NT

n

)

EP

[

exp
(

(2λ+ δ)
∫ T

0

(

1{Nt<α}1{St≥0}

)

dt
)] . (5.8)

The covariance term is clearly positive for α > 0, and hence the longevity swap rate

embeds a positive margin reflecting the hedge supplier’s opportunity cost of collateral.

In general, there may be asymmetry in collateral costs for hedgers and hedge suppli-

ers, because pension plans need to satisfy solvency requirements far less stringent than

insurers (see Biffis and Blake, 2009, for a discussion). Without formalizing this situation,

it is clear that it would have the effect of making the covariance term in (5.7) more likely

18



to be positive, and hence lead to a swap rate pN > pPT .

. . .To be completed . . .

6 Conclusion

. . .To be completed . . .
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A Details on the setup

We take as given a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), and model the death

times in a population of n individuals (annuitants or pensioners) as stopping times

τ1, . . . , τn. This means that at each time t the information carried by Ft allows us to

state whether each individual has died or not. We assume that death times cannot

occur simultaneously. The hedger’s liability is given by the random variable
∑n

i=1 1τ i>T ,

which can be equivalently written as n−
∑n

i=1 1τ i≤T = n−NT (recall that the indicator

function 1H takes the value of unity if the event H is true, zero otherwise). We assume

that death times coincide with the first jumps of n conditionally Poisson processes with

common random intensity of mortality (µt)t≥0 under both P and an equivalent martingale
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measure Q (see Biffis et al., 2010, for details). The expected number of survivors over

[0, T ] under the two measures can then be expressed as EP [
∑n

i=1 1τ i>T ] = npPT and

EQ [
∑n

i=1 1τ i>T ] = np
Q
T , with (say) pQT a risk-adjusted survival probability given by

p
Q
T = EQ

[

exp

(

−

∫ T

0
µtdt

)]

.

Consider any stopping time τ i satisfying the above assumptions, an integrable ran-

dom variable Y ∈ FT and a bounded process (Xt)t∈[0,T ] such that each Xt is measurable

with respect to Ft−. Then a security paying Y at time T in case τ i > T and Xτ i at time

τ i in case τ i ≤ T has time-zero price (e.g., Bielecki and Rutkowski, 2002)

EQ

[
∫ T

0
exp

(

−

∫ s

0
(rt + µt)dt

)

Xsµsds+ exp

(

−

∫ T

0
(rt + µt)dt

)

Y

]

.

Consider now two stopping times τ i, τ j , with intensities µi, µj , jointly satisfying the

above assumptions (i.e., they are the first jump times of the components of a bivariate

conditionally Poisson process). A security paying Y at time T in case neither stopping

time has occurred (i.e., min(τ i, τ j) > T ) and Xt in case the first occurrence is at time

t ∈ [0, T ] (i.e., t = min(τ i, τ j)) has time-zero price given by the same formula, with µt

replaced by µit + µ
j
t . This follows from the fact that the stopping time min(τ i, τ j) is

the first jump time of a conditionally Poisson process with intensity (µit + µ
j
t )t≥0 (e.g.,

Bielecki and Rutkowski, 2002). The expressions presented in sections 2-4 all follow from

these simple results.

Proof of expression (5.2). Let (δ1t )t≥0 denote the yield on holding collateral and

(δ2t )t≥0 the opportunity cost of posting collateral for both parties, meaning that holding

collateral of amount Ct provides an instantaneous yield δ1tC
+
t −δ2tC

−
t (we use the notation

a+ := max(a, 0), a− := −min(a, 0)). We assume that collateral is bounded and for all

t ∈ [0, T ] Ct is Ft− measurable. Using the properties of τA, τB reviewed above, we can
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then write:

S0 =E
Q
0

[

exp

(

−

∫ T

0
(rt + λAt + λBt )dt

)

(P − p)

]

+ E
Q
0

[
∫ T

0
exp

(

−

∫ s

0
(rt + λAt + λBt )dt

)

(

λAs C
+
s − λBs C

−
s

)

ds

]

+ E
Q
0

[
∫ T

0
exp

(

−

∫ s

0
(rt + λAt + λBt )dt

)

(δ1sC
+
s − δ2sC

−
s )ds

]

.

(A.1)

Using representation (5.1) we can finally write the above as

S0 =E
Q
0

[

exp

(

−

∫ T

0
(rt + λAt + λBt )dt

)

(P − p)

]

+ E
Q
0

[
∫ T

0
exp

(

−

∫ s

0
(rt + λAt + λBt )dt

)

(

(λAs + δ1s)c
1
sS

+
s − (λBs + δ2s)c

2
sS

−
s

)

ds

]

=EQ
0

[

exp

(

−

∫ T

0
(rt + Γt)dt

)

(P − p)

]

,

(A.2)

which is nothing other than the usual risk-neutral valuation formula for a security with

terminal payoff ST = P − p paying continuously a dividend equal to a fraction

(λAs + δ1s)c
1
s1St≥0 + (λBs + δ2s)c

2
s1St<0

of the security’s market value, St, for each t ∈ [0, T ]. The result then follows.

B Tables and figures
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Figure 1: Survival probabilities 65 + t-year old males from England & Wales in year 1980 + t, based on
Lee-Carter forecasts using the latest HMD data avaiable.

24



1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
−100

0

100

200

300

400

500

600

700

year

G
B

P

 

 
P&L
MTM

Figure 2: Market value of the longevity swap and stream of cashflows with no credit risk.
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Figure 3: Market value of the longevity swap and stream of cashflows with no credit risk (MTM), and
with counterparty B’s credit spreads widening by 50 and 100 basis points over 1988-1995.
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Date Hedger Size Term (yrs) Type

Jan 08 Lucida Not disclosed 10 indexed
Jul 2008 Canada Life GBP 500m 40 indemnity
Feb 2009 Abbey Life GBP 1.5bn run off indemnity
Mar 2009 Aviva GBP 475m 10 indemnity
Jun 2009 Babcock International GBP 750m 50 indemnity
Jul 2009 RSA GBP 1.9bn run off indemnity
Dec 2009 Royal County of Berkshire GBP 750m run off indemnity
Feb 2010 BMW UK GBP 3bn run off indemnity

Table 1: Publicly announced longevity swap transactions. Source: Coughlan (2010).
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