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Equilibrium similarity considerations are applied to the axisymmetric turbulent wake, without the
arbitrary assumptions of earlier theoretical studies. Two solutions for the turbulent flow are found:
one for infinitelocal Reynolds number which grows spatially ¥¥% and another for smalbcal
Reynolds number which grows a&2. Both solutions can be dependent on the upstream conditions.
Also, thelocal Reynolds number diminishes with increasing downstream distance, so that even
when the initial Reynolds number is large, the flow evolves downstream from one state to the other.
Most of the available experimental data are at too low an initial Reynolds number and/or are
measured too near the wake generator to provide evidence fox'theolution. New results,
however, from a laboratory experiment on a disk wake and direct numerical simuléDbis; are

in excellent agreement with this solution, once the flow has had large enough downstream distance
to evolve. Beyond this the ratio of turbulence intensity to centerline velocity deficit is constant, until
the flow unlocks itself from this behavior when thezal Reynolds number goes below about 500

and the viscous terms become important. When this happens the turbulence intensity ratio falls
slowly until thex’? region is reached. No experimental data are available far enough downstream
to provide unambiguous evidence for ¥ solution. The prediction that the flow should evolve

into such a state, however, is confirmed by recent DNS results which reaxH4kelution at about
200000 momentum thicknesses downstream. After this the turbulence intensity ratio is again
constant, until box-size affects the calculation and the energy decays exponential3003®
American Institute of Physics[DOI: 10.1063/1.1536976

I. INTRODUCTION constant or increases downstream, in the axisymmetric wake
it drops slowly. Thus viscous effects continuously become

The axisymmetric turbulent wake is a flow that hasmore important until eventually they may domindtethe

puzzled researchers for more than a half-century, since meflow extends far enough downstrepihese varying viscous

sured results have been either inconclusive or contradictivesffects, together with the many very different possibilities for

In order to evaluate experimental data in the context of simithe structure of the near wake from different generators, con-

larity analysis, a “complete” set of measured data is neededsiderably complicate interpretation of the data. The goal of

Here, the term complete refers to the following necessary sehis study is to usequilibrium similarity theoryto sort out

of quantities: At least mean velocity and turbulence intensitythese different effects and isolate the regions in which they

distributions across the flow and the wake width. Figure 1dominate or in which they can be ignored.

shows a sketch of the axisymmetric wake together with the

coordinate systermJ,, denotes the free stream velocity,

=U,.—Uc_ is the centerline velocity deficit, anslis a mea- !l HISTORICAL REVIEW

sure of the wake width. , The first complete set of data in the wake of an axisym-
The axisymmetric wake is a challenging flow to measuréyqyric gisk perpendicular to the flow was presented by
because of the small velocity deficit, the slow decay of theCarmody} who measured mean velocity, turbulence inten-
velocity deficit downstream and a turbulence intensity of thesity, Reynolds stress and wake growth in an axisymmetric
same order as the deficit. In fact, the far axisymmetric wakejisik wake at a Reynolds numbeRg) of 70 000 whereRp, is
still is at the threshold of what is possible to measure today),seq on the free stream velocity and the disk diameter.
using even the best wind tunnels and the most stable lowgageq on these measurements, the wake appeared to be self-
noise anemometer equipment. Also, unlike many other fregmjjar 15 diameters from the disk, meaning that the mean
shear flows for which thdocal Reynolds number remains velocity profiles appeared to collapse when normalized by
the centerline deficit and a lateral length scale determined
3E|ectronic address: peter.johansson@me.chalmers.se from the profile itself. The disk wake was also investigated
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FIG. 1. Axisymmetric wake coordinates and defini-
tions.

by Hwang and Baldwiff,who measured turbulence intensity 1 (R
and wake growth rate at up to 900 diameters downstream 6°= lim — [ U(U.,—U)rdr. (1)
distance from the body. They did not, however, present cen- Rowa 70
terline mean velocity decay. Both the Carmbayd Hwang
and Baldwirf data show a significant scatter, presumably du€This corresponds to values Bf, of 13 000 for the solid disk,
to the limitations of the anemometers used at that timel4 000—17 000 for the screens, and 21500 for the sphere.
Uberoi and Freymuth measured the sphere wake R, The measurements extended over a range éffrom about
=8600 and stated that the wake achieved self-similar behaw85 to 500. There were no conclusions about when the flow
ior at 50 diameters downstream, although they only meaachieved self-similar behavior, and in fact it was not obvious
sured a few more points farther downstream. Bevilagua anthat the turbulence intensities ever did.
Lykoudis* investigated the wakes of a sphere and a porous During the last decade, researchers have primarily fo-
disk atRp =10 000 with the same momentum defi@rag, cused on the early development of the wake behind differ-
and reported that these became self-similar in terms of meaently shaped axisymmetric bluff bodies; among theltay
velocity and Reynolds stress profiles within ten diameters oét al.® Ostowari and Pag&Portiero and Perez-Villd® and
the sphere and within twenty diameters of the porous disk—Sirviente and Patéf: All concluded that the wake became
but not in the same manner; i.e., the sphere and the porowémilar in meanvelocity but the turbulence intensity profiles
disk did not reach the same state of similarity. They con-did not collapse. The initial evolution has also been studied
cluded that this result wasot consistent with the idea that numerically by Bastet al,? who made a direct numerical
the turbulence forgets how it was created, as commonly besimulation(DNS) of the axisymmetric wake foRy=1500.
lieved (cf. Townsend®). The authors claimed that the solution approached the self-
A recent extensive experiment was reported by Cafnonsimilar state in a slow manner, but the computation was in-
who investigated the axisymmetric far wake behind five dif-terrupted before this could be verified. From all the data
ferent wake generatorglisk, sphere and three porous disksreferred to above, it is impossible to conclude whether the
with varying porosity, all having the same drag and Rey- axisymmetric wake in general becomes self-similar at all;
nolds number based on the momentum thicknessRpf and if it does, when.

=U..0/v~3500, whereJ,, is the free stream velocity, is Very recently, Gourlayet al,*® presented the first DNS
the kinematic viscosity, and is the momentum thickness of the high Reynolds numberRg=10000) “late” wake
defined by (which can be directly compared with the “far” wakeThe
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(i)

r/d,

FIG. 3. Mean velocity profiles for the porous disk with=0.70, data from
Cannon(Ref. 7).

simulation did not resolve a wake generator, but started from
a Gaussian velocity profile consistent with a laminar wake
(cf., Townsend® or Schlichting®) with superimposed ran-
dom noise. The simulation ran to very large times, which
corresponded to very large downstream distances, about
x/D~4x10° or x/ §~3x 1(P! This is almost three orders of
magnitude larger than any existing laboratory experiment.
There was a brief comparison to the results of classical simi-
larity analysis to check the reliability of the numerical data, (i)
but Gourlayet al® did not make any statements about when
or if the wake became self-similar.

Even more recently, the axisymmetric disk wake from
x/D=10 to 60 was studied with the proper orthogonal de-
composition (POD) technique by Johanssoet al® This
work was extended to cover downstream distances up t6ii)
x/D =150 by Johanssoli:}" The latter provided mean veloc-
ity and streamwise velocity fluctuation profiles. These data,
as well as those of Gourlast al'® will be used extensively
below.

The following observations can be made from all the
investigations listed above:

— Curve fit )
ax/0=37 (iv)
ox/0=74

ax/6=110
xx/0 =147
xx/0 =184
-x/8=221
-x/6 = 258
o X/0 =295
+x/0 =331
= X/6 = 368
«x/0 = 405
AX/0 =442
o X/0 =479
ux/6 =515
*x/6 =552

0 0.5 1 1.5 2 2.5 3
r/0,
FIG. 4. Mean velocity profiles for disk, data from Johansé®efs. 16 and
17). Solid line shows a curve fit according to HE7).
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Different initial conditions affect the growth rates,
contrary to the classical theory which states that all
wakes should depend only on the downstream dis-
tancex, and the drag, 2pUZ2 6? (Townsend®). Here,

p is the fluid densitylJ., the free stream velocity, and
6 the momentum thickness defined in Efj). This is
most strikingly illustrated by the flow visualization
photographs of Cannoet al®

Data from Carmody, Uberoi and Freymuth, Bev-
ilaqua and Lykoudié, Cannon’, Gourlay et al,*® and
Johanssot?'*” are plotted in Fig. 2(The data of Gour-
lay et al®® cover much largex/# than shown here,
and will be discussed latgiThese show the variation
with x of the transverse length scalevake width
defined by

1
o,
whereU, is the centerline velocity deficit. The data
shown clearly do not collapse to a single curve inde-
pendent of the wake generator. Note that the data by
Bevilaqua and Lykoudfsare for two generators with
the same drag, and that the data by Card®for five
generators with approximately the same drag. These
source dependent effects do not seem to vanish, even
for large Reynolds numbers or large downstream dis-
tance.

In apparent contradiction, the mean velocity profiles
from all experiments collapse onto a single curve
when scaled with centerline velocity deficit aag ,

as illustrated in Figs. 3 and 4 for the data of Carfnon
and Johanssoli;!’ respectively. The other references
show just as good a collapse.

The turbulence intensity profiles presented by
Carmody and Cannohdo not collapse at all, even
for fixed upstream conditions as shown in Fig. 5 for
the data of Canndnfor the porous disk witho
=0.70. Here, very large downstream distances, up to
x/ 6>500, are covered. By contrast, Fig. 6 shows pro-
files of u/,,,/U, for various downstream distances for
the disk wake of Johanssoh!’ Here, the turbulence
intensity profiles seem to indeed collapse, but not be-
fore x/ 6~200.

Finally, curve fits to the screen wake data by Carinon
indicate that square root and cube root downstream
dependencies describe the wake growth equally well.

R
O(UOQ—U)rdr, (2)

Clearly, there is much remaining to be explained. These is-
sues cannot be reconciled simply by attributing them to mea-
surement errors alone. Not all investigators could be incom-
petent, and in fact the internal consistency of the data
suggests the opposit@.g., momentum conservation, etc.
Nor are the problems presented by wake measurements more
difficult than for grid turbulence for which hot-wire measure-
ments have long been accepted.

The classical self-preservation approach to free shear
flows was first questioned by Geortfe?®who argued that it
was based on assumptions that were not in general valid. He
proposed a new methodology calleduilibrium similarity
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FIG. 6. Turbulence intensity profiles for disk, data from Johan¢Bafs. 16

FIG. 5. Turbulence intensity profiles for the porous disk with 0.70, data and 17.
from Cannon(Ref. 7).

t/0,

portantly, because tHecal Reynolds numbedecreasesvith

. _ . distance downstream, the flow will be shown to eventually
analysis and demonstrated with it that solutions were pos-

. . . » evolve from the high Reynolds number state to the lower, no
sible which depended_nlque_lyon . upstream_ conditions. matter how high the initial Reynolds number of the flow.
The new theory was in striking agreem_entz\{wth the nearlynnq i the initial Reynolds number of the flow is too low, the
cgncurr.ent expenmentg of Wygnanset a!. .for two- high Reynolds number solution will not be observed at all.
dimensional vyakes, which showed dramatic differences beT’he available experimental and numerical data is analyzed,
tween spreading rates and eddy structure that depended 8§pecially addressing the particular points listed above. Not

the \(/Svake %S,\nlerator. d that th : ) K IOIsurprisingly(given the state of confusignmost of the labo-
eorge” also argued that the axisymmetric wake wou ratory experiments are shown to take place in the evolution

behave similarly. He predicted that the mean velocity profile egion. The direct numerical simulation of Gourletyal 3 is

fbromhthe d|ffer|_ent ((ejx;;_er_lmeTts .WOUIddbe fhe_ sagwef_, '_f shcalie he only case where both the high and low local Reynolds
y the centerline deficit velocity and velocity deficit hall- , \per solution are found, since it is the only investigation

Width’ even If the wakes grew at differ.ent _rates. This Is CON%hat covers far enough downstream distances with high
S|stent. with the observatlpns shOV\{n in Figs. 3 and 4. Th'%nough initial Reynolds number.

result is very important, since previous researchers have of-

ten used the collapse of mean velocity profiles alone to argue

that wakes are independent of upstream conditions. Thil. EQUILIBRIUM SIMILARITY ANALYSIS
whole point of George’s analysis, however, is thabperly
normalized mean velocity profiles always collapaad the
source-dependent differences only show up in the spreadin
rate and the higher turbulence moment#is is clearly ob-
served as noted above.

Georgé® was unable to resolve whether the asymptotic

axisymmetric wake would evolve a&-x* or asé~x*2. In : on sl .
fact, he showed fronad hocassumptions about the dissipa- W/itten here for the momentum equation equations,
Egs.(Al) and(A4), only—the others are treated similarly

tion that both solutions were consistent with the equations;
depending on the Reynolds number. It did not appear to be  y—u_=U x)f(7,*), —uv=Ry(X)g(7.*), (3a)
possible, however, to decide which, if either, would be ob-

1— 11—
served, or whether the flow would evolve from one to the =K, (0Ky(7,%), =020 =Tootes(7,%), (3b)

The necessary equations to study are: the momentum
guation, conservation of momentum, continuity, and the in-
vidual transport equations for Reynolds stresses in cylin-
drical coordinates. These are summarized in Appendix A,
since they are not easily available in standard texts. In the
spirit of George:®*°we seek solutions of the forfexplicitly

other. Or even if such an evolution occurred, which would be 2 2

observed first. As the careful experiments of Carinde- — L

scribed earlier make clear, these questions are still very much P du * . _pD D/ *

. — . P ) ) - - P ) )

in doubt. }a p X dW(X)Pu(n,) P pu o (X)pg (7 ) (30
In this paper, the analysis of Georgés re-visited, cor- B .

rected, and extended. It will be showvithout ad hocas- £y =Dy(X)du(7,%), (3d)

sumptions that two different equilibrium similarity solutions where n=r/8§(x) and* denotes a possibla&inknowr) de-
for the axisymmetric wake are indeed possible: One for vernpendence on initial conditions. Note that two different sets of
high local Reynolds numbers, and another for low. Most im- solutions will be found below, so the symbols will have dif-
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ferent meanings depending on which is being discussedery lowlocal Reynolds number. Note that the latter solution
Since each regime is discussed separately there should be sloouldnot be confused with the laminar solution, but instead
confusion. identified with turbulent flow for which the velocity spectra
For the particular type of “equilibrium” similarity solu- do not have a developdd > range(see Georg®). And by
tions suggested in Geord®the terms in the governing equa- contrast, the high Reynolds number limit applies to a flow
tions must maintain the same relative balance as the flowvhich has an easily apparent inertial subrange in the spectra.
evolves These “equilibrium” similarity solutions exist only Further it will be demonstrated that no matter how high the
if the terms within square brackets in EqB3)—(B8) have  Reynolds number of the drag-producing device, $y
the same-dependence, and are independent of the similarity=U..6/v, the diminishinglocal Reynolds number down-
variable, . (Thus, the bracketed terms must remain propor-stream will cause the equatiofend the solutions as weglio
tional to each other as the flow evolve$his is denoted by slowly evolve from one regime to the other.
the symbol~ which should be interpreted as “has the same

x-dependence as(Note that the symbot- has nothingto do |\, THE INEINITE REYNOLDS NUMBER SOLUTION
with “order of magnitude” in this paper.

For the mean momentum equation of H&3), these A solution having the samg-variation as the classical
equilibrium similarity constraints reduce to solution can be derived by setting the viscous terms in Egs.
(B4)—(B8) exactly equal to zero, which corresponds to the
i %N d_5~ Rs v 4) limiting solutions at infinite Reynolds numbers. It is straight-
Us dx dx U,Ug U.d’ forward to show that all of the remaining constraints can be

There is nothing in the equations or the theory which sug-sat'Sf'ed' Of particular interest are the following:

gests that the constants of proportionality are independent of d§ D8

source conditions, nor in fact do they appear to be. Thisis Gy~ U.K,’ @)

contrary to the usual assumptions in self-preservation analy-

sis (cf., Townsend®). It is trivial to show that the relation Ky~K,~Ky~UZ, (8)

between the first and second terms of E4).is satisfied by 3

the momentum integral result of E(B2). D,~D,~Dy~Ug/d. 9
The proper scale for- uv is obtained by using the sec- Note that this is the solution obtained by Gedfgsy assum-

ond and third terms, which yields ing the dissipation relation of Eq9). The scaling for the

ds dissipation is just what one should expect for an infinite Rey-

- (5) nolds number solution where the dissipation is completely

SdX . . . 3 .
controlled by the energetic turbulencee., eu®/l in the

usual notation of texjs

It follows immediately after some manipulation that

R~U, U

It is immediately obvious how the equilibrium similarity ap-
proach yields a different and more general result than the

classical approach, where it &ssumedvithout justification 8, X—Xo |3

that R;=U? (cf. Tennekes and Lumlés). 2 a5 | (10
The same equilibrium similarity hypothesis can be ap-

plied to the component Reynolds stress equations; namely Ug X—Xo| %3

that all of the bracketed terms should remain proportional U_w: 0 ' (1)

(i.e., have the samg-dependendge For example, inserting
Eqg. (3) into Eq. (A4) yields after some elementary calculus
Eq. (B5). Thus equilibrium similarity can be maintained only

wherea=a(*), b=b(*), andx,=x,(*) is a virtual origin.
This is, of course, the classical solution with but a single

if difference—the dependence of the coefficients on upstream
conditions,*. This possible dependence must be acknowl-
6 dK, d§ T,6 D,é6 v edged, since there isothing in the equations themselves
K, dx dx U.K, U.K, U.s ©) suggest independence of upstream conditions. The mean ve-

o ) ) ~locity profile, on the other hand, can be shown to be inde-
Similar relations arise from the other component equationspendent of upstream conditions. This is achieved by incor-
Egs.(B6)—(BY). . . ~ porating a factor of Rg/(U..Ug)dé/dx] into the definition

All of these relations cannot simultaneously be satisfiecy g 5o that there are no parameters at all in EBg), as
given the constraints already placed g, 6, andRs from  noted by Georgd?

the mean momentum equation. A solution is possible, how-
ever,if the viscosity is identically zeresince then all terms
involving the viscosity fall out of the problem. And also
solution for finite viscosity is possibikit can be shown that

V. BOUNDS ON THE VALIDITY OF THE INFINITE
REYNOLDS NUMBER SOLUTION

the production term,—v23(U—U,)/dr, in the Reynolds It was noted in the introduction that the cube root solu-
shear stress equation, E@\7), is negligible relative to the tions simply do not account for most of the data, and espe-
leading terms. cially the careful data of CanndnSo where might the prob-

It will be demonstrated below that these are in fact lim-lem be? Firstly, even if the Reynolds number of the wake
iting solutions for very largéocal Reynolds number, and for generator is high enough for the flow to be nearly inviscid, as
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required for the similarity theory to be valid, it clearly can casg. Given the difference in initial conditions, there are no
only apply after the transients from the wake generator havearticular reasons that the these two flows should develop in
died off. Coincident with this, the turbulence intensity ratio, exactly the same way, either initially or far downstream.
u’'/Ug, must also reach a constant value, as demanded by It is easy to show that, unlike most other free shear
Eq. (8) above. Note that appropriate choices for the similar-flows, this infinite Reynolds number solution contains the
ity parametersK, and Ug are U;=U, and K —umax, the seeds of its own destruction. The productlfs, /v and
centerline velocity def|C|t and maximum of the mean-squaral s, /dx controls the relative importance of the neglected
streamwise fluctuating velocities, respectively. viscous terms in the mean momentiiEyg. (B4)] and Rey-
The ratiou,,,/U, is plotted in Fig. 7 versug/ ¢ for the  nolds shear stress equatiditsys. (B5)—(B8)]. This product
data of Johanssdfi;!’ Bevilaqua and Lykoudié, and can be simply related to théocal Reynolds numberR
Cannon’ There is a large uncertainty as to whether the data= U6, /v, by substituting Eqs(10) and (11) into the defi-
of Bevilaqua and Lykoudfsand Cannohreach a horizontal nitions to obtain
line. Note that the data of Cannbfor the screen witho

=0.70 is based on Fig. 5 and the data of Johan$sdre Usdy doy _ a® Uo0[X—Xq 1/3:iR (12)
obtained from Fig. 6. The data from Johans§dftends to v dx 3 v 0 3b

fall onto a line, at least aftex/ #~120. The error bars indi- where

cate an uncertainty in the data of 4%. This error originates

primarily in the difficulty of estimating the centerline mean O X — Xo -3

velocity difference, since the mean velocity data is affected R= =abR, (13

by drift in the anemometer calibration. This is discussed in
detail in Johanssotf:}” There is no doubt, however, that the Thus, no matter how large the initial Reynolds numity,
flow is still developing until at least/#=120 (x/D~30), eventually far enough downstream tloeal Reynolds num-
beyond which it appears to have settled in to an equilibriunber, R, is diminished until the viscous terms can no longer be
similarity state. neglected. And if the viscous terms are not negligible, then
This conclusion can be compared to the findings of thehe infinite Reynolds number similarity solution cannot be
POD studies of Johanssoat all®? (see also George even approximately true. This is illustrated in Fig. 8, using
et al?*), who showed that the POD modal distribution wasthe data of Johanssdfil’ Carmody! Cannon’ Uberoi and
changing untik/D~50 (x/ #~184). The energy distribution Freymuth® Bevilaqua and Lykoudi$,and Gourlayet al!®
went from an azimuthal mode 1 dominancexdd=10to an  Clearly the local Reynolds numbers in the experiments drops
azimuthal mode 2 dominance bByD =50, with both modes drastically as the flow evolves downstream, so eventually the
being equally important at/D =30. Beyondx/D =50, the viscous terms become important, even if initially negligible.
decomposition hardly changed at all. By contrast the turbu-  The effects of the changinlpcal Reynolds numberR,
lence intensity seems to have settled in>0Yp~30 (x/6  can also be clearly seen in the one-dimensional velocity
~120), but the overshoot betwee#~120 and 200 may spectra of Uberoi and Freymdtand Gourlayet al'® shown
be significant. Other quantities, such as the growth rate musn Fig. 9. As noted by Georg®, high Reynolds number so-
be taken into account before specifying the exact location olutions apply only if there is a clear inertial subrange in the
the start of the equilibrium similarity range. Uberoi and power spectrum. This insures that the energy and Reynolds
Freymutli concluded that their sphere wake became selfstress scales of motion are effectively inviscid. Rogreater
similar afterx/D =50 (corresponding to</#~300 in their  than 1600, this is clearly the case, with about two decades of
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inertial subrange. ByR=400, the existence of an inertial analysis since it does not survive asymptoticédlyactly like

subrange is questionable, and Ry 200 it is clearly gone. the Reynolds stress convection terms in the outer boundary
The approximate lower limit for the high Reynolds num- layer analysis of George and Castffip But since the differ-

ber solution ofR~500 is indicated on Fig. 8 by the horizon- ence in decay as~ "2 andx~ %2 is very small, it clearly will

tal shaded line. None of the data below this line satisfy theake a considerable distance downstream to reach this new

conditions for the high Reynolds number solution. Alsostate of equilibrium. Moreover, this new state will be very

shown in Fig. 8 by the vertical shaded line is the approxi-difficult to recognize froms, andU, alone.

mate boundary of the transieftr near wakgregion for the It is straightforward to show that Eq14) can be inte-
disk as described above. Clearly most of the experimentajrated to obtain
data do not satisfy the conditions for the high Reynolds num- 12

. o ; . « o X—Xg0
ber solution to apply. Before examining in detail the experi- —*=¢ R, 1/2[ , (15)
ments that do, the low Reynolds number solution will be o ¢
developed below. . X—Xoq]

_:d Rg

: (16)

0

where as before=c(*), d=d(*), and Xy,c=Xyo(*) is a
As noted abovéand by Georg€), there is another equi- virtual origin which most likely is different than the one
librium Slmllarlty solution to the same set of equations. Theobtained above. Unlike the infinite Reyn0|ds number solu-
difference is that this time all the terms inVOIVing ViSCOSity '[ions7 the mean Ve|ocity prof”e cannot be shown to be inde-
are kept in both the mean and Reynolds shear stress equgendent of upstream conditions because of the additional
tions. This prOduceS one additional constraint of the meakerm in the momentum equation_ Note that the mean prof"e

VI. THE LOW RE SOLUTION

momentum equatiofEqg. (B4)] is not the same as for the higcal Reynolds number wake,
ds v at least in principle, because it is a solution to different equa-
x U5 (14)  tions involving viscosity(See, for example, Fig. 15 and Ap-
* pendix C)

It is extremely important to note that even though some of It is easy to show that the local Reynolds number con-
the relations are the sante.g.,K,/ U§=constant), the con- tinues to fall with increasing distance downstream; therefore,
stants of proportionalityor more properly, the parameters of the approximations improve with distance downstream.
proportionality since they all depend &nthe unknown de-  Moreover, since the viscous stresses and Reynolds stresses
tails of the initial conditions are most likely different from both decay ax™%? the flow will remain a lowlocal Rey-
those governing the infinite Reynolds number solution. nolds number turbulent wake forever.

There is one problem which at first glance appears to be  An important clue as to if and when this low Reynolds
quite serious. All of the constraints in the Reynolds sheanumber solution regime applies is the constancy of the ratio,
stress equation cannot be met, in particular the one arising, /U2, or in the data the constancy of the rati¢,,/U,.
from the production termy?d(U—U.,.)/dr. This offending  This is exactly the same condition applied above to identify
term dies off with distance downstream faster than the rethe high Reynolds number region; so if the constant is the
maining terms in the equation, in fact &s”?> compared to  same for both high and low Reynolds number solutions, it
x~ %2 for the rest. Therefore, it can also be neglected in thewill be extraordinarily difficult to tell them apart since they
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differ by only x'%/x3. Fortunately, the intensity ratios ap- regions. In fact, it is the constancy or lack of constancy of
pear to differ significantly as will be seen below, so it is quiteu;, . /U, that most easily identifies the various similarity so-
easy to decide where the infinite Reynolds number regiofiution regimes.

ends and where the viscous one begins, at least for the Gour- As noted above, only a few of the many sets of experi-

lay et al!® data. mental data actually satisfy the conditions for the infinite
Reynolds number solution to apply. Only the experimental
17 H
VIl. IDENTIEICATION OF THE DIFEERENT REGIMES data of Johanssdhl’and the DNS data of Gourl&will be
FROM DATA considered further here. Of these, only the DNS data com-

. ) _pletes the evolution to the low Reynolds number solution.
A necessary condition for any data to be considered is

Fhat momentum is co_nserved. F(_)r the near wake this re_quirg@_ A high Reynolds number experiment

inclusion of the nonlinear term in Eq1); but for all posi-

tions of interest here, momentum conservation reduces to  The Johansson data were taken in the MTL tunnel of the

> 5 Swedish Royal InstitutéKTH), Stockholm using rakes of 15

Uody =U.. 0% (17 hot-wires. The disk was 20 mm in diameter and the flow

All of the experimental data appear to satisfy this require-speed was 20.4 m/s, correspondingRe,=7300. The 7 m

ment, as does the DNS data of Gourlay ¥66>500. More-  long test section and very low background turbulence inten-

over, as noted above, for similarity to be valid the ratiosity permitted measurements downstreanxtd =150, or

U/a/Uo has to be constant. The constant may be, in principlex/ 6=552. The experiment is described in detail in

at least, different for the high and low Reynolds numberJohanssof®!’ The mean velocity and turbulence intensity



Phys. Fluids, Vol. 15, No. 3, March 2003

Equilibrium similarity, effects of initial conditions 611
1.4 2500
a) . b)
2y . 9_2 P e om0 0-0 ® —e— 5 — 2000
1 o
Yinax o8] °
Uo 0.6
0.4
0.2 H
0+ ‘ 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
x/0 x/0
W ° sool d) °
800 0 .t .o
° 0 °
600 o 600 | o
L 4 °
5 3 1 ° u -3/2 i °
—~—9 B °
= 400 ° ( n) 400 kS .
(e) . ° U : .
° - °
200 | ° 200 noe
°. o
L] °
0, ° . . . N 0 +—2 . .
0 100 200 300 400 500 600 0 100 200 300 400 500 600
/6 x/0

FIG. 10. (a) Maximum turbulence intensityp) local Reynolds numbefg) wake width, andd) velocity deficit. Data of Johanssd@Refs. 16 and 1)7 Shaded
areas show lower limit for high Reynolds number solution and limit of near-wake transient.

profiles have already been shown in Figs. 4 and 6, respe®. Recent high Reynolds number DNS
tively. Figure 10 summarizes all the remaining important pa- 13 )
rameters mentioned above for the full picture of the high The DNS data of Gourlagt al. * cover very large down

local Reynolds number similarity region for the disk wake stream distances as mentioned in the introduction, and both
The turbulence intensity normalized by the velocity deﬁ-the h|g.h .and low Reynolds number regimes F:an be ObS?r"ed-
it at the centerline is constant beyorty~ 120. Thelocal The original data were presented as a function of nondimen-
Reynolds number is above 500, even at the farthermostionalized timetU/L, where the reference velocity =1
downstream position. The plot o6 /6)° versusx/ @ is lin- ~ and reference length=1. When converting to downstream
ear, as is the plot ofY./U,) ~%? exactly as required by the distancex/é, it was first assumed that)=x, and the ve-
high Reynolds number similarity results of Eq40) and locity profiles were then integrated according to Ep. All
(11), respectively. Linear regression yields values for theresults presented here are plotted versig to facilitate
constants asa=1.14,b=0.77,x,= — 2.44. comparison with the experimental data.
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In Fig. 11, the turbulence intensities of Gourlayal*®

marizes the important parameter variation for the first region

are shown. Two regions of constant normalized turbulencédentified above.

intensity can be observed: One for 180% §<<8 000 ap-
proximately (see inset and the other for 200 0GOx/ 6

The turbulence intensity normalized by the centerline
velocity deficit begins to drop slowly after #~8000, which

<600 000 approximately. This wake clearly reaches the firsis 5hout where the local Reynolds number has reached the

equilibrium similarity region much farther downstream than
the disk wake of Johansstrt’ considered above. This might
be related to the level of turbulence intensity which is much
lower (almost a factor of twpthan the disk wake results.
(Note that the turbulence intensity is even lower for the po

previously suggested threshold of 500. Clearly, this region
should be identified with the high Reynolds number solution.
As for the disk data, &, /6)° and U,/U..) %2 are both

linear over the same range for which the intensity ratio is

rous screens of Cannbishown in Fig. 7. Because of the Cconstant, and begin to deviate about when the intensity ratio
low turbulence intensity of these flows, it is possible it takesP€gins to drop and the Reynolds number drops below the
such large downstream distances for the flow to reach equthreshold value. Regression fits of Eq$0) and (11) yield
librium because the time scale of the energy-containing edvalues for the constants ofa=0.84, b=1.44, andx,
dies, 8, /u’, is correspondingly increased. Figure 12 sum-=2000. These are quite different from the values above for
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FIG. 13. Mean velocity profiles, near wake data of
Gourlayet al. (Ref. 13. Solid line shows the fit accord-
ing to Eq.(C7) to the data of JohanssdRefs. 16 and
17) shown in Fig. 4.
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FIG. 14. () Maximum turbulence intensityp) local Reynolds numberc) wake width, andd) velocity deficit. Data of Gourlagt al. (Ref. 13.

the disk wake, making clear the effect of different initial markable. Also shown is the curve fit to the high Reynolds
conditions. number Johansson data. Clearly these are different, consis-
Figure 13 shows the normalized mean velocity deficittent with the fact that the mean momentum equation is dif-
profiles for this portion of the Gourlay data. Also shown onferent because of the presence of the viscous stress. Also
the plot is the best fit line to the mean velocity deficit data ofshown, overlaying the data almost perfectly is the exponen-
Johansson shown in Fig. 4. These should be exactly the santiel eddy viscosity profile developed in Appendix C. Note
according to the similarity theory, since any differencesthat this is not the same as the laminar solution: First because
should show up only in the growth rate and the magnitude ofhe “turbulent viscosity” is about 15 times the fluid viscos-
the Reynolds stress; and they are, but only/#&t=1030. The ity; second, the turbulence intensity ratio is nonzero and
differences may be due to the scatter in the DNS data beplays a significant role in the flow evolution.
cause of the limited statistical sample. Note that the DNS  Finally, Fig. 16 shows a linear-linear plot of the Gourlay
data are not averaged over time, but instead spatiahg data for all values ofx/6. Also shown are the curve fits
Gourlay et al*®. Alternatively, perhaps the mean velocity discussed above for the high and low Reynolds number re-
profile is affected somewhat earlier than the turbulence ingimes. The figure makes clear how truly far downstream
tensity ratio by the lower local Reynolds number of the DNSthese DNS data really go, and also what a small portion of
data. Or perhaps simply the curve fit of Fig. 4 should bethe total is the truly high Reynolds number part of it. It is
slightly altered. also clear why, in the absence of the theory developed herein,
The low local Reynolds number similarity region can previous experimenters have had such difficulty making
only identified in the DNS data of Gourlagt al,*® the sec-  sense of their data.
ond region of constant intensity ratio identified above. The
important parameters are shown in Fig. 14. The local Rey€. Summary of data analysis
nolds number is well below the threshold for the high Rey-
nolds number solution to be valid, so clearly the low Rey-
nolds number solution is appropriate. Thus it is not
surprising that the plots ofd, /6)? and U,/U..) ! are re-
markably linear. Regressive fits of Eq4.5) and (16) yield (i)
values for the constants af=1.90, d=0.28, X,,=—3.0
X 10°6. Note that the high value for the virtual origin is ing the equilibrium similarity state presented in Ap-
consistent with the fact that this region does not begin until pendix A. In other words, the flow is in nonequilib-
S, 16~33! In fact, instead of a virtual origin, it might be rium.
more appropriate to think of it as a starting value &r/6#  (ii))  Given the timgor downstream distantéo adjust, the
when the low Reynolds number equilibrium similarity region assumptions underlying the equilibrium similarity so-
begins. lutions are satisfied. When the flow has reached the
Figure 15 shows the normalized mean velocity deficit “far wake” region, characterized by the ratigu?/U,,
profiles for 1.96< 10°<x/§<8.41x 10°. The collapse is re- being constant, and provided that the initial local Rey-

Based on the results of the similarity theory stated
above, the evolution of the axisymmetric wake flow can be
described as follows:

In the vicinity of the wake generator, the “near wake”
region, the flow does not obey the equations govern-
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FIG. 15. Mean velocity profiles, far wake data of Gour-
lay et al. (Ref. 13. Dashed line shows the solution to
the eddy viscosity model, EQC4). Solid line shows the
fit according to Eq(C7) to the data of JohanssdRefs.
16 and 17 shown in Fig. 4.

nolds number,R=U,é, /v (that decreases down- (iv) After sufficient time, the flow readjusts into a differ-
strean), is still is large enough, the flow will behave ent equilibrium state, with different governing equa-
like it is in equilibrium with &, ~x*3, and U, tions including the leading order viscous term. Here,
~x~ 23, For the disk wake of Johansstir.’ this was Ju?/U, is again constant, and the wake width now
found to happen wher/#~120. For the DNS simu- grows like 5, ~x*2, and the velocity deficit decays
lation of Gourlay et al® this was true after about like U,~x"1. This region was only found in the DNS
x/ 6~ 1000. simulation of Gourlayet al*® at aboutx/ 6~ 2x 10°.

(i) When the local Reynolds numbeR, drops below a (v)  After x/#~5x10°, the turbulence intensity drops
threshold value, the flow is forced from its equilib- again, and seems to decay exponentially. This is a
rium similarity state by the leading order viscous behavior found in other simulations when the compu-
term. Most notable is that the ratigu?/U, begins to tational or experimental box-size is too sm@lg., by
decrease. This slow decrease continues for an ex- Moseret al?® and George and Waff). Shortly there-
tremely long distance downstream. The threshold after, the momentum integral ceases to be constant.
value ofR for the beginning of this decline is seen to
be about 500, consistent with the disappearance of the
inertial subrange in the spectrum noted earlier. Vill. CONCLUSIONS

Equilibrium similarity considerations can be applied to
the axisymmetric turbulent wake, without the arbitrary as-
60 sumptions of earlier theoretical studies. Two solutions for the
- turbulent flow are found: One for infinite local Reynolds
et number which grows spatially ag8’3; and another for small
50 el local Reynolds number, which grows &¥2 Both solutions
/{// depend on the upstream conditions. For both solutions, the
_ - local Reynolds number of the flow diminishes with increas-
401 Y ing downstream distance. As a consequence, even when the
- = Gourlay, DIS, R 1240 initial Reynolds number is large, the flow evolves down-
O 30 1 High local Re fit stream from the high to the low Reynolds number state.
0 — — - _Lowlocal Re fit Most of the available experimental data were at too low
an initial Reynolds number and/or were measured too close
20 to the wake generator to provide evidence for & solu-
tion. New results, however, from a laboratory experiment on
a disk wake and DNS are in excellent agreement with this
10 .
solution, once the flow has had large enough downstream
distance to evolve. Beyond this, the ratio of turbulence in-
0 : : : ‘ ; tensity to centerline velocity deficit is constant until the flow
0 2x10° 4x10° 6x10° 8x10°

(Ref. 13.

x/0

FIG. 16. Cross-stream length scafg,/ 6 versusx/ 6, data of Gourlaet al.

unlocks itself from this behavior when the local Reynolds
number goes below about 500. When this happens the turbu-
lence intensity ratio falls slowly until the*? region is
reached at approximatelg=220. This contrary to previous
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assumptions that the high Reynolds number wake always su 1 ¢ Ju 1 9 1 9w
appears far downstream and remains until the local Reynolds -~ + 1 - (r'V)=0, —+——-(rv)+ — I 0.
number is of order unitycf. Tennekes and Lumlé$). (A3)

No experimental data is available far enough down-
stream to provide evidence for thé2 solution. The predic-
tion that the flow should evolve into such a state, however, i
confirmed by recent direct-numerical simulati@ddNS) re-
sults which reach the®? at about 200 000 momentum thick-

As noted by Georg&’ the momentum and continuity
£quations alone are not sufficient to determine the similarity
constraints. Even the inclusion of the kinetic energy equation
is not enough to close the system so that tfeependence
nesses downstream, after which the turbulence intensity ratig?n P& determined. Instead, the individual Reynolds stress
is again constant until box-size affects the calculation. ~ €duations have to be investigated. These, together with the
constraint of continuity on the pressure-strain rate terms, pro-

The primary conclusion of this paper is that initial con- ~ "
ditions and local Reynolds number effects dominate the axi¥!de the necessary conditions. The component Reynolds

symmetric wake. Thus previous speculations that near wakgiréss equations for the far wake are
effects persist far downstream are correct. Moreover, con=

trary to popular belief, this asymptotic dependence on up4” balance

stream conditions is consistent with a proper equilibrium
similarity analysis. The effect of initial conditions does not, U,,—
however, show up in the normalized velocity profiles, but in X

— — 4 19( 1—\ padu
W2 = —up—(U— _ 2 -
ZU) uv—(U-U.) rar(r u:;)+p

the growth rate and the higher velocity moments, exactly as 19— 19 J[1—
the theory predicts. —;5PU+UFE r— sy gy,
(Ad)
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APPENDIX A: GOVERNING EQUATIONS 9 (1 9 1
. +v— ——(r—w2> — &y, (AB)
The Reynolds averagextmomentum equation for the ar|roar\ 2
axisymmetric far wake without swirl reduces to second order—
to uv balance
b — 19 — uw?
1% 19 — e — 2 - _- 2 2y
Uo (U=Us)=— = —(ruv) Uoe () = —v? o (U=U.) = = - (run?) + —
1 9 J p/du dv 1/9— 99—
i B g P +—|—+—|——| =pu+—
+Urar(rar(u UW))' (A1) plar " ox| plar PUT o PY

Here, uppercase letters denote averaged quantities and lower- +v i [ E i( r 1u_v) ] —Eup s (A7)
case letters represent the fluctuating part. A bar over the orirory 2
quantity denotes an ensemble average. The viscous termvgheree,, ¢,, &,, ande,, are the components of the ho-
usually neglected, but retained here. mogeneous dissipation.

The momentum equation can be integrated over a cross
section to yield an integral constraint for the conservation of
momentum APPENDIX B: TRANSFORMED EQUATIONS

ijm(ux— U)rdr= qui, (A2) 1. The momentum integral
0
Substitution of Eq(3) into Eq. (A2) yields
where 6 is the momentum thickness.
The equatior_1 _of continuity for the mean and fluctuating Usb‘zfxfndnzuwez. (B1)
part of the velocities are 0
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It follows immediately that ifé=¢5, andU=U,
0 2
&=k

2. The mean momentum and Reynolds stress
equation

Us

U (B2)

Substituting Eq.(3) into the momentum equation, Eq.
(A1), and rearranging the terms yields
77 1

[5 du, . [ R, }
of =
uU.uU
) (B3)

UL ax |
where’ denotes derivation with respect # To this point

ds
dx

(79)’ (nf")’

n

U,o

Johansson, George, and Gourlay

U dRg U,Rs dé ,
“dx 9775 ax"®
_ K,Us , Tuz| (7typ2)" | Tun2 | tuw2
e L e
Pol o, dPD
+[PuIPu—| 5 |(P3) — | 5| (PY)
Pods| o, [vR]((n9)")’
8 dX 77(p ) 52 T _[Duv]duv'

(B8)

As before, the equations have simply been transformed by
the similarity transformations so that all the explicit

the mean momentum equations have simply been transdependence is in the bracketed terms.

formed by the separation of variables in E8). so that all of

the explicitx dependence is in the bracketed terms. Thus the

results are completely general and no similarity assumptionaPPENDIX C: A SOLUTION FOR A CONSTANT EDDY
have yet been madalthough the form of the solutions has VISCOSITY MODEL

been restricted Using Eq.(B1), Eq.(B3) can be rewritten as

g 2
“lge ()= (79)" + (nt)". (B4

R v
U, Ug U..0

Substituting Eq(3) into the transport equations for Rey-
nolds stresses yields:

?—equation
o 9K, [UsKydd]
* dx T 5 dx| ™
C[RUL [T () 0] o
P do (7K.’
—~ ax| 7P |5z | ——[DuJdy, (B
F—equation
dK,| _[UK, d3] .
“ dx 5 dx| T
_ TU3 (ntv3), TUW2 th E Dy
Ky ] [ (mkp) |’
52 ( 7 ) _[Dv]duv (BG)
W—equation
dKy| UKy dd]
“ dx 5 dx|”
_ Tuwz| (7tuw2)” | Tow2| tow2
vKy] [(nky) )’
= (TW) ~[Dy]du. (B7)

uv-equation

A solution of the momentum equation with the viscous
term included Eq. (Al)] can be obtained if an eddy viscosity
assumption is made. Let

19 —

1
———(ruw)=vy——

ror r Jar (Cl)

i u-u
E( M) .
Using Eq.(C1) and applying the similarity transformation,
Eq (3), the governing equation in similarity form becomes
v | (nt")’
U..6 7
wheret=v+vt. Grouping the terms in square brackets,
settingk=(U..8/7) 96/ 9x, results in the following differen-
tial equation:
(kn?f+5f") =0 (C3)

The boundary conditions arg0)=1, f(e«)=0, andf’(0)
=f’(%)=0. Assuming thaf (#) goes to zero faster than a
polynomial, the solution is given by

( Zf)/

: (C2

f(p)=e k7’2, (C4)
Defining 6= 6, , Eq. (B1), gives
|“tmman-1. (c5)

which is satisfied ifkk=1. Then, the actual value of the eddy
viscosity is given by

dé,
=U,d6,——v.

*dx

From the low local Reynolds number solution, Ef5),
we have 8, dé, /dx=c?/2R,, which finally results invt
=U..c%/2R,—v. The value ofv; can be estimated using the
curve fit to the simulation of Gourlagt al® In this simula-
tion,c=1.90,U.=1 m/s,R,=1240, andv =10 % m?/s, so
v1=1.35x10"3 m?/s. Thusv1/v=13.5, and this value is
maintained throughout the low local Reynolds number simi-
larity regime.

(C6)
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