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Abstract

What is the minimum angle α > 0 such that given any set of α-directional antennas (that
is, antennas each of which can communicate along a wedge of angle α), one can always assign a
direction to each antenna such that the resulting communication graph is connected? Here two
antennas are connected by an edge if and only if each lies in the wedge assigned to the other.
This problem was recently presented by Carmi, Katz, Lotker, and Rosén [2] who also found the
minimum such α namely α = π

3 . In this paper we give a simple proof of this result. Moreover,
we obtain a much stronger and optimal result (see Theorem 1) saying in particular that one can
chose the directions of the antennas so that the communication graph has diameter ≤ 4.

Our main tool is a surprisingly basic geometric lemma that is of independent interest. We
show that for every compact convex set S in the plane and every 0 < α < π, there exist a point
O and two supporting lines to S passing through O and touching S at two single points X and
Y , respectively, such that |OX| = |OY | and the angle between the two lines is α.

1 Antennas, Wedges, and Ice-Creams

Imagine the following situation. You are a manufacturer of antennas. In order to save power, your
antennas should communicate along a wedge-shape area, that is, an angular and practically infinite
section of certain angle α whose apex is the antenna. The smaller the angle is the better it is in
terms of power saving. You are supposed to build many copies of these antennas to be used in
various different communication networks. You know nothing about the future positioning of the
antennas and you want them to be generic in the sense that they will fit to any possible finite set
of locations. When installed, each antenna may be directed to an arbitrary direction that will stay

Figure 1: a set of α-directional antennas and their (connected) communication graph.

fixed forever. Therefore, you wish to find the minimum α > 0 so that no matter what finite set
P of locations of the antennas is given, one can always install the antennas and direct them so
that they can communicate with each other. This is to say that the communication graph of the
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antennas should be a connected graph. The communication graph is the graph whose vertex set is
the set P and two vertices (antennas) are connected by an edge if the corresponding two antennas
can directly communicate with each other, that is, each is within the transmission-reception wedge
of the other (see Figure 1 for an illustration).

This problem was formulated by Carmi, Katz, Lotker, and Rosén [2], who also found the optimal
α which is α = π

3 (a different model of a directed communication graph of directional antennas of
bounded transmission range was studied in [1, 3, 4]).

In this paper we provide a much simpler and more elegant proof of this result. We also improve
on the result in [2] by obtaining a much simpler connected communication graph for α = π

3 whose
diameter is at most 4. Our graph in fact consists of a path of length 2 while every other vertex is
connected by an edge to one of the three vertices of the path.

In order to state our result and bring the proof we now formalize some of the notions above.

Given two rays q and r with a common apex in the plane, we denote by wedge(q, r) the closed
convex part of the plane bounded by q and r. For three noncollinear points in the plane A,B,C

we denote by ∠ABC the wedge wedge(
−−→
BA,

−−→
BC), whose apex is the point B. ∠ABC is a wedge of

angle ]ABC.

Let W1, . . . ,Wn be n wedges with pairwise distinct apexes. The wedge-graph of W1, . . . ,Wn is by
definition the graph whose vertices correspond to the apexes p1, . . . , pn of W1, . . . ,Wn, respectively,
where two apexes pi and pj are joined by an edge iff pi ∈Wj and pj ∈Wi.

Using this terminology we wish to prove the following theorem whose first part was proved by
Carmi et al. [2].

Theorem 1. Let P be a set of n points in general position in the plane. One can always find n
wedges of angle π

3 whose apexes are the n points of P such that the wedge-graph with respect to
these wedges is connected. Moreover, we can find wedges so that the wedge graph consists of a path
of length 2 and each of the other vertices in the graph is connected by an edge to one of the three
vertices of the path.

The angle π
3 in Theorem 1 is best possible, as shown in [2]. Indeed, for any α < π

3 one cannot
create a connected communication graph for a set of α-directional antennas that are located at the
vertices of an equilateral triangle and on one of its edges.

We note that the result in Theorem 1 is optimal in the sense that it is not always possible to find
an assignment of wedges to the points so that the wedge graph consists of less than three vertices
the union of neighbors of which is the entire set of vertices of the graph. To see this consider a set
of points evenly distributed on a circle. Notice that if each wedge is of angle α ≤ π

3 , then in any
wedge graph each vertex is a neighbor of at most one third of the vertices.

Our main tool in proving Theorem 1 is a basic geometric lemma that we call the “Ice-Cream
Lemma”. Suppose that we put one scoop of ice-cream in a very large 2-dimensional cone, such
that the ice-cream touches each side of the cone at a single point. The distances from these points
to the apex of the cone are not necessarily equal. However, we show that there is always a way of
putting the ice-cream in the cone such that they are equal. More formally, we prove:

Lemma 1 (Ice-cream Lemma). Let S be a compact convex set in the plane and fix 0 < α < π.
There exist a point O in the plane and two rays, q and r, emanating from O and touching S at two
single points X and Y , respectively, that satisfy |OX| = |OY | and the angle bounded by p and q is
α.
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Figure 2: An illustration of the Ice-cream Lemma

See Figure 2 for an illustration. The requirement in Lemma 1 that the two rays touch S at
single points will be crucial in our proof of Theorem 1.

At a first glance the statement in Lemma 1 probably looks very intuitive and it may seem that
it should follow directly from a simple mean-value-theorem argument. However, this is not quite
the case. Although the proof (we will give two different proofs) indeed uses a continuity argument
it is not the most trivial one. The reader is encouraged to spend few minutes trying to come up
with a simple argument just to get the feeling of Lemma 1 before continuing further.

Because the proof of Lemma 1 is completely independent of Theorem 1 and of its proof, we first
show, in the next section, how to prove Theorem 1 using Lemma 1. We postpone the two proofs
of the Ice-Cream Lemma to the last section.

2 Proof of Theorem 1 using Lemma 1

Let P be a set of n points in general position in the plane. We start by applying Lemma 1 with
S equals to the convex hull of P and α = π

3 . We therefore find a point O and two rays q and r
emanating from it creating an angle of π

3 such that there are precisely two points X,Y ∈ P with
X ∈ q, Y ∈ r, and |OX| = |OY |. Moreover P ⊂ wedge(q, r).

Let ` be a line creating an angle of π
3 with both q and r such that P is contained in the closed

region bounded by q, r, and ` and there is a point Z ∈ P on `. Let A and B denote the intersection
points of ` with q and r, respectively (see Figure 3). Let X ′ ∈ ` be such that ∆AXX ′ is equilateral.
Let Y ′ ∈ ` be such that ∆BY Y ′ is equilateral.

Case 1: Z ∈ ∠AXX ′ and Z ∈ ∠BY Y ′. In this case ]XZY ≤ π
3 . Let WZ be a wedge of angle

π
3 with apex Z containing both X and Y . Let WX be the wedge ∠AXX ′ and let WY be the
wedge ∠BY Y ′. See Figure 3(a). Observe that the wedge-graph that corresponds to WX ,WY ,WZ

is connected (Z is connected by edges to both X and Y ).

Case 2: Without loss of generality Z /∈ ∠AXX ′. In this case let WY = ∠OYX, let WX = ∠Y XX ′,
and let WZ = ∠AZZ ′, where Z ′ ∈ OA is such that ∆AZZ ′ is equilateral. See Figure 3(b). Again
we have that X is connected by edges to both Y and Z in the wedge-graph that corresponds to
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(a) (b)

Figure 3: Proof of Theorem 1.

WX ,WY ,WZ .

Finally, observe that in both cases the wedge-graph contains a 2-path on the vertices X,Y, Z,
and WX ∪WY ∪WZ contains ∆OAB and hence the entire set of points P . We can now easily find
for each point D ∈ P \ {X,Y, Z} in constant time a wedge of angle π

3 and apex D such that in the
wedge-graph that corresponds to the set of all these edges, each such D will be connected to one
of X,Y, Z.

We note that from the algorithmic point of view the run-time of our construction matches the
run-time of the algorithm of Carmi et al. [2]. This running time is O(n log h), where h is the number
of vertices of the convex hull of the set P .

It is left to prove our main tool, Lemma 1. This is done in the next section.

3 Two proofs of the “Ice-cream Lemma”

We will give two different proofs for Lemma 1.

Proof I. In this proof we will assume that the set S is strictly convex, that is, we assume that the
boundary of S does not contain a straight line segment. We assume this in order to simplify the
proof, however this assumption is not critical and can be avoided. We bring this proof mainly for
its independent interest (see Claim 1 below). The second proof of Lemma 1 is shorter and applies
for general S.

For an angle 0 ≤ θ ≤ 2π we denote by Sθ a (possibly translated) copy of S rotated in an angle
of θ. Let q and r be two rays emanating from the origin O and creating an angle α. Observe that
for every θ there exists a unique translation of Sθ that is contained in wedge(q, r) and both q and
r touch Sθ at a single point (here we use the fact that S is strictly convex). For every 0 ≤ θ ≤ 2π
we denote by X(θ) and Y (θ) the two touching points on q and on r, respectively. Let f(θ) denote
the distance between Y (θ) and the origin (see Figure 4(a)).

Claim 1.
∫ 2π
0 f dθ = P(S)1+cosα

sinα , where P(S) denotes the perimeter of the set S.

Proof. Without loss of generality assume that the ray q coincides with the positive part of the
x-axis and r lies in the upper half-plane.
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(a) (b)

Figure 4: Illustrations for the proofs of the Ice-cream Lemma

Consider the boundary ∂S with the positive (counterclockwise) orientation. Note that since
S is convex, at each point p ∈ ∂S there is a unique supporting line pointing forward (here after
positive tanget), and a unique supporting line pointing backwards (the two tangent lines coincide
iff ∂S is smooth at p). Let e : [0,P(S))→ ∂S be a unit speed curve traveling around ∂S. We define
a function h(t, θ) in the following way: If e(t) belongs to the part of the boundary of Sθ between
X(θ) and Y (θ) that is visible from O, then we set h(t, θ) to be equal to the length of the orthogonal
projection of the unit positive tangent at e(t) on the y-axis (see Figure 4(a)). Otherwise we set
h(t, θ) = 0.

The simple but important observation here is that for every 0 ≤ θ ≤ 2π the expression∫ P(S)
0 h(t, θ) dt is equal to the y-coordinate of Y (θ). This, in turn, is equal by definition to f(θ) sinα.

To see this observation take a small portion of the boundary of S(θ) of length dt that is visible
from O. Its orthogonal projection on the y-axis has (by definition) length h(t, θ)dt. Notice that
the orthogonal projection of the entire part of the boundary of S(θ) that is visible from O on the
y-axis (whose length, therefore, equals to this integral) is precisely all the points on the y-axis with
smaller y-coordinate than that of Y (θ).

By Fubini’s theorem we have:

∫ 2π

0
f(θ) sinα dθ =

∫ 2π

0

∫ P(S)

0
h(t, θ) dt dθ =

∫ P(S)

o

∫ 2π

0
h(t, θ) dθ dt (1)

Moreover, for every t we have:

∫ 2π

0
h(t, θ) dθ =

∫ 2π

π+α
| sin(θ)| dθ = (1 + cosα). (2)

To see this observe that e(t) is visible from O through the rotation of S precisely from where it
lies on the ray r until it lies on the ray q. Through this period the angle which the positive tangent
at e(t) creates with the x-axis varies from π + α to 2π.

Combining (1) and (2) we conclude:
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∫ 2π

0
f(θ) sinα dθ =

∫ P(S)

0

∫ 2π

0
h(e, θ) dθ dt =

=

∫ P(S)

0
(1 + cosα) dt = P(S)(1 + cosα),

which in turn implies the desired result:
∫ 2π
0 f(θ) dθ = P(S)1+cosα

sinα .

Analogously to f(θ) we define g(θ) to be the distance from X(θ) to the origin O. Lemma 1 is
equivalent to saying that there is a θ for which f(θ) = g(θ). By a similar argument or by applying
the result of Claim 1 to a reflection of S, we deduce that

∫ 2π
0 g(θ) dθ = P(S)1+cosα

sinα . In particular∫ 2π
0 f(θ) dθ =

∫ 2π
0 g(θ) dθ. Because f and g are continuous we may now conclude the following:

Corollary 1. Assume that S is strictly convex, then there exists θ between 0 and 2π such that
f(θ) = g(θ).

This completes the proof of Lemma 1 in the case where S is strictly convex.

We now bring the second proof of Lemma 1. This proof is shorter than the first one and does
not rely on the strict convexity assumption.

Proof II. Consider the point O such that the two tangents of S through O create an angle of α and
such that the area of the convex hull of {O} ∪ S is maximum. By a simple compactness argument
such O exists.

We will show that the point O satisfies the requirements of the lemma. Let q and r be the
two rays emanating from O and tangent to S. Let X and X ′ be the end points of the (possibly
degenerate) line segment q ∩ S and assume |OX| ≤ |OX ′|. Similarly, let Y and Y ′ be the two
(possible equal) points such that the intersection of r and S is the line segment connecting Y and
Y ′ and assume |OY | ≤ |OY ′|.

We claim that |OX ′| ≤ |OY | (and similarly |OY ′| ≤ |OX|). This will imply immediately the
desired result because in this case |OX| ≤ |OX ′| ≤ |OY | ≤ |OY ′| ≤ |OX| from which we conclude
that X = X ′, Y = Y ′, and |OX| = |OY |.

Assume to the contrary that |OX ′| > |OY |. Without loss of generality assume that S lies to
the left of q and to the right of r (see Figure 4(b)). Let δ > 0 be very small positive number and
let `1 be the directed line supporting S having S to its left that is obtained from OX ′ by rotating
it counterclockwise at angle δ. Let `2 be the directed line supporting S having S to its right that
is obtained from OY by rotating it counterclockwise at angle δ (see Figure 4(b)).

Let O′ be the intersection point of `1 and `2. Note that `1 and `2 create an angle of α. We claim
that the area of the convex hull of {O′} ∪ S is greater than the area of the convex hull of {O} ∪ S.
Indeed, up to lower order terms the difference between the two equals 1

2(|OX ′|2−|OY |2) sin(δ) > 0.
This contradicts the choice of the point O.

Remarks. Lemma 1 clearly holds for non-convex (but compact) sets S as well, since we can apply
it on the convex hull of S and observe that if a line supports the convex hull and intersects it in a
single point, then this point must belong to S.
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From both proofs of Lemma 1 it follows, and is rather intuitive as well, that one can always find
at least two points O that satisfy the requirements of the lemma. In the first proof notice that both
functions f and g are periodic and therefore if they have the same integral over [0, 2π], they must
agree in at least two distinct points, as they are continuous. In the second proof one can choose a
point O that minimizes the area of the convex hull of O and S and obtain a different solution.
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