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Abstract.

Technical and conceptual advancesin testing multivariate linear and non-linear inequality hypotheses in econometrics are
summarized. Thisisdonein the context of substantive empirical settings in economicsin which either the null, or the alternative,
or both hypotheses define more limited domains than the two-sided alternatives typically tested in the classical testing
procedures. The desired god isincreased power which islaudable given the endemic power problems of most of the classical
asymptotic tests. Theimpediments are alack of familiarity with implementation procedures, and characterization problems of
distributions under some composite hypotheses.

severa empirically important cases are identified in which practical “one-sided” tests can be conducted by either the
72 — distribution, or the union intersection mechanisms based on the Gaussian variate, or the increasingly feasible and popular
resampling/simulation techniques. Point optimal testing and its derivatives find anatural medium here whenever unique
characterization of the null distributions for the “least favorable”’ casesisnot possible.

Most of the recent econometric literature in this areais parametric deriving from the multivariate extensions of the classica
Gaussian meanstest with ordered alternatives. Tests for variance components, random coefficients, over dispersion,
heteroskedasticity, regime change, ARCH effects, curvature regularity conditions on flexible supply, demand, and other economic
functions, are examples But nonparametric tests for ordered relations between distributions, or their quantiles, or curvature
regularity conditions on nonparametric economic relations, have witnessed rapid development and applications in economics and
finance. We detail tests for Stochastic Dominance which indicate amajor departure in the practice of empirical decision making
in, so far, the areas of welfare and optimal financia strategy.

Introduction

The additional information available when hypotheses can restrict the maintained space to subspaces of the usua two-sided
(unrestricted) hypotheses, can enhance the power of tests. Since good power isarare commodity the interest in inequality
restricted hypothesis tests hasincreased dramaticaly. In addition, the two sided formulation is occasionally too vagueto be of
help when more sharply ordered alternatives are of interest. An exampleisthe test of order relations (e.g., stochastic dominance)
amongst investment strategies, or among income/welfare distributions. The two-sided formulation failsto distinguish between
“equivalent” and “unrankable” cases.

In statistics, D.J. Bartholomew, H. Chernoff, V.J. Chacko, A. Kudo, and P.E. Nuesch are among the first to refine and
extend the Neyman-Pearson testing procedure for one sided alternatives, first in the one and then in the multivariate settings. See,
inter alia, Bartholomew (1959a, 1959b), Chernoff (1954), Chacko (1963), and Kudo (1963). Later refinements and advances were
obtained by Nuesch (1966), Feder (1968), Perlman (1969), and Shorack (1967). At least in low dimensiona cases, the power
gains over the two sided counterparts have been shown to be substantial, see Bartholomew (1959b), and Barlow et d (1972).
While Chernoff and Feder clarified the local nature of tests and gave some solutions when the true parameter valueis“near” the
boundaries of the hypotheses regions, Kudo, Nuesch, Perlman and Shorack were among the first to develop the elements of the
72 — distribution theory for the likelihood ratio and other classical tests. Seethe text by Barlow et a (1972).

In econometrics, Gourieroux, Holly, and Monfort (1980, 1982), heretofore GHM, are seminal contributions which
introduced and extended this literature to linear and non-linear econometric/regression models (see the important contributionsin
Judge and Takayama (1966) and Liew (1976)). The focusin GHM (1982) ison the following testing situation:

y=XB+u D
RB=r, R~ qxK, q< K, thedimension of

Wewish to test
Ho :RB=r,..vs8.H; :RB>T (2)

Gourieroux et a (1982) derive the Lagrange Multiplier (LM)/Kuhn-Tucker (KT) test, aswell asthe Likelihood Ratio (LR)
and the Wald (W) tests with known and unknown covariance matrix, (2, of the regression errors. With known covariance dl three



tests are identical and distributed exactly asaz? — distribution. They note that the problem considered here is essentially
equivaent to the following in the earlier statistical literature:
Let there be T independent observations from a p-dimensional N(u,X). Test

Ho : 1 =0, againstthe alternativeH, : u; > 0, all i,
with at least one strict inequality  (3)
The LR test of this hypothesis hasthe 72 — distribution which isamixture of chi-squared distributions given by:

p
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with Xfc»:l a the origin. The weightsw(.) are probabilitiesto be computed in amultivariate setting over the space of
alternatives. Thisisone of the practical impedimentsin this area, inviting avariety of solutions which we shall touch upon. These
include obtaining bounds, exact tests for low dimension cases, and resampling/M onte Carlo techniques. When Q isunknown but
depends on afinite set of parameters, GHM (1982) and others have shown that the same distribution theory applies
asymptotically. In fact GHM show that dl three tests are asymptotically equivaent and satisfy the usua inequality :

W > LR> LM(KT). Wegivethe detailed form of these test statistics. In particular the LM version may be desirable asit can
avoid the quadratic programming (QP) routine needed to obtain estimators under the inequality restrictions. We also point to
routines that are readily availablein FORTRAN and GAUSS (but das not yet in the standard econometric software packages).
Kodde and Palm (1986), Rogers (1986), Farebrother (1986), and Hillier (1986) deal with these issuesin the linear regression
setting.

It should be noted that this simultaneous procedure competes with another approach based on the union intersection
technique. In the latter, each univariate hypothesis istested, with the decision being arejection of the joint null if the least
significant statistic isgreater than the a —critical level of astandard Gaussian variate. Consistency of such tests has been
established. We will discuss examples of these dternatives. Also, the non-existence generaly of an optimal test in the
multivariable case hasled to consideration of point optimal testing, and tests that attempt to maximize power in the least
favorable case, or on suitable “averages’. Thisissimilar to recent attempts to deal with power computation when aternatives
depend on nuisance parameters. See, inter dia, King and Wu (1997), Lee and King (1993), and Linton and Steigerwald (1999)
who test for the existence of ARCH effectsin financia processes taking inequality information into account.

In the case of non-linear models and/or non linear inequality restrictions, GHM (1980) and Wolak (1989, 1991) discuss the

distribution of the same Zztests, while Dufour considers modified classical tests. In this setting, however, there is another
problem, as pointed out by Wolak (1989, 1991). When g< K there isgeneraly no unique solution for the “true ” from R8 = r (or
its nonlinear counterpart). But convention dictates that in this-type case of composite hypotheses, power be computed for the
“least favorable” case which arises a the boundary RSB = r. It then follows that the asymptotic distribution (when Q is
consistently estimated in customary ways) cannot, in general, be uniquely characterized for the least favorable case. Sufficient
conditions for aunique distribution are given in Wolak (1991) and will be discussed here. In the absence of these conditions, a
“localized” version of the hypothesis is testable with the same 72 — distribution . In this non-linear setting, even one of the least
onerous of these conditions, i.e., R ~KxK, isoften not of practical interest. Thus the loca nature of these tests must be
appreciated and properly interpreted in such non-linear applications as economic curvature constraints on flexible functional
forms, see Lau (1978), Gallant and Golub (1984), and Diewert and Waes (1987).

All of the above developments are parametric. Thereisat least an old tradition for the non parametric “two sample” testing
of homogeneity between two distributions, often assumed to belong to the same family. Pearson type and Kolmogorov-Smirnov
(K'S) tests are prominent, aswell asthe Wilcoxan rank test. In the case of inequality or ordered hypotheses regarding relations
between two unknown distributions, Anderson (1986) is an example of the modified Pearson tests based on relative cell
frequencies, and Xu, Fisher, and Wilson (1995), Dardanoni and Forcina (1996), and Xu (1995) are examples of quantile-based
tests which incorporate the inequality information in the hypotheses and, hence lead to the use of 72 — distribution theory. The
multivariate versions of the K S test have been studied by McFadden (1989), Klecan, McFadden, and McFadden (1991), Kaur,
Rao, and Singh (1994), Maasoumi et d (1997), and Maasoumi and Heshmati (1999). The union intersection alternative isalso
fully discussed in Davidson and Duclos (1998), representing a culmination of this line of development in, for example, Beach and
Davidson (1983), Bishop, Chacraborti, and Thistle (1989), Howes (1993), and Davidson and Duclos (1997). Again, the union
intersection techniques do not exploit the inequality information and are expected to be less powerful. We discuss the main
festures of these dternatives.

The plan of the paper isasfollows. In section 2 we introduce the classical multivariate means problem and a genera variant
of it that makesit amenable to immediate application to very generd econometric modelsin which an asymptotically normal
estimator can be obtained. At thislevel of generality, one can treat very wide classes of processes, aswell aslinear and non-linear
models, as described in Potscher and Prucha (1991a-b). The linear model is given as an example, and the asymptotic distribution of
the classical tests isdescribed.

The next section describes the non-linear models and the local nature of the hypothesis that can be tested. Section 4 isdevoted



to non-parametric setting. Examples from economics and finance are cited throughout the paper. Section 5 concludes.
The general multivariate parametric problem.

Consider the setting in (3) when i = u + v, andv ~ N(0,Q), isan available unrestricted estimator. Consider the restricted
estimator 7i asthe solution to the following quadratic programming (QP) problem:

n];’ﬂlxﬁf’lﬁ - (@-w'TH@-w, subjecttou >0 ©)

Then the likelihood ratio (LR) test of the hypothesisin (3) is
LR=7's " (6)
Severa researchers, for instance Kudo (1963) and Perlman (1969) established the distribution of the LR statistic under the
null s
P ,z0. Prua(LR=¢,) = proa(LR=¢,) =

p
Dowi,p) xprizh zc)  (7)
i=0
aweighted sum of chi-squared variates for an exact test of size a. The weightsw(i,.) sum to unity and each isthe
probability of i having i positive elements.
If the null hypothesis isone of inequality restrictions, asimilar distribution theory applies. To seethis, consider:
Ho:u>0vs H;y:peRP (8)
wherefi = u+ v, andv ~ N(0,Z). Let i be the restricted estimator from the following QP problem:
D=min(i—- W)X (fi—yu) subjecttou>0 (9)
u

D isthe LR statistic for (8). Perlman (1969) showed that the power function ismonotonic in this case. In view of this result,
taking C, asthe critical level of atest of size a, we may use the same distribution theory asin (7) above except that the weight
w(i.) will bethe probability of & having exactly p — i positive elements.

Thereisareatively extensive literature dealing with the computation of the weightsw(.). Their computation requires
evaluation of multivariate integrals which become tedious for p > 8. Kudo (1963) provides exact expressions for p < 4. Shapiro
(1985) givesexpressions for p = 4,and Bohrer and Chow (1978) provide computational algorithmsfor p < 10. But these can be
slow for largep . Kodde and Palm(1986) suggest an attractive bounds test solution which requires obtaining lower and upper
bounds, ¢, and ¢, to the critical vaue, asfollows:

@ = Zpr(xfy 2 o), and

@y = 2Ly 2 C) + 2Py 2 ) (10)

Thenull in (8) isrejected if D > ¢, but isinconclusivewhen ¢, < D < c,.

Advances on Monte Carlo integration suggest resampling techniques may be used for largep , especidly if the bounds test is
inconclusive.

In the case of asingle hypothesis (1, = 0), the above test isthe one sided UM P test. In this situation:

Pr(LR= ¢,) = Pr(Zxfy + 21%) 2 ) = (10)

The standard two sided test would be based on the critical valuesc,, from a x 3, distribution. But pr(x?, > c,) = a makes
clear that ¢, > ¢, , indicating the substantial power loss which was demonstrated by Bartholomew (1959a-b) and Nuesch (1966).

In the two dimension (p = 2) case, under the null we have:

pr(LR=c¢c,) = W(2,O))((20) +w(2, 1))((21) + W(Z,Z)Zfz) (12)

wherew(2,0) = pr[LR= 0] = pr[fi; < 0,71, < 0], w(2,1) = % w(2,2) = %*W(Z,O). While difficult to establish
anayticaly, the power gains over the standard case can be substantial in higher dimensions where UM P tests do not generaly
exist. See Kudo (1963) and GHM (1982).

The equivalence of LR, W and LM tests.

We give an account of the three classical tests in the context of the genera linear regression modd introduced in (1) above. We
take R to bea (p x K) known matrix of rank p < K. Consider three estimators of 8 under the exact linear restrictions, under
inequality restrictions, and when 8 € R® (no restrictions). Denote these by B, B, and B , respectively. We note that
B =X X Qy) istheML (GLS) estimator here. Let (X'Q71X) = G, and consider the following optimization
programs:

max — (y— XB)'Q(y— Xp), subjecttoRB >r (13)
and the same objective function but with equality restrictions. Denote by 7 and 1 the Lagrange multipliers, respectively, of



these two programs (conventionally, A = 0 for B). Then:
B=B+G'R72, and B=Pp+G R (14)
See GHM (1982). Employing these relationsit is straightforward to show that the following three classical tests are
identical:
&g = —2logLR = 2(L - L) (15)
whereL andL arethe logarithms of the maxima of the respective likelihood functions;
Em = min(A - 2)'RGIR'(A - 1)/4, subjecttor < 0 (16)
isthe Kuhn-Tucker/Lagrangian Multiplier (LM) test. computed at 4, and,
éw=(RB-n'[RG*RTRB-T) (17)
isthe Wald test. In order to utilize the classical results stated above for problemsin (3) , or (8), it iscustomary to note that
the LR test in (15) aboveisidentical to the LR test of the following problem:

B=p+v
RB>r
v-N(0,G™) (18)

For this problem & isthe optimum of the following QP problem:

subjectto RB>r (19

Thisisidentical to the one-sided multivariate problem in (3). It also suggests that the context for applications can be very
general indeed. All that is needed is normally distributed estimators, 3 , which are then projected onto the cone defined by the
inequality restrictionsin order to obtain the restricted estimator J.

Asymtotically normal estimators.

The assumption of normality can be relaxed for the situations that allow asymptotically norma estimatorsfor . Thisis
because the inference theory developed for problems (3) or (8) isasymptotically valid for much broader classes of models and
hypotheses. In fact, when consistent estimators of Q are available and, in (18), v hasthe stated distribution asymptotically, an
asymptotically exact test of size a isbased on the same 72 — distribution given above. To obtain this result one needs to replace
Q in the optimization problems with its corresponding consistent estimator . Thisisroutinely possible when Q isa continuous
function of afinite set of parameters other than S.

The three tests are not identical in this situation, of course, but have the same asymptotic distribution. Furthermore, the
usual inequality , vis. Ew > &1r > &y istill valid, see GHM (1982). Often the test which can avoid the QP problem is
preferred, which meansthe LM test for the test of the null of equality of the restrictions, and the Wald test when the null isone
of inequality and the alternative isunrestricted. But much recent evidence, aswell asinvariance arguments, suggest that the LR
test be used.

Given this remarkable range, we defer the details of this section to be discussed as special cases of the genera nonlinear
models and nonlinear restrictions discussed in the next section.

In the generd linear regression models with linear and or nonlinear inequality restrictions, other approaches are available.
Kodde and Pam (1986, 1987), Dufour (1989), Dufour and Khalaf (1993), Farebrother (1986), King and Smith (1986), Rogers
(1986), and Stewart (1997) are examples of theoretical and empirical applicationsin economics and finance. Dufour (1989) isan
alternative “conservative” bounds test for the following type situation:

HO:Rﬁeromaina Hliﬁerl (20)
where ' and I'; are non empty subsets, respectively of RP and R¥. This also allows a consideration of such casesash(RB) = 0,
or h(RB) > 0. Dofour (1989) suggests a generalization of the well known, two-sided F test in this situation asfollows:
S5 - S5 p
r > F.(p,T-K)] < 21

P = 3o R T-K)] <a @)
wherethere are T observations from which SS;,i = 0,1, are caculated asresidual sums of squares under the null and the
alternative, respectively. Thus the traditional p-valueswill be upper-bounds for the true values and offer a conservative bounds
testing strategy. Dufour (1989), Dofour and Khalaf (1993) and Stewart (1997), inter dia, consider “liberal bounds’, and
extensions to multivariate/simultaneous equations models and nonlinear inequality restrictions. Applications to demand functions
and negativity constraints on the substitution matrix, aswell astests of non-linear nullsin the CAPM models (e.g.,as discussed in
Gibbons (1982)), show size and power improvements over the traditional asymptotic tests. The latter are known for their
tendency to over-reject in any case. Stewart (1997) considered the performance of the standard LR, the Kodde and Palm (1986)
bounds for the %2 distribution, and the Dufour-type bound test of negativity of the substitution matrix for the demand data for




Germany and Holland. Thiswasfirst studied in Barten and Geyskens (1975). He looked a, among other things, the hypothesis of
negativity against an unrestricted alternative, and the null of negativity when symmetry and homogeneity are maintained. It
appeared that, while the Dufour test did well in most cases, certainly reversing the conclusions of the traditional LR test (which
rejects everything!), the Kodde and Palm bounds test did consistently well when the conservative bounds test was not
informative (with ¢ = 1). Both the lower and upper bounds for the chi-bar squared distribution are available, while the

“liberal” /lower bounds for the Dufour adjustment are not in this case.

Nonlinear models and nonlinear inequality restrictions
Wolak (1989, 1991) gives agenerd account of thistopic. He considers the genera formulation in (18) with nonlinear
restrictions. Specifically, consider the following problem:

B=p+v
h(B) > 0
v ,N(O,¥) (22)

where h(.) isasmooth vector function of dimension p and a derivative matrix denoted by H(.). Wewish to test
Ho:h(B) >0, vs Hy : e R¢ (23)

Thisisvery generd since model classes that allow for estimation results given in (22) are very broad indeed. As the resultsin
Potscher and Prucha (1991ab), and Burguete et d (1982) indicate, many non-linear dynamic processes in econometrics permit
consistent and asymptotically normal estimators under regularity conditions.

In genera an asymptotically exact size test of the null in (23) isnot possible without alocalization to some suitable
neighborhood of the parameter space. To seethis, let h(5°) = 0 define 8°, and H(%),and 1(°) the evaluations of
oh/op = H(B), and the information matrix, respectively. Let

C={Bh(p) =0, p R} (24)

and Ny, (8°) asasr-neighborhood with 51 = O(TZ). Itiswell known that the globa hypotheses of the type in (23)-(24)
do not generaly permit large sample approximations to the power function for fixed aternative hypotheses for nonlinear
multivariate equality restrictions. See Chernoff (1954), Feder (1968), and Wolak (1989). If we localize the null in (23) to only S
€ Ns, (B°), then exact size tests are available and are as given by the appropriately defined chi-bar distribution. In fact, we would
be testing whether 8  { cone of tangents of C a 5°}, where ¥ = H(B%)1(8°) tH(8°), in (22).

In order to appreciate the issues, we note that the asymptotic distribution of the test depends on ¥, which in turn depends
onH(.) and I(.). But the latter generally vary with 8°. Also, we note that h(°) = 0 does not have a unique solution unlessit is
linear and of rank K = p. Thus the case of Hy : f > 0 does not have aproblem. The case RS > 0, will present aproblemin
nonlinear models when rank (R) < K since I(3) will generaly depend on the K — p free parametersin .

It must be appreciated that this is specially serious since, inequalities define composite hypotheses which force a
consideration of power over regions. Optimal tests do not exist in multivariate situations. Thus other conventions must be
developed for test selection. One method isto consider power in the least favorable case. Another isto maximize power at given
points that are known to be “desirable”, leading to point optimal testing. Closely related, and since such points may be difficult
to sdect apriori, are tests that maximize mean power over sets of desirable points. See King and Wu (1996), and Lee and King
(1993) for discussion. Thisisrelated to the genera problem of testing with dependence on nuisance parameters under the
aternative. In the instant case, the “least favorable’ cases are al those defined by h(8°) = 0. Hence the indeterminacy of the
asymptotic power function.

From this point on our discussion pertainsto the “loca” test whenever the estimates of ¥ cannot convergeto aunique
H(BO)I(B) TH(B®) = ¥.

Let Xy = (X1, X2y ereereeen Xn)' ,t=1,....T, bearealization of arandom variablein R", with adensity function f(x;, 8) which is
continuousin g for al x;. We assume a compact subspace of R" contains 3, h(.) iscontinuous with continuous partial derivatives
ohi(B)Iop; = Hy , defining the p x K matrix H(f) that isassumed to have full rank p < K &t an interior point B° such that
h(B°) = 0. Finally, let 8% denote the “true” value under the local hypothesis, then,

B% e Cr = {Bh(B) = 0,8 € N5, ()} foral T
and (% - f°)=0(1) and T% (% - p°) = O(1).
Let x represent T random observations from f(x;, ), and the log-likelihood function given below:

T
L(B) = L(xB) = >_In(f(x., ) (25
t=1
Following GHM (1982), again we consider the three estimators of (,1), obtained under the inequality constraints,
equality constraints, and no constraints as (B,2),(B,2),and (B,2 = 0), respectively. It can be verified that (see Wolak (1989)):
Thethreetests LR, Wald, and LM are asymptotically equivaent and have the distribution given earlier. They are computed
asfollows:



Er=2L(B) -L(PB)] (26)

Ew = T(h(B) - h(B) THBI(B®) "H(B)'1(h(B) — h(B)) (27)
Ew=TBE-B'1BYB-B) (29)
Ew = TAH@B)I(B®) H(B) 2 (29)

where 1(B°) isthe value of the information matrix, lim+.., T Ezo[-0°LI6BR'], a B°, and (27)-(28) aretwo
asymptotically equivalent ways of computing the Wald test. Thistestifiesto its lack of invariance which has been widely
appreciated in econometrics. The above results also benefit from the well known asymptotic approximations:

h(8%) = H(B°)(B - B°). and H(B%) - H(p) =0
which hold for al of the three estimators of 8. As Wolak (1989) showed, these statistics are asymptotically equivaent to
the generdized distance statistic D introduced in Kodde and Palm (1986) :

D= rT)jnT(B— B1BOYB-B) . (30)

subject toH(B°)(B - B°) > 0, and B € N, (B°)

For loca B defined above, dl these statistics have the same chi-bar squared distribution given earlier. Kodde and Palm (1987)
employed this statistic for an empirica test of the negativity of the substitution matrix of demand systems. They found that it
outperforms the two-sided asymptotic LR test. Their bounds aso appear to deal with the related problem of over rgjection when
nomina significance levels are used with other classical tests against the two sided alternatives. Gourieroux et a (1982) gave the
popular artificia regression method of deriving the LM test.

In the same general context, Wolak (1989) speciaized the aboveteststo atest of joint nonlinear inequality and equality
restrictions.

With the advent of cheap computing and M onte Carlo integration in high dimensions, the above tests are quite accessible.
Certainly, the critical values from the bounds procedures deserve to be incorporated in standard econometric routines, aswell as
the exact bounds for low dimensional cases (p < 8). The power gainsjustify the extraeffort. .

Nonparametrlc tests of mequallty restrictions

All of the above models and hypotheses were concerned with comparing means and/or variance parameters of either known
or asymptotically norma distributions. We may not know the distributions, we may be interested in comparing more genera
characteristics than the first few moments, and the distributions being compared may not be from the same family. All of these
situations require a nonparametric devel opment that can also ded with ordered hypotheses.

Order relations between distributions present one of the most important and exciting areas of development in economics and
finance. These include stochastic dominance relations which in turn include Lorenz dominance, and such others as Likelihood and
uniform orders. See Dardanoni and Forcina (1996) for the latter two relations. Below we focus on the example of Stochastic
Dominance (SD) of various orders. An account of the definitions and tests isfirst given, followed by some applications.

Tests for Stochastic Dominance

In the area of income distributions and tax analysis, early attemptsto test for Lorenz curve comparisons may be exemplified
by Beach and Davidson (1983), and Bishop, Formby, and Thistle (1989). In practice, afinite number of ordinates of the desired
curves or functions are compared. These ordinates are typically represented by quantiles and/or conditional interval means. Thus,
the distribution theory of the proposed tests are typically derived from the existing asymptotic theory for ordered statistics or
conditional means and variances. Recently Beach, Davidson, and Slotsve (1995), Davidson and Duclos (1997, 1998) have outlined
the asymptotic distribution theory for cumulative/conditional means and variances which are the essential ingredients of Lorenz
and GL curves, and in testing for any order of stochastic dominance when these curves cross. To control for the size of a
sequence of tests a several points the union intersection (Ul) and Studentized Maximum Modul us technique for multiple
comparisons isgenerdly favored in thisarea. In thisline of inquiry the inequality nature of the order relations is not explicitly
utilized in the manner described above for parametric tests. Therefore procedures that do so may offer power gain. Some
alternativesto these multiple comparison techniques have been suggested which are typically based on Wald ty pe joint tests of
equality of the same ordinates, see Bishop et a (1994) and Anderson (1996). These alternatives are somewhat problematic since
their implicit null and aternative hypotheses are typically not a satisfactory representation of the inequality (order) relations that
need to betested. Xu et d (1995), and Xu (1995) take proper account of the inequality nature of such hypotheses and adapt
econometric tests for inequality restrictions to testing for FSD and SSD, and to GL dominance, respectively. Their tests follow
the work in econometrics of Gourieroux et a (1982) Kodde and Palm (1986), and Wolak (1988, 1989), which was outlined in the
previous sections.

M cFadden (1989) and Klecan, M cFadden, and M cFadden (1991) have proposed tests of first and second order
“maximality” for stochastic dominance which are extensions of the Kolmogorov-Smirnov statistic. McFadden (1989) assumes
i.i.d. observations and independent variates, allowing him to derive the asymptotic distribution of histest, in general, and its exact



distribution in some cases (see Durbin (1973, 1985). He provides a Fortran and a GAUSS program for computing histests.
Klecan et d generalize this earlier test by allowing for weak dependence in the processes and replace independence with
exchangesbility. They demonstrate with an application for ranking investment portfolios. The asymptotic distribution of these
tests cannot be fully characterized, however, prompting Klecan et a to propose Monte Carlo methods for evaluating critical
levels. Similarly, Maasoumi, Mills and Zandvakili (1997) and Maasoumi and Heshmati (1998) propose bootstrap-K S tests with
severa empirical applications. In the following subsections some definitions and results are summarized which help to describe
these tests.
Definitions and Tests

Let X and Y betwo income variables at either two different points in time, before and after taxes, or for different regions or
countries. Let X1,Xo,......, Xnbe n not necessarily i.i.d observationson X, and Y4,Y,,......, Y, be smilar observationson Y. Let U,
denote the class of al utility functions u such that u' > 0, (increasing). Also, let U, denote the class of dl utility functionsin U,
for which u” < 0 (strict concavity), and U 3 denote asubset of U, for whichu” > 0. Let X ;) and Y j, denote thei-th order
statistics, and assume F(x) and G(x) are continuous and monotonic cumulative distribution functions (cdf,s) of X and Y,
respectively.

The quantile functions X(p)and Y(p) are defined by, for example, Y(p) = inf{y : F(y) > p}. Then:

definition

definition

Weaker versions of these relations drop the requirement of strict inequality a some point. When either Lorenz or Generalized
Lorenz Curves of two distributions cross, unambiguous ranking by FSD and SSD may not be possible. Whitmore introduced the
concept of third order stochastic dominance (TSD) in finance, see (e.g.) Whitmore and Findley (1978). Shorrocks and Foster
(1987) showed that the addition of a“transfer sensitivity” requirement leadsto TSD ranking of income distributions. This
requirement is stronger than the Pigou-Dalton principle of transfers since it makes regressive transfers less desirable at lower
income levels. TSD isdefined asfollows:

definition

(1) Elu(X)] = E[u(Y)] fordlue Uz, with strict inequality for some u.

2 .[:C jvw[F(t) — G(t)]dt dv < 0, for dl x in the support, with strict inequality for some x,

with the end-point condition:

j*j[F(t) - G(Hdt< 0.

(3) When E[X] = E[Y], X TSD Y iff 2(q;) < Gy(Qi) , for al Lorenz curve crossing points q; i = 1,2,....... , (n+ 1); where
52(q;) denotes the “cumulative variance” for incomes upto the ith crossing point. See Davies and Hoy (1996).

When n = 1, Shorrocks and Foster (1987) show that X TSD Y if (8) the Lorenz curve of X cutsthat of Y from above, and
(b) Var(X) < Var(Y). This situation seemingly revives the coefficient of variation asauseful statistical index for ranking
distributions. But adistinction is needed between the well known (unconditional) coefficient of variation for adistribution, on the
one hand, and the sequence of severa conditional coefficients of variation involved in the TSD.

The tests of FSD and SSD are based on empirical evaluations of conditions (2) or (3) in the above definitions. Mounting
tests on conditions (3) typically relies on the fact that quantiles are consistently estimated by the corresponding order statistics at
afinite number of sample points. Mounting tests on conditions (2) requires empirical cdfs and comparisons a afinite number of
observed ordinates. Also, from Shorrocks (1983) it is clear that condition (3) of SSD isequivalent to the requirement of
Generalized Lorenz (GL) dominance. FSD implies SSD.

The Lorenz and the generdized Lorenz curves are, respectively, defined by:

L(p) = (V) jz Y(wdu and GL(p) = uL(p) = _[Y(u)du, with GL(0) = 0,and GL(1) = u, see Shorrocks
(2983).

Itiscustomary to consider K points on the L( or GL or the support) curves for empirical evaluation with
0<p1<pP2< . < pk = 1, and p; = i/K. Denote the corresponding quantiles by Y(p;),and the conditional moments
yi = ECYIY < Y(p) , and 57 = E{(Y = 7)) Y < Y(p))}-

The vector of GL ordinatesisgiven by 7 = (p152,p252,........ p5z)’.

Xu (1995) and Xu, Fisher and Wilson (1995) adopt the 72 approach described above to test quantile conditions (3) of FSD
and SSD. A short description follows:

Consider the random sequence {Z} = {X;,Y}', astationary ¢ — mixing sequence of random vectors on a probability space
(Q,%,P). Similarly, denote the stacked vector of GL ordinates for the two variablesasn? = (n*,nY)", and the stacked vector of
quantiles of the two variablesby g% = (g%,q")’, where g = (X(p1),X(p2),....X(px))', and similarly for Y. In order to utilize
the genera theory given for the chi-bar distribution, three ingredients are required. One isto show that the various hypotheses of
interest in this context are representable asin (23) above. Thisispossible and smple. The second isto verify if and when the
unrestricted estimators of the n and q functions satisfy the asymptotic representation givenin (22). Thisis possible under
conditions on the processes and their relationships, aswe'll summarize shortly. The third isto be able to empirically implement



the chi-bar statistics that ensue. In thislast step, resampling techniques are and will become even more prominent.

To seethat hypotheses of interest are suitably representable, we note that for the case of conditions (2) of FSD and SSD,
the testing problem isthe following:

Ho : h(g?) > 0 against H, : h(g?) # 0,

whereh(g?) = [Ix : —Ix]g% = 1*g% say, for FSD, and h(g%) = BI* x g7, for the test of SSD, where,

B= (Bjj),Bj = 1,i>j, Bj = 0, otherwise, isthe “summation” matrix which obtains the successive cumulated quantile ()
and other functions.

Tests for GL dominance (SSD) which are based on the ordinate vector n? are also of the “linear inequality” form and require
h(n®) = 1"n”.

Sen (1972) gives agood account of the conditions under which sample quantiles are asymptotically normally distributed.
Davidson and Duclos (1998) provides the most generd treatment of the asymptotic normality of the nonparametric sample
estimators of the ordinatesin i . In both cases the asymptotic variance matrix, ¥, noted in the genera setup (22) isderived.
What isneeded isto appropriately replace Rin the formulations of Kodde and Palm (1986) , or Gourieroux et a (1982), and to
implement the procedure with consistent estimates of Qin'¥ = RQR'.

For sample order statistics, Eﬁ itiswell known that, if X and Y are independent,

TG - g9 dN(O,Q)
Q=G61G"?

G = diag[fy (X(Pi)),-eeeeeen F(Y(pi)),en ] i = 10K
V=limE(gg), g = T (FFy),

Fx = [{FOX(P1)) = P}, {F(X(PK)) — Px}],Fy similarly defined

Asisgeneraly appreciated, these density components are notorioudly difficult to estimate. Kernel density methods can be
used, as can Newey-West type robust estimators. But it isdesirable to obtain bootstrap estimates based on block bootstrap
and/or iterated bootstrap techniques. These are equally accessible computationally, but may perform much better in smaller
samples and for larger numbers of ordinates K. Xu (1995) demonstrates with an application to testing for GL dominancein
Canadian wages, and Xu et d (1995) demonstrate with an application to the hypothesis of term premia based on one and two
months US Treasury hills. FSD and SSD of two months over one month hills can be inferred at 5% level and not the other way
round. This application was based on the Kodde and Palm (1986) critical bounds and encountered some readlizations in the
inconclusive region. Xu et Al (1995) employed Monte Carlo simulations to obtain the exact critical levelsin those cases.

Sample andogues of 1 and similar functions for testing any stochastic order also have asymptotically normal distributions.
Davidson and Duclos (1998) exploit the following interesting result which translates conditions (2) of the FSD and SSD into
inequality restrictions among the members of the ; functions defined above:

Let DX(x) = Fx(X), D¥Y) = Fy(y); then,
DS(x) = J': DS (u)du = ﬁﬁ(xf u)*tdF(u),for s> 2

Thislast equality clearly shows that tests of any order stochastic dominance can be based on the conditional moments
estimated at a suitable finite number of K ordinates as defined above. Indeed , since poverty measures are often defined over
lower subsets of the domain such that x < Povertyline, dominance relations over poverty measures can also be tested in the same
fashion. Using empirica distribution functions, Davidson and Duclos (1998) demonstrate with an example from the panels for
six countries in the Luxembourg study. It should be appreciated, however, that the latter do not exploit the inequality nature of
the alternative hypotheses. The union intersection method determines the critical leve of the inference process here. The cases of
unrankable distributions include both “equivalence’ and crossing (non-dominant) distributions. A usual asymptotic 2 test will
have power in both directions. In order to improve upon this, therefore, one must employ the chi-bar distribution technique.

Similarly, Kaur et a (1994) proposed atest for condition (2) of SSD when i.i.d observations are assumed for independent
prospects X and Y. Their null hypothesisis condition (2) of SSD for each x against the alternative of strict violation of the same
condition for all x. The test of SSD then requires an appeal to union intersection technique which resultsin atest procedure with
maximum asymptotic size of « if the test statistic at each x is compared with the critical value Z , of the standard Normal
distribution. They showed their test is consistent. One regjects the null of dominanceif any negative distances a the K ordinatesis
significant.

In contrast, McFadden (1982), and Klecan et a (1991) test for dominance jointly for all x. McFadden’s analysis of the
multivariate Kolmogorov-Smirnov type test isdevel oped for aset of variables and requires adefinition of “maximd” sets, as
follows:

definition

Let X, = (Xin,Xzn e Xkn) » =1, 2,....,N , be the observed data. We assume X | isstrictly stationary and o — mixing. As



inKlecan et d., we also assume F;(X;), i = 1,2,...,K are exchangeable random variables, so that our resampling estimates of the
test statistics converge appropriately. Thisisless demanding than the assumption of independence which isnot redlistic in many
applications (asin before and after tax scenarios). We also assume Fy isunknown and estimated by the empirical distribution
function Fn(Xy). Finaly, we adopt Klecan et d’s mathematical regularity conditions pertaining to von Neumann-Morgenstern
(VNM) utility functions that generally underlie the expected utility maximization paradigm. The following theorem definesthe
tests and the hypotheses being tested:

Theorem  Given the mathematical regularity conditions;

(a) The variablesin A arefirst-order stochastically maximd; i.e.,

@ d= mi_n max [F;(x) - Fj(X)] > O,

i
if and only if for each i and j, there exists acontinuous increasing function u such that E u(X;) > E u(X;).
(b) The variablesin /A are second order stochastically maximd; i.e.,

(2) S=miny, max, [* [Fi(u) - Fi(w)]du > 0,
if and only if for each i and j, there exists a continuous increasing and strictly concave function u such that Eu(X;) >
EU(XJ').

(c) Assuming the stochastic process X | ,n=1, 2,...., to bedtrictly stationary and o — mixing with
a(j) = O(j™), for somes > 1, and,
(d) Assuming the variablesin the set are exchangesble (relaxing independence in M cFadden (1989)),
Theorem
doy » d, and S,y — S, where doy and S,y are the empirical test statistics defined as:

(3) dan = min max [Fin(x) - Fjn(X)]
i# X

and,

(4) Son = min max Iz [Fin(u) - Fin()]du

i+ X
[Proof] . See Theorems 1. and 5 of Klecan et d (1991).

The null hypothesis tested by these two statisticsisthat, respectively, /A isnot first (second) order maximad—i.e,, X;
FSD(SSD) X; for somei and j. We rgject the null when the statistics are positive and large. Since the null hypothesisin each caseis
composite, power is conventionally determined in the least favorable case of identical marginasF; = F;. Asisshown in Kaur et a
(1994) and Klecan et a (1991), when X and Y are independent, tests based on d,y and S,y are consistent. Furthermore, the
asymptotic distribution of these statistics are non-degenerate in the least favorable case, being Gaussian (see Klecan et a (1991),
Theorems 6-7).

As ispointed out by Klecan et d (1991), for non-independent variables, the statistic S, has, in generd, neither atractable

distribution, nor an asymptotic distribution for which there are convenient computational approximations. The situation for doy
issimilar except for some special cases—-see Durbin (1973, 1985), and M cFadden (1989) who assumei.i.d. observations (not
crucial), and independent variables in A (consequential). Unequal sample sizes may be handled asin Kaur et a.(1994).

Klecan et d (1991) suggest Monte Carlo procedures for computing the significance levels of these tests. Thisforcesa
dependence on an assumed parametric distribution for generating M C iterations, but is otherwise quite appealing for very large
iterations. Maasoumi et a (1997) employ the bootstrap method to obtain the empirica distributions of the test statistics and of
p-values. Pilot studies show that their computations obtain similar results to the agorithm proposed in Klecan et a (1991).

In the bootstrap procedure we compute dyy and S,y for afinite number K of the income ordinates. Thisrequiresa
computation of sample frequencies, cdfs and sums of cdfs, aswell asthe differences of the last two quantities at al the K points.
Bootstrap samples are generated from which empirical distributions of the differences, of the dyy and S,y statistics, and their
bootstrap confidence intervals are determined. The bootstrap probability of these statistics being negative and/or falling in these
intervals leads to rejection of the hypotheses.

Maasoumi et d (1997) demonstrate by several applications to the US income distributions based on the CPS and the panel
data fro the Michigan study. In contrast to the sometimes confusing picture drawn by comparisons based on inequality indices,
they find frequent SSD relations, including between population subgroups, that suggest a“welfare’ deterioration in the 1980s
compared to the previous periods.



Conclusion

Taking the one-sided nature of some linear and non-linear hypotheses isboth desirable and practical. It can improve power
and to the improved computation of the critical levels. A chi-bar squared and amultivariate KS testing strategy were described
and contrasted with some aternatives, either the less powerful two-sided methods, or the union intersection procedures. The
latter deservesto be studied further in comparison to the methods that are expected to have better power. Computational issues
involve having to solve QP problemsto obtain inequality restricted estimators, and numerical techniques for computation of the
weightsin the chi-bar statistic. Bounds tests for the latter are available and may be sufficient in many cases.

Applications in the parametric/semi-parametric , and the non-parametric testing area have been cited. They tend to occur in
substantive attempts at empirical evaluation and incorporation of economic theories.
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