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Abstract

We give a renormalization analysis of the self-similarity of autocorrelation functions in symmetric

barrier billiards for golden mean trajectories. For the special case of a half-barrier we present a rigorous

calculation of the asymptotic height of the main peaks in the autocorrelation function. Fundamental to

this work is a detailed analysis of a functional recurrence equation which has previously been used in the

analysis of fluctuations in the Harper equation and of correlations in strange non-chaotic attractors and

in quantum two-level systems.

PACS: 05.45.-a, 64.60.Ak
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1 Introduction

Barrier billiards form a class of dynamical systems that appear to be neither regular nor chaotic. Investigating
the nature of the dynamics, Wiersig [17] has recently provided numerical evidence that for such billiards
typical phase space functions exhibit a spectrum with a singular continuous component. Central to Wiersig’s
analysis is a skew-product evolution equation for the sign of a phase-space variable. (We shall give a complete
derivation in section 2 below.) Previously Riley [16] had shown that these same skew-products do indeed
typically display singular continuous spectra. (See [19] and references therein for results on the weak-mixing
nature of such billiards using interval-exchange transformations.) Of interest to use here is that, in addition,
Wiersig provides evidence that autocorrelation functions neither decay to zero nor return to 1. Moreover, for
the system parameters and initial conditions chosen, the autocorrelation function shows a self-similar form.
(See figure 3 below for an example.) This form of autocorrelation function is identical to that witnessed
in the strange non-chaotic attractors present in quasiperiodically driven systems [15]—further examples of
skew-product systems. In that context, for the case of forcing at golden mean frequency, the self-similarity is
explained in [5] by means of a renormalization analysis, a central ingredient being the functional recurrence

Qn(x) = Qn−1(−ωx)Qn−2(ω2x + ω) , (1.1)

where ω = (
√

5− 1)/2 is the golden mean. The self-similarity arises as a result of the initial conditions for
this recurrence (which are dictated by the system parameters) leading to periodic behaviour. In [11] we have
given a complete analysis of the relevant periodic orbits of (1.1), namely piecewise-constant functions taking
the values ±1, thereby putting the work in [5] on a firmer footing.

Ketoja and Satija [8] had previously shown how periodic orbits of this same recurrence also help explain
self-similar fluctuations of eigenfunctions in the Harper equation. (The manner in which strange non-chaotic
attractors arise in consideration of the Harper equation was first described in [1] and is further discussed
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in [9].) In [14] we have put the numerical work in [8] on a firm rigorous foundation. In this context the
form of the iterates of (1.1) is much more complicated, no longer being simple piecewise-constant functions.
In [8] Ketoja and Satija also discover a universal renormalization strange set—the orchid—associated with
a generalised Harper equation. In [13] we show how indeed recurrence (1.1) generates such a set. On the
subject of the structure of a strange non-chaotic attractor itself, Kuznetsov et al [10] also utilise (1.1). We
anticipate that our work on the orchid in [13] will throw some light on the this problem.

Similar phenomena are observed, and explained by renormalization, in the related problem of a quasiperi-
odically forced two-level quantum system [6]. An additive version of (1.1), which may be thought of as a
functional (quantised) version of the classical Fibonacci recursion, is the governing recursion in this case.
In [12] we have given a complete description of the periodic orbits of this recursion thereby explaining and
generalising the results in [6].

Inspired by the article of Wiersig [17], in this article adapt our work in [11] and [12] to the symmetric barrier
billiard problem. We shall study golden mean trajectories and see that, once again, the self-similarity of the
autocorrelation function is explained in terms of periodic orbits of (1.1). We shall give a detailed calculation
for the special case of the half-barrier, which, in particular, will include a calculation of the asymptotic height
of the main peaks in figure 3.

We note that recursion (1.1) is relevant no matter what the barrier, given that the angle of the trajectory in
the billiard is fixed at the golden mean. Of course, in order to understand the precise nature of the “pseudo-
integrable” dynamics of barrier billiards, it would be desirable to fix a barrier and consider all trajectories
instead. This challenging issue is the subject of ongoing research.

The outline of remainder of this article is as follows. In section 2 we describe symmetric barrier billiards
and derive (1.1) as a key equation in the understanding of the autocorrelation function for golden mean
trajectories. The initial conditions for (1.1), crucial to the consequent dynamics, will be seen to be determined
solely by the details of the barrier. In section 3 we review our earlier work [11, 12] on periodic orbits
of (1.1) and the locations of their discontinuities. In section 4 we give a detailed analysis for the half-
barrier. We shall show that the heights of the main peaks in the autocorrelation function (figure 3) are
asymptotically 1 − 1/

√
5 ≈ 0.55, occurring at every third Fibonacci number, whilst for other Fibonacci

numbers the autocorrelation is zero. This latter statement was a triviality in the quasiperiodically forced
two-level quantum system [12], but requires detailed analysis here.

2 Symmetric barrier billiards

Closely following Wiersig [17], in this section we give a self-contained account of how the dynamics of a
symmetric barrier billiard may be expressed as a simple skew-product system. We then go on to explain how,
for golden mean trajectories, the functional recurrence equation (1.1) arises in the analysis of correlations.
The initial conditions for the recurrence are crucial, and will be seen to be dependent on the precise form of
the barrier.

2.1 Equations of motion

The motion of a point unit mass in the square chamber [0, 1]× [0, 1] undergoing elastic collisions according
to the law that angle of incidence equals angle of reflection may be described by angles θx, θy whose time
evolution is given by

θx(t) = θx,0 + ωxt (mod 1) (2.1)

θy(t) = θy,0 + ωyt (mod 1) , (2.2)
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where ωx = px/2, ωy = py/2, with px, py signed (constant) one-dimensional velocities. (We ignore trajecto-
ries that hit corners.) A key quantity is the rotation number

ω =
ωy

ωx
=

py

px
, (2.3)

which fixes the direction of motion of the mass. If ω is rational the motion is periodic, whilst if it is
irrational we have quasiperiodic motion densely exploring the configuration space with uniform distribution.
This system (rectangular billiards) is an integrable Hamiltonian system. (Without loss of generality we have
chosen a square billiard, the general rectangle being equivalent by coordinate transformation.)

The original coordinates of the mass are given by x = f(θx), y = f(θy), where f(θ) = 2θ, θ ∈ [0, 1/2], and
f(θ) = 2− 2θ, θ ∈ [1/2, 1]. This coordinate transformation becomes invertible once a convention is adopted
so that, for instance, θ ∈ [0, 1/2] corresponds to motion with positive velocity.

We now consider the rectangular chamber [−1, 1] × [0, 1] in which a vertical barrier (perhaps consisting
of many pieces) is located centrally as in figure 1. The barrier is described by the “barrier function”
B : [0, 1] → {−1,+1} defined so that B(y) = +1 if the barrier is present at y and B(y) = −1 if the barrier
is absent at y. The side figure in figure 1 shows the barrier function for the given barrier.
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Figure 1: A symmetric barrier billiard and its corresponding barrier function B(y).

We first note that the evolution of (|x|, y) is merely that of rectangular billiards in [0, 1]× [0, 1] as described
above. (In addition to ignoring trajectories that hit corners we also ignore those that hit barrier ends.)
Writing

x(t) = s(t)|x(t)| , (2.4)

so that s is the sign of x (which we leave undefined whenever x = 0), we will understand this “barrier
billiard” system if we understand the evolution of s.

Now s(t) = ±1 and may only change sign at times t such that x(t) = θx(t) = 0. Taking initial condition
x(0) = 0 then x(t) = 0 if and only if t = n/ωx, where n ∈ Z. Taking a section x = 0 (equivalently a
stroboscopic sample with frequency ωx), for n ∈ Z we define

sn = s(n/ω−x ) (2.5)

θn = θy(n/ωx) . (2.6)

Related to θn we define yn = y(n/ωx), so that yn = f(θn).

The evolution of θn is straightforward. From (2.2) we have

θn+1 = θn + ωy/ωx (mod 1) . (2.7)

The evolution of sn, the sign of x for t ∈ ((n− 1)/ωx, n/ωx), is determined by the barrier function B(y). If
yn is such that B(yn) = +1 so that the barrier is present then reflection occurs and there is no change of
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sign. On the other hand if B(yn) = −1 so that there is a gap then the mass passes through to the other side
of the chamber and thus s changes sign. We thus have

sn+1 = snB(yn) . (2.8)

However, we need to express this evolution in terms of the angle θn. We thus define

Φ(θ) = B(f(θ)) = B(y) . (2.9)

Now it is an important remark that the function Φ inherits the symmetry of f , i.e., f(1−x) = f(x), reflecting
the fact that the mass “bounces” from the top of the chamber and “sees” the barrier both on its way upwards
and downwards. The barrier function in angle coordinates for the barrier of figure 1 is shown in figure 2.
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Figure 2: The barrier function Φ(θ) for the billiard of figure 1. Note that Φ(1− θ) = Φ(θ).

In summary, the symmetric barrier billiard may be understood in terms of the skew-product system

θn+1 = θn + ω (mod 1) , (2.10)

sn+1 = snΦ(θn) . (2.11)

We remark that this particular skew-product form, crucial for our development here, arises as a consequence
of the barrier being symmetrically placed. In his analysis of a circular Andreev billiard, Wiersig [18] uses
an asymmetrically placed barrier which leads to a loss of the skew-product form. See also [4] for studies of
asymmetric barriers.

Now the system (2.10–2.11) has solution

θn = θ0 + nω (mod 1) , (2.12)

sn = s0

n−1∏
k=0

Φ(θ0 + kω) , (2.13)

and for rational rotation number ω = p/q, say with (p, q) = 1, it is straightforward, using the periodicity of
θn to verify that sn+q = Fsn for all n, where the constant F =

∏q−1
k=0 Φ(θk) = ±1, so that sn has period q or

2q. However, in the case of irrational rotation number the solution (2.13) does not illuminate the behaviour
of the sign sn. To this end we turn to an analysis of its autocorrelation function.

2.2 Autocorrelations

To understand the behaviour of sn in the case of irrational rotation numbers we look at its autocorrelation
function

C(t) = 〈snsn+t〉 = lim
N→∞

1
N

N∑
n=1

snsn+t , (2.14)

(Note that 〈s2
n〉 = 1 since sn = ±1, and 〈sn〉 = 0 since θn is uniformly distributed for irrational ω. Also our

average may also be considered to be taken over all initial s0 and θ0.)
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As in [5] (and [6], [11], [12]), we have (using the fact that θn is uniformly distributed)

C(t) = 〈s0

n−1∏
k=0

Φ(θ0 + kω)s0

n+t−1∏
k=0

Φ(θ0 + kω)〉

= 〈
n+t−1∏
k=n

Φ(θ0 + kω)〉

= 〈
t−1∏
k=0

Φ(θn + kω)〉

=
∫ 1

0

t−1∏
k=0

Φ(θ + kω)dθ

=
∫ 1

0

St(θ)dθ , (2.15)

where we have defined

St(θ) =
t−1∏
k=0

Φ(θ + kω) , t ≥ 1 , S0(θ) = 1 . (2.16)

Figure 3 is a numerical evaluation of the autocorrelation function for the half-barrier which we consider in
Section 4 below in the case of golden mean rotation number ω. We shall give a rigorous calculation showing
that the magnitude of the main peaks in this figure are asymptotically 1− 1/

√
5 ≈ 0.55, occurring at every

third Fibonacci number, and that the autocorrelation is zero for all other Fibonacci numbers.
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Figure 3: Autocorrelation function C (top), and absolute value |C| (bottom) for the golden mean trajectory
in the half-barrier.
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2.3 Golden mean renormalization

We concentrate now on the case of golden mean rotation number, so that ω = (
√

5− 1)/2. We refer to the
trajectory of the mass as the “golden mean trajectory.” The rational approximants to ω are now the ratios
of successive Fibonacci numbers (Fn) where F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2 for n ≥ 2. The period-1
functions St then satisfy a recurrence relation at Fibonacci indices. Indeed we have

SFn(θ) =
Fn−1∏
k=0

Φ(θ0 + kω)

=
Fn−1−1∏

k=0

Φ(θ0 + kω)
Fn−1∏

k=Fn−1

Φ(θ0 + kω)

= SFn−1(θ)
Fn+Fn−1−1∏

k=0

Φ(θn + Fn−1ω + kω)

= SFn−1(θ)
Fn−2−1∏

k=0

Φ(θn + Fn−1ω + kω)

= SFn−1(θ)SFn−2(θ + Fn−1ω) (2.17)

Now we renormalise SFn
defining

Qn(x) = SFn
((−ω)nx) , (2.18)

as a result of which the recurrence (2.17) becomes

Qn(x) = Qn−1(−ωx)Qn−2(ω2x + ω) . (2.19)

This recurrence has been the object of attention in a number of our recent works [11]–[14], previously being
derived in the manner described in this subsection a variety of contexts ([8], [5], [10]). Of crucial importance
is the class of functions it is defined on. This is dictated by the initial conditions, which in this case are
easily seen to be

Q0(x) = 1 , Q1(x) = Φ(−ωx) . (2.20)

We are thus led to consider piecewise-constant functions taking the values ±1. An important observation is
that Q1 inherits a symmetry from Φ, so that Q1 cannot be chosen with arbitrary discontinuity locations.

In terms of the renormalised functions, the autocorrelation function C(t) at Fibonacci times is

C(Fn) =
∫ 1

0

SFn
(θ)dθ =

1
(−ω)−n

∫ (−ω)−n

0

Qn(x)dx . (2.21)

In order to calculate this average we need to consider the global behaviour of the function Qn.

3 Periodic orbits

In this section we summarise relevant key points from [11, 12] concerning the piecewise-constant periodic
orbits of (1.1). These periodic orbits are intimately related to the periodic orbits of a piecewise-linear map
of an interval, which in turn are given by the initial conditions to (1.1).

3.1 Iterated function system and the inverse map F

With ω = (
√

5− 1)/2, the golden mean, we set

φ1(x) = −ωx , φ2(x) = ω2x + ω , (3.1)

so that we may write equation (1.1) in the form

Qn(x) = Qn−1(φ1(x))Qn−2(φ2(x)) . (3.2)
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The iterated function system (IFS) on R given by φ1, φ2 has the property that the fundamental interval
I = [−ω, 1] is its fixed point set. Indeed φ1(I) = [−ω, ω2], φ2(I) = [ω2, 1], so that φ1(I) ∪ φ2(I) = I. The
fundamental interval I is the attractor for the IFS: Given any compact subset K ⊂ R and any ε > 0, there
exists N ∈ N such that for any k ≥ N and any choice i1, . . . , ik ∈ {1, 2} we have φi1◦· · ·◦φik

(x) ∈ [−ω−ε, 1+ε]
for any x ∈ K. This property is important for an understanding of the behaviour of equation (3.2) outside
the fundamental interval.

Let F : I → I be defined by

F (x) =




φ−1
1 (x) = −ω−1x, x ∈ [−ω, ω2] ;

φ−1
2 (x) = ω−2x− ω−1, x ∈ [ω2, 1] ,

(3.3)

as drawn in figure 4.
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Figure 4: The function F .

In [11] it was shown that periodic points of F correspond to discontinuities of the periodic solutions of (3.2)
in the fundamental interval. More precisely in [11] we prove the following.

Proposition 1. Let Qn be a piecewise-constant periodic orbit of (3.2) with Qn(x) = ±1. Then the combined
set of discontinuities of all of the elements of the periodic orbit in the fundamental interval consists of a finite
collection of periodic orbits of the map F .

To each point x ∈ I we associate a ‘code’ defined as the sequence (cn)n≥0 in {1, 2}N0 where

cn =




1, Fn(x) ∈ [−ω, ω2) ;

2, Fn(x) ∈ (ω2, 1] .
(3.4)

(Our notation here is that N0 = N ∪ {0} = {0, 1, 2, 3, . . .}.) Since ω2 is not periodic under F we choose to
ignore the (countable) set of points whose orbits under F include the point ω2. Each point x ∈ I corresponds
to a unique code and vice versa. Periodic orbits of F correspond to periodic codes in {1, 2}N0 under the shift
map σ: σ(c0c1c2 . . .) = c1c2 . . ..

A periodic orbit {y0, y1, . . . , yk−1} of period k of F is given uniquely by a periodic code c0c1 . . . ck−1, which
we henceforth denote as just c0c1 . . . ck−1. It is straightforward to calculate the corresponding periodic orbit
y0, y1, . . . , yk−1 of F , which we may write as F (x) = (−ω−1)c0x− (c0−1)ω−1, for, given a code c0c1 . . . ck−1,
the solution to φ−1

ck−1
◦ · · · ◦ φ−1

c0
(y0) = y0, or, equivalently, φc0 ◦ · · · ◦ φck−1(y0) = y0, is readily calculated to

be

y0 =
−

∑k−1
j=0 (cj − 1)(−ω)1+

∑j−1
i=0 ci

1− (−ω)Σcj
, (3.5)

where empty sums are defined to be zero. The other points of the orbit may be calculated by applying this
formula with the code c0c1 . . . ck−1 cyclically permuted.
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In [11] it was shown that the periodic orbit of (3.2) corresponding to a given code has period dividing the
code sum

∑k−1
j=0 cj . Moreover a detailed analysis was given of the periodicity in the presence of multiple

periodic orbits of F .

3.2 Reduction of Qn on R to the fundamental interval

In what follows we shall need to consider equation (3.2) on the whole of R, and not just in the fundamental
interval I = [−ω, 1]. However, the fact that I is the attractor for the IFS leads to the conclusion that the
global behaviour of (3.2) is ‘driven’ by its behaviour in I.

From [11] we have the following results.

Lemma 1. Let Q0, Q1 be initial conditions for (3.2) on R and let ε > 0 be such that Q0(x) = Q1(x) = 1 for
all x ∈ [−ω− ε, 1 + ε]. Then for each L > 1, there exists N > 0 (depending only on L) such that Qn(x) = 1
for all x ∈ [−L, L] and all n > N .

In other words, if the initial conditions on, and just outside, the fundamental interval are unity, then the
value of Qn at all points eventually becomes unity.

The lemma leads to the following propositions.

Proposition 2. Let Qn be a piecewise-constant periodic orbit of (3.2) of period p on R with Qn(1+) = Qn(1).
Then Qn is periodic with period p on the fundamental interval I. Conversely, suppose that Qn is periodic
with period p on I. Then there is a unique extension Q̃n of Qn to R such that Q̃n is periodic with period p

on R.

Proposition 3. Let Q0, Q1 be piecewise-constant initial conditions for (3.2) on R with Q0(1+) = Q0(1),
Q1(1+) = Q1(1). Suppose Qn is periodic of period p on the fundamental interval I. Then the sequence Qn

converges to the unique periodic extension Q̃n given by Proposition 2, i.e., for all integers r ≥ 0 we have
Qr+np(x)→ Q̃r(x) as n→∞.

3.3 Discontinuity locations for periodic orbits

Let Ln denote the set of locations of the discontinuities of Qn, then from (3.2) it is clear that

Ln = φ−1
1 (Ln−1) ∪ φ−1

2 (Ln−2) , (3.6)

unless there is a cancellation of discontinuities (which may occur if both 1 and 0 are discontinuities). As
stated in Subsection 3.2, the global discontinuities of Qn are generated from those in the fundamental
interval I, and the latter consist of elements of periodic orbits of the map F . It is clear from (3.5) that such
periodic orbits must be composed of elements of the field Q(ω) = {a + bω : a, b ∈ Q}. As a consequence, the
sets Ln consist of elements of Q(ω), since the maps φ−1

1 , φ−1
2 act on Q(ω) as

φ−1
1 (a + bω) = −(a + b)− aω , (3.7)

φ−1
2 (a + bω) = 2a + b− 1 + (a + b− 1)ω . (3.8)

Rather than consider a globally periodic orbit itself, we need to consider an orbit asymptotic to it generated
from discontinuity data on the fundamental interval only. By the results of Subsection 3.2 this orbit is
eventually periodic and identical to the desired periodic orbit on any bounded subset of R.

With the notation that, for x ∈ R, �x� denote the ceiling of x, namely min{n ∈ Z : n ≥ x}, in [12] we prove
the following fundamental result identifying the discontinuity locations.

Proposition 4. The discontinuity location sets (Ln) arising from applying recurrence (3.2) to initial condi-
tions in which Q0 has a single discontinuity at a + bω ∈ I, and Q1 has a single discontinuity at φ−1

1 (a + bω)
are L0 = {a + bω} and for n ≥ 1

Ln = c(n) + d(n)ω + Mn , (3.9)
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where
Mn = {�iω�+ i + iω : i = ln, . . . , rn} , (3.10)

with

ln , rn =



−Fn−1 , Fn − 1 , n odd ;

−Fn , Fn−1 − 1 , n even ,
(3.11)

and where
c(n) = (−1)n(Fn+1a + Fnb) , d(n) = (−1)n(Fna + Fn−1b) . (3.12)

4 The half-barrier

For the remainder of this article we confine our attention to the particular barrier known as the “half-barrier.”
In the coordinates of figure 1, this barrier consists of the segment [0, 1/2] on the y-axis. The corresponding
barrier function in angle coordinates is drawn in figure 5. Note the symmetry Φ(1 − θ) = Φ(θ), and recall
that Φ is extended with period one. The half-barrier was studied by Hannay and McCraw [7], as a simple

+1

−1

11/21/4 3/4

Φ(θ)

θ

Figure 5: The barrier function Φ(θ) for the half-barrier.

example of a pseudo-integrable system. In [17] Wiersig formulates the problem of a barrier consisting of a
single piece of arbitrary length and gives numerical results for the half-barrier. Barriers consisting of a single
piece have also been studied by others, in particular, Eckhardt et al [3] consider the 60◦–120◦ rhombus
billiard which may be considered as a barrier billiard with single barrier of length 2/3. Underpinning
these works is the result of Riley [16], that for irrational trajectories almost all such barriers have singular
continuous spectrum. See also [19] and references therein for results on the weak-mixing nature of such
billiards. In fact an arbitrary barrier function Φ may be decomposed as a product of barrier functions
corresponding to barriers of of this type, the multiplicative structure of (3.2) allowing for separate treatment
of the constituent pieces. We shall treat the problem of an arbitrary barrier in a later article, exploiting our
work on the universal renormalization strange set arising in a generalised Harper equation [13].

4.1 Relevant periodic orbits and initial conditions

According to (2.20) the initial conditions for (3.2) are Q0(x) = 1, and Q1(x) = Φ(−ωx). With Φ as above
the discontinuities of Q1 inside the fundamental interval are thus located at ±ω−1/4 = ±(1/4 + ω/4). The
orbits of these points under F are

−1/4− ω/4 �→ 1/2 + ω/4 �→ 1/4− ω/4 −ω/4 �→ 1/4 �→ −1/4− ω/4
1 2 1 1 1

(4.1)

and
1/4 + ω/4 �→ −1/4− ω/2 �→ 3/4 + ω/4 �→ 3/4 �→ 1/2− ω/4 �→ −1/4− ω/2 ,

2 1 2 2 1
(4.2)

where beneath the points we indicate the code. We see that −1/4 − ω/4 is on the periodic orbit P 1 =
{1/4,−1/4−ω/4, 1/2+ω/4, 1/4−ω/4,−ω/4} with code 11211 and code sum equal to six, whilst 1/4+ω/4
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is preperiodic to the periodic orbit P 2 = {3/4, 1/2−ω/4, 1/4−ω/2, 3/4+ω/4} with code 2112 and code sum
also equal to six. This implies that the discontinuity locations eventually have period a divisor of six. In
fact the functions Qn have discontinuities on the fundamental interval as follows, where in the final column
we note the value of Qn(0) for reference.

Q0 – – +1

Q1 1/4 + ω/4 −1/4− ω/4 +1

Q2 – 1/2 + ω/4 +1

Q3 −1/4− ω/2 – −1

Q4 3/4 + ω/4 1/4− ω/4 −1

Q5 – −ω/4 +1

Q6 3/4 1/4 +1

Q7 – −1/4− ω/4 +1

Q8 1/2− ω/4 1/2 + ω/4 −1

Q9 −1/4− ω/2 – −1

Q10 3/4 + ω/4 1/4− ω/4 −1

Notice the periodicity with period six from Q3 onwards. To apply the results of the previous section we need
initial conditions on the fundamental interval that are themselves periodic, and so we take for Q0 the function
with discontinuities at 1/4 and 3/4 only and value +1 at 0, and for Q1 the function with a discontinuities
at −1/4 − ω/4 only and value +1 at 0. This initial data suffices to determine the globally periodic orbit
of (3.2) for the golden mean trajectory in the half-barrier. This period 6 orbit is shown in figure 6. Note
that despite its superficial similarity, this periodic orbit is different from that considered in [5, 11].

-15 -10 -5 5 10 15

-15 -10 -5 5 10 15

-15 -10 -5 5 10 15

-15 -10 -5 5 10 15

-15 -10 -5 5 10 15

-15 -10 -5 5 10 15

Figure 6: Period 6 orbit for the golden mean half-barrier. Reading downwards on the left Q0, Q1, Q2, on
the right Q3, Q4, Q5.
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We remark that the discontinuities of this new Q0 are not simply those of the barrier function Φ in the
fundamental interval. Indeed Φ has period one and so has a discontinuity at −1/4 which is not a periodic
point of F . (It is preperiodic to P 2.)

4.2 The global discontinuity location sets

In order to calculate the averages (2.21) we need to know the locations of the discontinuities of Qn on
the whole of R. In this subsection we establish results, analogous to those in [12], which give a complete
description of their locations.

For P 1 = {1/4,−1/4− ω/4, 1/2 + ω/4, 1/4− ω/4,−ω/4} we define the sets

L1,0 = {�iω − 1/4�+ i + 1/4 + iω : i ∈ Z} , (4.3)

L1,1 = {�(i− 1/4)ω�+ i− 1/4 + (i− 1/4)ω : i ∈ Z} , (4.4)

L1,2 = {�(i + 1/4)ω + 3/4�+ i− 1/2 + (i + 1/4)ω : i ∈ Z} , (4.5)

L1,3 = {�(i− 1/2)ω + 1/4�+ i− 3/4 + (i− 1/2)ω : i ∈ Z} , (4.6)

L1,4 = {�(i− 1/4)ω + 1/2�+ i− 3/4 + (i− 1/4)ω : i ∈ Z} , (4.7)

L1,5 = {�(i− 1/4)ω − 1/4�+ i + (i− 1/4)ω : i ∈ Z} . (4.8)

For P 2 = {3/4, 1/2− ω/4, 1/4− ω/2, 3/4 + ω/4} we define the sets

L2,0 = {�iω + 1/4�+ i− 1/4 + iω : i ∈ Z} , (4.9)

L2,1 = {�(i− 3/4)ω�+ i− 3/4 + (i− 3/4)ω : i ∈ Z} , (4.10)

L2,2 = {�(i− 1/4)ω − 3/4�+ i + 1/2 + (i− 1/4)ω : i ∈ Z} , (4.11)

L2,3 = {�(i + 1/2)ω + 3/4�+ i− 1/4 + (i + 1/2)ω : i ∈ Z} , (4.12)

L2,4 = {�(i + 1/4)ω + 1/2�+ i− 1/4 + (i + 1/4)ω : i ∈ Z} , (4.13)

L2,5 = {�(i− 3/4)ω − 3/4�+ i + (i− 3/4)ω : i ∈ Z} . (4.14)

Then we have the following.

Proposition 5. The discontinuity location sets Ln generated by the periodic point 1/4, i.e., by the periodic
orbit P 1, satisfy

L1,0 ∩ Ln = {�iω − 1/4�+ i + 1/4 + iω : i = l1,0
n , . . . , r1,0

n } , n ≡ 0 mod 6 ;

L1,1 ∩ Ln = {�(i− 1/4)ω�+ i− 1/4 + (i− 1/4)ω : i = l1,1
n , . . . , r1,1

n } , n ≡ 1 mod 6 ;

L1,2 ∩ Ln = {�(i + 1/4)ω + 3/4�+ i− 1/2 + (i + 1/4)ω : i = l1,2
n , . . . , r1,2

n } , n ≡ 2 mod 6 ;

L1,3 ∩ Ln = {�(i− 1/2)ω + 1/4�+ i− 3/4 + (i− 1/2)ω : i = l1,3
n , . . . , r1,3

n } , n ≡ 3 mod 6 ;

L1,4 ∩ Ln = {�(i− 1/4)ω + 1/2�+ i− 3/4 + (i− 1/4)ω : i = l1,4
n , . . . , r1,4

n } , n ≡ 4 mod 6 ;

L1,5 ∩ Ln = {�(i− 1/4)ω − 1/4�+ i + (i− 1/4)ω : i = l1,5
n , . . . , r1,5

n } , n ≡ 5 mod 6 ,

whilst those generated by 3/4, i.e., by P 2, satisfy

L2,0 ∩ Ln = {�iω + 1/4�+ i− 1/4 + iω : i = l2,0
n , . . . , r2,0

n } , n ≡ 0 mod 6 ;

L2,1 ∩ Ln = {�(i− 3/4)ω�+ i− 3/4 + (i− 3/4)ω : i = l2,1
n , . . . , r2,1

n } , n ≡ 1 mod 6 ;

L2,2 ∩ Ln = {�(i− 1/4)ω − 3/4�+ i + 1/2 + (i− 1/4)ω : i = l2,2
n , . . . , r2,2

n } , n ≡ 2 mod 6 ;

L2,3 ∩ Ln = {�(i + 1/2)ω + 3/4�+ i− 1/4 + (i + 1/2)ω : i = l2,3
n , . . . , r2,3

n } , n ≡ 3 mod 6 ;

L2,4 ∩ Ln = {�(i + 1/4)ω + 1/2�+ i− 1/4 + (i + 1/4)ω : i = l2,4
n , . . . , r2,4

n } , n ≡ 4 mod 6 ;

L2,5 ∩ Ln = {�(i− 3/4)ω − 3/4�+ i + (i− 3/4)ω : i = l2,5
n , . . . , r2,5

n } , n ≡ 5 mod 6 ,

where, as n→∞, la,k
n → −∞, ra,k

n →∞ for a = 1, 2, k = 0, 1, 2, 3, 4, 5.
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The meaning of this proposition is that, for k = 0, 1, 2, 3, 4, 5, the set L1,k is the limit of the sequence (L6m+k)
generated by P 1, with a corresponding statement for P 2.

The following lemma will be useful in the proof.

Lemma 2. Let η ∈ R \ Z and let (Wn) be a monotonic increasing sequence satisfying Wn → 1. Define
Tn = {i ∈ Z : {iω+η} ≤Wn}. Then, for sufficiently large n, Tn contains a set {ln, ln+1, . . . , 0, . . . , rn−1, rn}
with ln ∈ {0,−1,−2, . . . }, rn ∈ {0, 1, 2, . . . } and rn →∞, ln → −∞ as n→∞.

Proof. Let n0 = min{n ∈ N : Wn > {η}} so that 0 ∈ Tn for all n ≥ n0. Define Mn = T c
n = {i ∈

Z : {iω + η} > Wn} to be the complement of Tn and, for n ≥ n0, put rn = min{i > 0 : i ∈ Mn} − 1,
ln = max{i < 0 : i ∈ Mn} + 1. (These numbers are well defined since ω is irrational.) Now, since
Wn+1 ≥Wn, we have Mn+1 ⊆Mn, and thus Tn ⊆ Tn+1, so that ln cannot increase and rn cannot decrease.
It remains to prove that the sequences (ln) and (rn) are unbounded. Suppose that (rn) is bounded above.
Then there exists n̂ ∈ N such that rn = rn̂ for all n ≥ n̂. Then {n̂ω + η} > Wn for all n ≥ n̂. However
{n̂ω + η} is fixed, so we have a contradiction with Wn → 1. Thus rn → +∞. A similar argument shows
that ln → −∞.

Proof of Proposition 5. The following easily verified table for the Fibonacci numbers modulo 4 will be useful.

n mod 6 Fn mod 4

0 0

1 1

2 1

3 2

4 3

5 1

(a) We firstly consider the discontinuity location sets Ln generated by the periodic orbit P 1, for which the
discontinuity of Q0 is at 1/4. We shall only prove the result in the cases n ≡ 0 and n ≡ 1 mod 6, the
remaining cases being similar.

(i) n ≡ 0 mod 6

According to Proposition 4, n being even, we have

Ln = {Fn+1/4 + �iω�+ i + (i + Fn/4)ω : i = −Fn, . . . , Fn−1 − 1} .

Replacing i by i− Fn/4 (noting that Fn/4, (Fn+1 − 1)/4 ∈ Z) we see that

Ln = {Fn+1/4 + �(i− Fn/4)ω�+ i− Fn/4 + iω : i = −3Fn/4, . . . , Fn/4 + Fn−1 − 1}
= {�iω + (Fn+1 − Fn − 1− Fnω)/4�+ i + 1/4 + iω : i = −3Fn/4, . . . , Fn/4 + Fn−1 − 1} .

Now, using Fn−1 − Fnω = ωn, n being even,

�iω + (Fn+1 − Fn − 1− Fnω)/4� = �iω − 1/4 + ωn/4� ,

so we are required to show that
�iω − 1/4 + ωn/4� = �iω − 1/4� , (4.15)

for a suitable range of i. Now (4.15) is true if, and only if, �iω− 1/4� ≥ iω− 1/4 + ωn/4, i.e., if, and only if,

iω − �iω − 1/4�+ 3/4 ≤ 1− ωn/4 . (4.16)

But
iω − �iω − 1/4�+ 3/4 = iω − 1/4− �iω − 1/4�+ 1 = {iω − 1/4} ,

using the fact that {x} = 1− (�x� − x) for all x ∈ R \ Z, and thus (4.16) has a form suitable for application
of Lemma 2. We thus deduce that (4.15) is true for a suitable range of i as required.

12



(ii) n ≡ 1 mod 6

In this case n is odd and Proposition 4 gives

Ln = {−Fn+1/4 + �iω�+ i + (i− Fn/4)ω : i = −Fn−1, . . . , Fn − 1} ,

which, replacing i by i + (Fn − 1)/4 and proceeding as above (noting that (Fn − 1)/4, (Fn+1 − 1)/4 ∈ Z)
gives

Ln = {�(i− 1/4)ω + ωn/4�+ i− 1/4 + (i− 1/4)ω : i = −Fn−1 − (Fn − 1)/4, . . . , 3(Fn − 1)/4} .

We are thus required to show that

�(i− 1/4)ω + ωn/4� = �(i− 1/4)ω� , (4.17)

for a suitable range of i. Now (4.17) is true if, and only if, �(i − 1/4)ω� ≥ (i − 1/4)ω + ωn/4, i.e., if, and
only if, (i− 1/4)ω − �(i− 1/4)ω�+ 1 ≤ 1− ωn/4, but, as above, this is just

{(i− 1/4)ω} ≤ 1− ωn/4 , (4.18)

and so we may again use Lemma 2 to deduce the desired result.

(b) For the discontinuity location sets Ln generated by the periodic orbit P 2, for which the discontinuity of
Q0 is at 3/4, we shall only prove the result in the case n ≡ 0 mod 6. In this case, n being even, Proposition 4
gives

Ln = {3Fn+1/4 + �iω�+ i + (i + 3Fn/4)ω : i = −Fn, . . . , Fn−1 − 1} ,

which on replacing i by i− 3Fn/4 and proceeding as above (noting Fn/4, (Fn+1 − 1)/4 ∈ Z) gives

Ln = {�iω + 1/4 + 3ωn/4�+ i− 1/4 + iω : i = −Fn/4, . . . , 3Fn/4 + Fn−1 − 1} ,

so that we are required to show that

�iω + 1/4 + 3ωn/4� = �iω + 1/4� (4.19)

for a suitable range of i. Now (4.19) is true if, and only if, �iω + 1/4� ≥ iω + 1/4 + 3ωn/4. However, as
in (a) above, this is the statement that

{iω + 1/4} ≤ 1− 3ωn/4 , (4.20)

and so we may again use Lemma 2 to deduce the desired result.

4.3 Combining the discontinuities

Having identified the locations of the two sets of discontinuities we now see how they combine. This is needed
in order to be able to calculate the averages (2.21), which we shall do in the following subsection.

We denote La,n
i to be the ith member of the set La,n, a = 1, 2. We firstly note from Proposition 4 that, for

a = 1, 2,
La,n

i+1 − La,n
i = (1 or 2) + ω . (4.21)

We now investigate how these two sets of discontinuities interlace.

4.3.1 n ≡ 0 (mod 3)

When n ≡ 0 (mod 6), from (4.3) and (4.9), we have

L2,0
i − L1,0

i = (�iω + 1/4�+ i− 1/4 + iω)− (�iω − 1/4�+ i + 1/4 + iω)

= −1/2 + �iω + 1/4� − �iω − 1/4�
= −1/2 + (0 or 1) = ±1/2 . (4.22)

13



If L2,0
i − L1,0

i = +1/2, using (4.21), we then have possible configurations as shown in figure 7, with similar
configurations when L2,0

i − L1,0
i = −1/2. We cannot have two adjacent intervals of length 1/2, for then

either L1,0
i+1 − L1,0

i or L2,0
i+1 − L2,0

i = 1 which contradicts (4.21). Because the initial condition Q0, with its
discontinuities at 1/4 and 3/4 and value +1 at zero, contains such an interval of length 1/2 in which the
value is −1, on all of the intervals of length 1/2 the value is −1. (See figure 6 top left.)

(a) (b)

✲✛ 1
2

✲✛ 1
2

✲✛ 1
2

✲✛ 1
2

L1,0
i L2,0

i L1,0
i+1 L2,0

i+1 L1,0
i L2,0

i L2,0
i+1 L1,0

i+1

(1 or 3)
2 + ω✲✛ 1 + ω ✲✛

+1

−1

+1

−1

Figure 7: Allowed configurations for the interlacing of L1,0 and L2,0

The graph of Qn thus consists of intervals of length 1/2 with value −1 punctuated by intervals of length
(1/2 or 1 or 3/2) + ω with value +1. From these considerations alone we can see that the autocorrelation
C(Fn) will take a value strictly between 0 and 1 for these values of n. We shall give a precise evaluation in
the next subsection.

When n ≡ 3 (mod 6), from (4.6) and (4.12), we have

L1,3
i+1 − L2,3

i = (�(i + 1/2)ω + 1/4�+ i + 1/4 + (i + 1/2)ω)− (�(i + 1/2)ω + 3/4�+ i− 1/4 + (i + 1/2)ω)

= 1/2 + �(i + 1/2)ω + 1/4� − �(i + 1/2)ω + 3/4�
= 1/2 + (0 or −1) = ±1/2 , (4.23)

so that the allowed configurations are as for the case n ≡ 0 (mod 6), except that the graphs of figure 7 are
multiplied by −1, so that the excursions of length 1/2 now have positive sign. (See figure 6 top right.) As a
consequence the autocorrelation now lies strictly between −1 and 0.

4.3.2 n ≡ 1 (mod 3)

For n ≡ 1 (mod 6), from (4.4) and (4.10), we have

L1,1
i − L2,1

i = �(i− 1/4)ω�+ i− 1/4 + (i− 1/4)ω − (�(i− 3/4)ω�+ i− 3/4 + (i− 3/4)ω)

= 1/2 + ω/2 + �(i− 1/4)ω� − �(i− 3/4)ω�
= (1 or 3)/2 + ω/2 > 0 , (4.24)

and

L2,1
i+1 − L1,1

i = �(i + 1/4)ω�+ i + 1/4 + (i + 1/4)ω − (�(i− 1/4)ω�+ i− 1/4 + (i− 1/4)ω)

= 1/2 + ω/2 + �(i + 1/4)ω� − �(i− 1/4)ω�
= (1 or 3)/2 + ω/2 > 0 . (4.25)

Thus the two sets of discontinuities are strictly alternating: · · · < L2,1
i < L1,1

i < L2,1
i+1 < L1,1

i+1 < · · · .
We now partition R into the intervals [L1,1

i , L1,1
i+1] and see, using (4.21), that the allowed configurations are

as shown in figure 8. Note that, by the initial conditions L1,1
0 = −1/4 − ω/4 and Q1(0) = +1, for these n

the value of Qn is +1 from L1,1
i to L2,1

i+1 and −1 from L2,1
i+1 to L1,1

i+1 as shown.

We shall show below that the number of occurrences of figures 8(a) and (b) are equal so that the integral (2.21)
is zero in this case. Note that all the intervals of length 1+ω as shown figure 8(c) will make no contribution
to the integral.

When n ≡ 4 (mod 6) we have the same possible configurations as for n ≡ 1 (mod 6) except that the ordering
is now · · · < L2,4

i < L1,4
i+1 < L2,4

i+1 < L1,4
i+2 < · · · .
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(a) (b) (c)

1+ω
2

✛ ✲ 3+ω
2

✛ ✲

L1,1
i L2,1

i+1 L1,1
i+1

1+ω
2

✛ ✲3+ω
2

✛ ✲

L1,1
i L2,1

i+1 L1,1
i+1

1+ω
2

✛ ✲ 1+ω
2

✛ ✲

L1,1
i L2,1

i+1 L1,1
i+1

+1

−1

+1

−1

+1

−1

Figure 8: Possibilities for each interval between L1,1
i and L1,1

i+1

4.3.3 n ≡ 2 (mod 3)

For n ≡ 2 (mod 6), from (4.5) and (4.11), we have

L1,2
i − L2,2

i = �(i + 1/4)ω + 3/4�+ i− 1/2 + (i + 1/4)ω − (�(i− 1/4)ω − 3/4�+ i + 1/2 + (i− 1/4)ω)

= −1 + ω/2 + �(i + 1/4)ω + 3/4� − �(i− 1/4)ω − 3/4�
= −1 + ω/2 + (1 or 2) = (0 or 1) + ω/2 > 0 , (4.26)

and

L2,2
i+1 − L1,2

i = �(i + 3/4)ω − 3/4�+ i + 3/2 + (i + 3/4)ω − (�(i + 1/4)ω + 3/4�+ i− 1/2 + (i + 1/4)ω)

= 1 + ω/2 + �(i + 3/4)ω − 3/4� − �(i + 1/4)ω + 3/4�
= 1 + ω/2 + (−1 or 0) = (0 or 1) + ω/2 > 0 , (4.27)

so, as in the case n ≡ 1 (mod 6), we have · · · < L2,2
i < L1,2

i < L2,2
i+1 < L1,2

i+1 < · · · . Partitioning R into the
intervals [L1,2

i , L1,2
i+1], using (4.21), the allowable configurations are now as in figure 9. Note that, by the

initial conditions L2,2
0 = 1/2 − ω/4 and Q2(0) = −1, for these n the value of Qn is −1 from L1,2

i to L2,2
i+1

and +1 from L2,2
i+1 to L1,2

i+1 as shown.

(a) (b) (c)

ω
2

✛ ✲ ω
2 + 1✛ ✲

L1,2
i L2,2

i+1 L1,2
i+1

ω
2

✛ ✲ω
2 + 1✛ ✲

L1,2
i L2,2

i+1 L1,2
i+1

ω
2 + 1✛ ✲ ω

2 + 1✛ ✲

L1,2
i L2,2

i+1 L1,2
i+1

+1

−1

+1

−1

+1

−1

Figure 9: Possibilities for each interval between L1,2
i and L1,2

i+1

We shall show below that the number of occurrences of figures 9(a) and (b) are equal so that the integral (2.21)
is also zero in this case. Note that the intervals of length 2 + ω as shown figure 9(c) make no contribution
to the integral.

When n ≡ 5 (mod 6) we have the same possible configurations as for n ≡ 2 (mod 6) with exception of the
ordering. We now have · · · < L2,5

i < L1,5
i < L2,5

i+1 < L1,5
i+1 < · · · .

4.4 Evaluation of C(Fn)

4.4.1 n ≡ 0 (mod 3)

Theorem 1. For the golden mean trajectory of the half-barrier we have

lim
m→∞

C(F6m+3k) = (−1)k(1− 1/
√

5) . (4.28)
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Proof. We must calculate the limit of the integral (2.21). The calculation is similar to that in [12].

When n ≡ 0 (mod 6), i.e., k = 0, as we saw in Subsection 4.3.1 (see figure 7 and figure 6 top left), the
graph of Qn consists of intervals of length 1/2 on which the value is −1, the value, of course, being +1
elsewhere. Each of these intervals has associated with it a discontinuity from L1,0. On an interval of length
ω−n = Fn+1 + Fnω + O(1) there are Fn + O(1) such points. Thus

C(Fn) =
1

(−ω)−n

∫ (−ω)−n

0

Qn(x)dx =
1

ω−n

(
ω−n − 2× 1

2
(Fn + O(1))

)
→ 1− 1√

5
. (4.29)

When n ≡ 3 (mod 6), the calculation is similar.

4.4.2 n ≡ 1, 2 (mod 3)

We now show that the autocorrelation function is asymptotically 0 at all other Fibonacci numbers. We
remark that the corresponding result for the quasiperiodically forced two-level quantum system [12] was
immediate, but requires further detailed analysis of the allowable configurations of the interlacing disconti-
nuities here.

Theorem 2. For the golden mean trajectory of the half-barrier we have

lim
m→∞

C(F3m+k) = 0 , k = 1, 2 . (4.30)

Proof. (a) k = 1

We shall only give details for the case n ≡ 1 (mod 6) since the case n ≡ 4 (mod 6) is similar.

From Subsection 4.3.2 we know that the only contribution to the integral (2.21) is that from a 2+ω interval,
so suppose that L1,1

i+1 − L1,1
i = 2 + ω. Now, by (4.4) we have

L1,1
i+1 − L1,1

i = �(i + 3/4)ω� − �(i− 1/4)ω�+ 1 + ω ,

and so a necessary and sufficient condition for [L1,1
i , L1,1

i+1] to be a 2 + ω interval is

�(i + 3/4)ω� − �(i− 1/4)ω� = 1 . (4.31)

For convenience, we set r = �(i− 1/4)ω�. Then we can rewrite (4.31) as r − ω < (i− 1/4)ω < r, i.e.,

r − 3ω/4 < iω < r + ω/4 , (4.32)

so that iω lies in an interval (of length less than one) with centre r − ω/4.

Now let 2+ denote the 2 + ω interval shown in figure 8(a) and let 2− denote the 2 + ω interval shown
in figure 8(b). In other words, if L2,1

i+1 − L1,1
i = 3/2 + ω/2 we say that we have a 2+ interval, whilst if

L2,1
i+1 − L1,1

i = 1/2 + ω/2 we say that we have a 2− interval. From (4.4) and (4.10) we have

L2,1
i+1 − L1,1

i = �(i + 1/4)ω� − �(i− 1/4)ω�+ 1/2 + ω/2 ,

thus we have 2+ interval whenever

�(i + 1/4)ω� − �(i− 1/4)ω� = 1 , (4.33)

and a 2− interval whenever
�(i + 1/4)ω� − �(i− 1/4)ω� = 0 . (4.34)

Since the integral over a 2+ interval is minus that over a 2− interval, in order to show the total integral is
zero (all other contributions being zero) it suffices to show that there are an equal number of 2− and 2+

intervals.

Now (4.33–4.34) show that we have a 2+ interval whenever

iω < r − ω/4 , (4.35)
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and a 2− interval whenever
iω > r − ω/4 . (4.36)

Thus, by (4.32), we see that the intervals (in which iω lies) corresponding to 2+ and 2− have equal length.
Hence by the uniform distribution of {iω} we have the same number of 2+’s and 2−’s, and hence the
(asymptotic) value of the integral is zero.

(b) k = 2

We shall only give the details for the case n ≡ 2 (mod 6), omitting the case n ≡ 5 (mod 6), which is similar.

In Subsection 4.3.3 we saw that it is only the 1 + ω intervals between L1,2
i and L1,2

i+1 that contribute to the
integral, so suppose that L1,2

i+1 − L1,2
i = 1 + ω. By (4.6) we have

L1,2
i+1 − L1,2

i = �(i + 5/4)ω + 3/4� − �(i + 1/4)ω + 3/4�+ 1 + ω

and so a necessary and sufficient condition for a 1 + ω interval is

�(i + 5/4)ω + 3/4� − �(i + 1/4)ω + 3/4� = 0 (4.37)

We set r = �(i + 1/4)ω + 3/4� and thus rewrite (4.37) as r − 1 < (i + 1/4)ω + 3/4 < r − ω, i.e.,

r − 7/4− ω/4 < iω < r − 3/4− 5ω/4 , (4.38)

so that iω lies in an interval (of length less than one) with centre r − 5/4− 3ω/4.

We now let 1+ denote 1 + ω interval shown in figure 9(a) and let 1− denote the 1 + ω interval shown in
figure 9(b). That is if L2,2

i+1 − L1,2
i = ω/2 we say that we have a 1+ interval, whilst if L2,2

i+1 − L1,2
i = 1 + ω/2

we say that we have a 1− interval. From (4.5) and (4.11) we have

L2,2
i+1 − L1,2

i = �(i + 3/4)ω + 1/4� − �(i + 1/4)ω + 3/4�+ 1 + ω/2 ,

thus we have 1+ interval whenever

�(i + 3/4)ω + 1/4� − �(i + 1/4)ω + 3/4� = −1 , (4.39)

and a 1− interval whenever

�(i + 3/4)ω + 1/4� − �(i + 1/4)ω + 3/4� = 0 . (4.40)

As in the case k = 1 it is enough to show that there are an equal number of 1− and 1+ intervals.

So suppose that we have a 1 + ω interval from L1,2
i to L1,2

i+1, so that (4.38) holds. Then (4.39–4.40) show
that we have a 1+ interval whenever

iω > r − 3ω/4− 5/4 , (4.41)

and a 1− interval whenever
iω < r − 3ω/4− 5/4 . (4.42)

Thus, by (4.38), we see that the intervals (in which iω lies) corresponding to 1+ and 1− have equal length.
Hence by the uniform distribution of {iω} we have the same number of 1+’s and 1−’s, and hence the
(asymptotic) value of the integral is again zero.

5 Conclusion

We have given a rigorous renormalization analysis of the self-similarity of autocorrelation functions in sym-
metric barrier billiards for golden mean trajectories. Key to this analysis is the functional recurrence (1.1),
the initial conditions to which are dictated by the barrier geometry. The analysis draws heavily on our recent
work of fluctuations in the Harper equation [14], and of correlations in strange non-chaotic attractors [11]
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and in quantum two-level systems[12]. For the special case of the half-barrier we gave a rigorous calculation
of the asymptotic values in the autocorrelation function shown in figure 3 at Fibonacci numbers. The main
peaks occur at every third Fibonacci number and have asymptotic height 1− 1/

√
5 ≈ 0.55, with value zero

at other Fibonacci numbers.

As mentioned in Section 4, a barrier with an arbitrary finite number of pieces may be decomposed into single
barriers. If this single barrier has endpoint in Q(ω) then there will be exact asymptotic self-similarity of the
autocorrelation function, corresponding to periodicity under (1.1), as in the half-barrier case treated in detail
here. Generally however we expect there to be a renormalization strange set on which the renormalization
dynamics takes place. Such a set—the orchid—arises in a generalised Harper equation [8], which we have
recently treated rigorously in [13]. Dynamics under (1.1) would then be typically chaotic, and we might say
that we have “chaotic correlations.” An important ingredient is the presence of a symmetry in the initial
conditions to (1.1), which manifests itself as a symmetry in the renormalization strange set. We shall have
more to say about arbitrary barriers in a future article.

The results in this article are limited to only one trajectory, namely the golden mean. It will be straight-
forward to generalise to quadratic irrationals, as has been done in [2] for the renormalization fixed point
associated with the Harper equation. An appropriate generalisation of recurrence (1.1) governs the behaviour.
The generalisation to arbitrary irrational numbers should also be possible. In this case a renormalization
scheme in which the recurrence changes from step-to-step is appropriate. We intend to treat this problem
in future works.
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