Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 13, 603 - 608

Endomorphism Rings of Small Pseudo Projective Modules

Ritu Jaiswal

Department Of Mathematics Banaras Hindu University Varanasi-221005, India ritu11_bhu@yahoo.com

P. C. Bharadwaj

Department Of Mathematics Banaras Hindu University Varanasi-221005, India drpcbharadwaj@yahoo.co.in

Abstract

In this paper I have tried to find some of the results on endomorphism rings of small pseudo projective modules.

Mathematics Subject Classification: 16D40

Keywords: Small pseudo projective modules, small pseudo stable submodule

1 Introduction

Throughout this paper the basic ring R is supposed to be ring with unity and all modules are unitary left R-modules.

Let M be an R-module, a submodule K of M is said to be small in M if $K + L = M \Rightarrow L = M$ for any submodule $L \subseteq M$. An R-module M is said to be hollow if all proper submodules of M are small in M. An R-module M is said to be small quasi projective if for any module A, with small epimorphism $g: M \to A$ and homomorphism $f: M \to A$ there exists an $h \in End(M)$ such that f = goh. An R-module M is said to be small epimorphism $g: M \to A$ and epimorphism $g: M \to A$ and epimorphism $f: M \to A$ and epimorphism $f: M \to A$ and epimorphism $f: M \to A$ there exists an $h \in End(M)$ such that f = goh. A ring R is called regular

(in the sense of Von- Neumann) if for each $r \in R$ there exists $x \in R$ such that r = rxr. The jacobson radical J(M), of a module M, is the intersection of all maximal submodules of M. An R-module M is called local if it has a unique maximal submodule which contains every proper submodules of M. The socle of an R module M denoted by Soc(M) is defined as intersection of essential submodules of M. Two module epimorphisms $f, g : P \to M$ are right equivalent if f = goh for some automorphism h of P. An R module M is called π -projective if for all submodules U and V of M with U + V = M, there exists $f \in S$ with $Imf \subseteq U$ and $Im(1 - f) \subseteq V$. A submodule N of an R-module M is said to be small pseudo stable if for any epimorphism $f : M \to A$ and any small epimorphism $g : M \to A$ with $N \subseteq Kerg \cap Kerf$, there exists $h \in End(M)$ such that f = goh then, $h(N) \subseteq N$. A module M is called a duo module if every submodule of M is fully invariant.

2 Main Results

Proposition 1. Let M be any small pseudo projective hollow module. Then every epimorphism in End(M) is an automorphism.

Proof: Let $g: M \to M$ be any epimorphism then we have $Kerg \neq M$. So, Kerg is a proper submodule of M. As M is hollow, g is a small epimorphism, by small pseudo projectivity of M, I_M can be lifted to a homomorphism $h: M \to M$ such that $goh = I_M$.

 $\Rightarrow h$ is one-one.

Let $m \in M$ then as g is onto there exists an element $n \in M$ such that $m = g(n) \Rightarrow g(n - h(m) = 0 \Rightarrow n - h(m) \in Kerg \Rightarrow n \in Kerg + h(m) \Rightarrow M \subseteq Kerg + Imh$. So, we have $M = Kerg + Imh \Rightarrow M = Imh$, since M is hollow. Thus h is onto and so h is an automorphism $\Rightarrow h^{-1} = g$ is an automorphism.

Proposition 2. (a) If S is the endomorphism ring of a small quasi projective hollow module M then S is local.

(b) If S is the endomorphism ring of a small pseudo projective hollow module M then S is local.

Proof: Follows from [1, Theorem 1.14]

Proposition 3. Let M be any pseudo projective module and End(M) denotes the endomorphism ring of M. Then if $\alpha(M) \subseteq^{\oplus} M$ for every $\alpha \in End(M)$ then $ker \alpha \subseteq^{\oplus} M$.

Proof: Follows from [7, Proposition 8].

Proposition 4. Let M be any pseudo projective module and End(M) denotes the endomorphism ring of M. Then if $\alpha(M) \subseteq^{\oplus} M$ for every $\alpha \in End(M)$ then End(M) is regular.

Proof: Follows from [7, Proposition 10].

Corollary 4.1: Endomorphism ring of a completely reducible pseudo projective module is regular.

Proposition 5. Let M be a small pseudo projective hollow module S denotes the endomorphism ring of M, J(S) denotes the jacobson radical of S then **(a)** $J(S) = \{\alpha \in S | Im\alpha \text{ is small in } M \}$ **(b)** $J(S) \subseteq Hom(M, J(M))$ **(C)** S/J(S) is Von-neumann regular ring.

Proof:Follows from [1, Theorem 1.15]

Proposition 6. Let M be a small pseudo projective hollow module and K be any small submodule of M then for any automorphism $g \in Aut(M/K)$ there exists an automorphism $h \in Aut(M)$ such that $g(m+K) = h(m)+K \ \forall m \in M$.

Proof: Let K be any small submodule of M and $\nu : M \to M/K$ be any natural map, and $g : M/K \to M/K$ be any automorphism in Aut(M/K). Then by small pseudo projectivity of $M \exists h \in End(M)$ such that $go\nu = \nu oh$ i.e. $go\nu(m) = \nu oh(m) \forall m \in M \Rightarrow g(m + K) = h(m) + K \forall m \in M$. Then by [5, Proposition 4] h is an epi-endomorphism. By Proposition 1 we get h is an automorphism.

Proposition 7. Let M be a small pseudo projective hollow module then for any $\alpha \in End(M)$ and any small submodule K of M with $\alpha(M) + K = M$ and $\alpha^{-1}(K) = K$ there exists $\beta \in End(M)$ such that $\beta(M) \subseteq K$ and $\alpha + \beta \in$ Aut(M).

Proof: Suppose $\alpha \in End(M)$ and K is any small submodule of M satisfying $\alpha(M) + K = M$ and $\alpha^{-1}(K) = K$. Let $f : M \to M/K$ be the natural map. Now we have $Ker(fo\alpha) = \alpha^{-1}(Kerf) = \alpha^{-1}(K) = K = Kerf$. Thus, $Ker(fo\alpha) = Kerf$. Now, $\alpha(M) + K = M \Rightarrow \alpha(M) = M \Rightarrow \alpha$ is onto and therefore $fo\alpha$ is onto. So by [2, Theorem 3.6] \exists an automorphism $g \in End(M/K) \ni gof = fo\alpha$. So by assumption there exists $h \in Aut(M)$ such that $g(m + K) = h(m) + K \Rightarrow g(M/K) = foh(M) \Rightarrow gof(M) = foh(M) \Rightarrow gof = foh \Rightarrow fo\alpha = foh \Rightarrow f(h - \alpha) = 0$. Let $\beta = h - \alpha$. We have $\beta(M) \subseteq K$. Also $\alpha + \beta = h$ is an automorphism in Aut(M).

Proposition 8. Let M be a small pseudo projective hollow module then any pair of small epimorphisms from M to any module N are right equivalent if for given any $\alpha \in End(M)$ and any small submodule K of M with $\alpha(M) + K = M$ there exists $\beta \in End(M)$ such that $\beta(M) \subseteq K$ and $\alpha + \beta \in Aut(M)$.

Proof: Suppose $f, g : M \to N$ are small epimorphism. By small pseudo projective of M there exists $\alpha \in End(M)$ such that $f = go\alpha$. Since f is epimorphism we have $\alpha(M) + Ker(g) = M$ then by assumption there exists $\beta \in End(M)$ such that $\alpha + \beta \in Aut(M)$ and $\beta(M) \subseteq K$. So $g(\alpha + \beta) =$ $go\alpha + go\beta = go\alpha = f$. So, f and g are right equivalent.

Proposition 9. Let M be a duo and small pseudo projective module. Let S denotes the endomorphism ring of M and $T = \{\alpha \in S | Im\alpha \text{ is small in } M\}$. Then for every $f \in T$, Imf is a small pseudo stable submodule of M.

Proof: Let $f \in T$ then Imf is a small submodule of M. Let $g: M/Imf \to A$ be a small epimorphism, $\psi: M/Imf \to A$ be an epimorphism and $\nu: M \to M/Imf$ be the natural map. Then $Ker\nu = Imf$ is a small submodule of $M \Rightarrow \nu$ is a small epimorphism. Now, $Imf \subseteq Ker(go\nu) \cap Ker(\psio\nu)$, since $Ker\nu = Imf \Rightarrow \nu(Imf) = 0 \Rightarrow g(\nu(Imf)) = 0 \Rightarrow Imf \subseteq Ker(go\nu)$. Similarly $Imf \subseteq Ker(\psio\nu)$). By small pseudo projectivity of M there exists $h \in End(M)$ such that $\psio\nu = go\nu oh$. We have, $h(Imf) \subseteq Imf$, since M is duo and $Imf \subseteq M$. So, Imf is a small pseudo stable submodule of M.

Proposition 10. Let M be a duo and small pseudo projective hollow module. Let S denotes the endomorphism ring of M and J(S) denotes the jacobson radical of M. Then for every $f \in J(S)$, Imf is a small pseudo stable submodule of M.

Proof: By Proposition 5(a), we have T = J(S). Rest of the proof follows from Proposition 9.

Proposition 11. Let M be a small pseudo projective module if S is local and M is π - projective then M is hollow.

Proof: Let U and V be submodules of M such that U + V = M. As M is π -projective there exists $f \in S$ such that $Imf \subseteq U$ and $Im(1-f) \subseteq V$. Now S is local so, $f \in S \Rightarrow$ either f or (1-f) is invertible. Now f is invertible $\Rightarrow \exists g \in S \ni fog = I_M \Rightarrow f$ is onto and so $Imf = M \Rightarrow U = M$. Thus V is small. Similarly we can show that when (1-f) is invertible then $V = M \Rightarrow U$ is small, and therefore M is hollow.

Proposition 12. Let M be a small pseudo projective D2 module. Then M is S.F.

Proof: Follows from [5, Proposition 3]

Proposition 13. Let M be a small quasi projective duo module. If S = End(M), is local, then M is not supplemented.

Proof: Suppose that M is supplemented and A is any submodule of M. Let B be supplement of A in M then we have M = A + B and $A \cap B$ is small in M. Let $0 \neq s(M) = A$ and $0 \neq t(M) = B$, $s, t \in S$. Define the map $f: M = (s+t)(M) \to M/(A \cap B)$ such that $f(s+t)(m) = s(m) + (A \cap B)$. For any $m, m' \in M$, (s+t)(m) = (s+t)(m') implies that $s(m-m') = t(m'-m) \in A \cap B$. So $s(m) + (A \cap B) = s(m') + (A \cap B)$. Thus f is well defind and f is also an R-homomorphism. Let $\nu : M \to M/(A \cap B)$ is the natural map. By small quasi projectivity of M, there exist $g \in S$ such that $\nu og = f$. We have $\nu og(s+t)(m) = f(s+t)(m) = s(m) + (A \cap B)$. Then, $g(s+t))(m) + (A \cap B) = s(m) + (A \cap B) \Rightarrow ((1-g)os - got)(M) \subseteq (A \cap B)$. Since S is local, g or (1-g) is invertible. If (1-g) is invertible we have, $(s - (1-g)^{-1}ogot)(M) \subseteq (1-g)^{-1}(A \cap B) \subseteq (A \cap B)$. Now $A \subseteq (s - (1-g)^{-1}ogot)(M) \subseteq (A \cap B)$. Then $A \subseteq (A \cap B)$, which is a contradiction. Similarly if g is invertible we have $B \subseteq (g^{-1}o(1-g)os - t) \subseteq g^{-1}(A \cap B) \subseteq (A \cap B)$. Then $B \subseteq (A \cap B)$, that is also a contradiction. Hence M is not supplemented.

Corollary 13.1: Let M be a hollow small quasi projective duo module. Then M is not supplemented.

Proof: Follows from Proposition 2(a) and Proposition 13.

References

- A. K. Tiwary and K. N. Chaubey: Small projective modules, Indian J. pure appl. Math. 16(2) 133-138 February 1985.
- [2] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate texts in mathematics, Vol. 13, Springer-Verlag, New York/Heidelberg, 1974.
- [3] M. J. Canfell, Completion of diagram by automorphisms and Bass first stable range condition, Journal of algebra 176, 480-503 (1995).
- [4] M. J. Canfell, A note on right equivalence of module presentations, Austral. Math. Soc. (Series A) 52 (1992), 141-142.
- [5] P. C. Bharadwaj, R.Jaiswal: Small pseudo projective modules, International Journal Of Algebra, Vol. 3, 2009, No. 6, 259-264.
- [6] Ritu Jaiswal And P.C. Bharadwaj, Endomorphism Ring of Essentially Pseudo Injective Modules, communicated.

- [7] Ritu Jaiswal And P.C. Bharadwaj: On Pseudo-Projective And Essentially Pseudo Injective Module, communicated.
- [8] S. Wongwai, On the endomorphism ring of a semi-injective module, Acta Math Univ. Comeniance, Vol. LXXI, 1(2002), pp. 27-33.

Received: Received: August, 2009