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Abstract Modern large-scale grid computing systems for processing advanced
science and engineering applications rely on geographically distributed clus-
ters. In such highly distributed environments, estimating the available band-
width between clusters is a key issue for efficient task scheduling. We ana-
lyze the performance of two well known available bandwidth estimation tools,
pathload and abget, with the aim of using them in grid environments. Our ex-
periments consider the accuracy of the estimation, the convergence time, their
level of intrusion in the grid links, and the ability to handle multiple simulta-
neous estimations. Overall, pathload represents a good solution to estimate
available bandwidth in grid environments.
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1 Introduction

Modern large-scale grid computing systems for processing advanced science
and engineering applications rely on geographically distributed clusters [1],
demanding coordinated resource sharing for problem solving in heterogeneous
dynamic environments. Grid computing differs from conventional parallel com-
puting since the latter involves confined systems and uses local networks for
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data transfer, whereas the former is composed of geographically distributed
clusters interconnected via a wide area network with communication links be-
longing to different administrative domains and shared by a large number of
applications.

In parallel/distributed computing, applications are divided in logical exe-
cutable pieces called tasks. Grid scheduling involves the assignment of tasks
to hosts and the start of their execution is influenced by host characteristics
such as CPU and memory capacity as well as by network characteristics such
as bandwidth.

Since grid scheduling relies on the available bandwidth for data transfer
among distributed tasks, accurately estimating this value is a key issue for
efficient task scheduling. Moreover, the available bandwidth is highly dynamic
and thus needs to be frequently measured to support efficient grid schedules.
Given a certain time interval, measurements of the available bandwidth have
inherent uncertainties due to both its dynamic nature and the inaccuracy of the
adopted estimation tools [2]. These uncertainties justify the estimation of the
available bandwidth to be represented by intervals rather than by simple av-
erages. Considering the available bandwidth as a mean value and ignoring ex-
isting uncertainties can increase the makespan of grid applications by roughly
20% [3]. Such uncertainties also influence the efficient tuning of data transfer
control. For example, recent results indicate that the automatic adjustments
of GridFTP parameters are directly related to the available bandwidth and the
bandwidth-delay product between processing nodes [4].

Moreover, Silvester [5] showed that the execution of highly demanding grid
applications can induce a growth of five to eight times in the utilization of net-
work links. This increase can be highly significant for emerging applications,
such as the recent CERN’s LHC Computing Grid (LCG) which expects to dis-
tribute and process around 15 PB per year [6]. Furthermore, such an increase
brings significant fluctuations on the available bandwidth.

Several grid systems adopt self-adjustment procedures for the allocation of
resources in order to cope with fluctuation of resource availability [7] [8] [9] [10].
The adoption of these procedures are motivated by the fact that resources of
grids are not usually owned by their users, whom do not have exclusive right
of use of grid resources. In this approach, grid resources are monitored and if
a different allocation of distributed resources leads to lower makespan, tasks
are migrated to the new allocation scheme. Having accurate estimations of
the available bandwidth is, thus, of paramount importance to evaluate the
potential re-scheduling of the tasks of an application.

This paper investigates the adequacy of existing available bandwidth es-
timation tools for their adoption in the scheduling of grid tasks. To the best
of our knowledge, this is the first work to analyze available bandwidth tools
as a main point for efficient grid scheduling in the context of network-based
high performance computing. Criteria for comparing these tools are: accuracy
of estimation, convergence time, level of intrusion in grid links, and the ability
to handle simultaneously multiple estimations. Convergence time impacts the
makespan of applications and it should be relatively short compared to the



expected makespan of the application since the time to produce a task sched-
ule should be short [7]. The level of intrusion in grid links impacts resource
availability given that communication links are shared resources. Moreover, an-
alyzing the ability to perform simultaneous estimations is quite relevant since
in operational grids users and applications have asynchronous behaviour.

We consider the pathload [2] and the abget [11] tools for estimating the
available bandwidth since among the various estimation tools (e.g. see [11,12]),
only these tools provide intervals associated to their estimations. Other studies
that compare tools for estimating available bandwidth including pathload and
abget can be seen in [13,14]. Nevertheless, previous works focus on the accu-
racy of estimations and disregard all the other metrics analysed in this paper
which are of paramount importance for the efficient execution of applications
in large-scale grid environments. Overall, results indicate that pathload is the
preferred tool to be adopted in grid environments.

The remainder of the paper is organized as follows. Section 2 briefly
overviews bandwidth estimation procedures and introduces the pathload and
the abget tools. Section 3 describes the experiments performed as well as
discusses the results obtained. Section 4 draws some conclusions.

2 Tools for Available Bandwidth Estimation
in Grid Networks

Estimating the available bandwidth includes measuring different metrics [15]
such as link nominal capacity, bottleneck capacity along a path, end-to-end
available bandwidth along a path, and bulk transfer capacity (BTC) between
pairs of hosts. Figure 1 illustrates these metrics. Host 1 and Host 2 are in-
terconnected by a path composed of three links, depicted as rectangles, with
the gray part representing the used capacity and the white one the available
bandwidth. The nominal capacity of each link is C'1, C2, and C3 and the bot-
tleneck capacity of the path is C'1, thus, the end-to-end available bandwidth
is A3. BTC is the maximum throughput obtained by a TCP connection along
the network path. We cannot represent the BTC metric in Figure 1 because
it depends on the type of concurrent traffic found in the path links at the
moment measures are taken. In this paper, we focus on tools that estimate
end-to-end available bandwidth.

In [12], a list of available bandwidth estimators is provided. Among them,
iperf [16] is very popular among network administrators. iperf estimates
the available bandwidth along a path by saturating the path with data sent
between the two end points and measuring the amount of data sent. However,
iperf is too intrusive and estimations are given as mean values. The intrusion
issue can be ameliorate by employing TCP to send data between the end points
and to start collecting measures after TCP slow start phase [17]. Another
popular estimator is the DIChirp [18] which has access to the network card
of a host to exchange packets between the host and another peer host. If the
receiver detects a delay increase, the sending rate previous to the delay increase
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Fig. 1: Illustration of bandwidth metrics (based in a figure from [15]).

is considered to be the estimation of the available bandwidth. As the iperf,
DIChirp provides estimations as mean values.

The pathload and abget tools perform their estimations using the Self-
Loading Periodic Streams (SLoPS) technique. In this technique, several se-
quences of packets are transmitted between two end nodes using different rates,
for measuring the One-Way Delay (OWD)! of every packet sent at different
rates. If an increase of the OWD value is detected, it means that the corre-
sponding transmission rate is larger than the available bandwidth; otherwise,
the transmission rate is smaller than the available bandwidth. Information on
variations of the OWD value is exchanged between end nodes to estimate an
interval width that represents the end-to-end available bandwidth along the
path between the two end hosts. pathload and abget estimate the end-to-end
available bandwidth as follows:

2.1 pathload

To estimate the available bandwidth from host A to host B using pathload,
there is a need to execute a “sender” process at the host A and a “receiver”
process at the host B. Information concerning the variations of the OWD
value is exchanged between the end hosts via a TCP control connection. The
“sender” initiates the estimation process sending one sequence of UDP packets
at an initial rate Rgsqrt. As the packets arrive at the “receiver”, the OWD value
is computed. In case no increase of OWD value is observed, the “receiver”
notifies the “sender” to increase the packet sending rate. Several algorithms
for adjustment of the variations of the OWD value that are not caused by
sending rate values larger than the available bandwidth value are implemented
to avoid incorrect estimations. At the end of the estimation, pathload provides

I To measure OWD, the end nodes have to be synchronized. Possible solutions are the
use of NTP (Network Time Protocol) servers, the adoption of GPS cards at both ends, or a
software clock to enhance measurement accuracy without using GPS cards, such as the one
proposed in [19].



as output an interval [R™¥" R™%%] that corresponds to the range of available
bandwidth along the path between the host A and the host B.

2.2 abget

To estimate the available bandwidth from host A to host B, an abget client at
the host A should be directed to a TCP server (e.g. a web server) running either
at the host B or at a host located in the same network where the host B re-
sides. abget simulates the operation of TCP so that it controls the rate host A
delivers packets to the host B. The abget client ignores the standard oper-
ating system implementation of TCP and manipulates the ACKs sent by the
host B. TCP segments with length equal to 1 MSS are sent to the host B. Upon
receiving each segment, the host B sends one ACK to host A. If the host A
sends segments in intervals of duration 7' (Rate R = MSS/T), the abget
client induces the host B to send ACKs with a constant rate. Upon the arrival
of ACKs at the host A, the OWD value is measured and the rate at which
segments are generated is adjusted in order to find the interval [R™" R™%]
which corresponds to the range of available bandwidth along the path between
the two hosts. abget can employ two different types of search for the available
bandwidth value: a binary search and a linear search. The binary search dou-
bles the sending rate if it is lower than the available bandwidth and reduce it
to half of it in case it is greater than the available bandwidth. In the linear
search, the sending rate is increased/decreased by one unit of the sending rate.

2.3 Differences between pathload and abget

The pathload and abget differ in the way they implement the SLoPS tech-
nique. On the one hand, pathload requires processes to be executed at both
end hosts in order to allow the exchange of information about the OWD value
measured from source to destination. On the other hand, abget executes at
one end host but it requires a web server (HTTP) to be active either at the
other end host or in the local network this host is located. The control of the
transmission rate of the packets and the monitoring of the OWD in abget
are performed by the source itself using information related to the congestion
control algorithms of TCP.

If, on the one hand, the main advantage of abget is to provide estima-
tions by running a process only at one end host; on the other hand, it requires
administrative privilege to operate TCP differently than the standard imple-
mentation in the local operating system. Another drawback is the need to
inform manually several parameters to allow a relatively fast convergence to
the interval corresponding to the available bandwidth estimation. pathload
does not need these parameter values due to the employment of a TCP connec-
tion which allows the fine tuning of SLoPS in running time. However, besides
involving both end hosts, pathload uses UDP to estimate the available band-
width, which can be ineffective since UDP packets are commonly blocked in



firewalls due to security reasons. In contrast, abget does not face this problem
because most domains already allow the delivery of packets to HT'TP servers.

3 Performance Analysis

Two different scenarios were employed to evaluate the performance of the
pathload and the abget tools. The first scenario involves links of small nom-
inal capacities (10Mbps) and the second scenario links with large nominal
capacities (1Gbps). It is important to analyze these tools in both scenarios
due to the heterogeneity of the link capacities interconnecting clusters in a
typical grid.

3.1 First scenario: small nominal link capacities

The first scenario, illustrated in Figure 2, was emulated using the NCTUns
emulator [20] which allows the integration of simulated network topologies with
real hosts running actual applications without requiring any modification of
these applications. Estimations of the available bandwidth in this first scenario
are performed from the hosts cronos and eolo to the host mnemosyne. All these
hosts are real hosts located in the same local Gigabit Ethernet network. NCTUns
was executed in the host named urano, located in the same local network.
In order to evaluate the tools under different network conditions, two virtual
hosts were used in NCTUns to generate interfering traffic between the real hosts.
Table 1 summarizes the configuration of the hosts involved in the experiments.
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Fig. 2: Experimental setup with NCTUns.

For each tool, three metrics were evaluated in the experiments: accuracy,
execution time, and level of intrusion. The first scenario involved CBR UDP
traffic sent at 2, 4, 6, 8, and 10Mbps rates, TCP traffic, and no interfering
traffic. The nominal capacity of the links were fixed in 10Mbps during mea-
surements. Two sets of measures where collected. Measures in the first set



Table 1: Characteristics of the hosts used in the experiments.

Host Processor/Memory Operating System
(Linux)

eolo Intel Core 2 Quad 2.66GHz / 4GB | Debian kernel 2.6.23.1

Cronos Intel Core 2 Quad 2.40GHz / 4GB | Debian kernel 2.6.23.1

mnemosyne | Dual Xeon 2GHz / 4GB Debian kernel 2.6.23.1

urano Intel Core 2 Duo 2.13GHz / 4GB | Fedora kernel 2.6.25.9

were collected between the hosts cronos and mnemosyne. Measures in the sec-
ond set were collected simultaneously between the host cronos and the host
mnemosyne, and between the host eolo and the host mnemosyne. Only the
most relevant results are presented and discussed in the paper. In all experi-
ments, binary search was used since the linear one can take three time longer
to produce the desired value.

A relevant setting in the experiments was the disabling of Interrupt Coa-
lescence (IC) in the network cards. IC is a feature of some network cards to
decrease the amount of interruptions generated by the operating system when
packets are either received or sent. When IC is enabled, interrupts are gen-
erated only after the existence of a certain amount of packets or at periodic
intervals. As shown in [21], the precision of estimations of the available band-
width are compromised when IC is enabled due to the extra delay the adoption
of the IC feature incurs. In this way, we disabled IC in all experiments.

Figure 3 and Figure 4 present the results obtained for the first set of mea-
sures. Figures 3(a) and 3(b) present results provided by pathload and abget,
respectively, as a function of the interfering traffic. In these figures, the curve
named “Available Bandwidth” shows the actual available bandwidth between
the hosts. The gray areas named “pathload estimation” and “abget estima-
tion” show the intervals that have been provided by these tools. For each
configuration of interfering traffic, the estimation tools were executed twice.
Results evince that pathload estimations were closer to the actual values when
there was interfering traffic. Besides that, abget estimations did not follow the
bandwidth availability along the path between the cronos and the mnemosyne
hosts. With interfering traffic less or equal to 4Mbps, abget estimated that
the path was almost 100% available, whereas with interfering traffic greater
or equal to 6Mbps estimations indicated that the link was almost unavail-
able. The estimation intervals from abget were on average larger under TCP
interfering traffic than when they were under other interfering traffic.

The execution time of the estimation tools is shown in Figure 4(a). Since
abget does not demand an initial value of the transmission rate close to the
nominal capacity, it requires the transfer of the same quantity of data at
the beginning of the estimation regardless the availability of the links. As a
consequence, as the links become more utilized, the execution time tends to
increase, as can be observed in the “abget” curve. Nevertheless, when the
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Fig. 3: Estimations provided by pathload and abget (first scenario).

interfering traffic is small (< 8Mbps), abget converges to results faster than
does pathload. The low execution time of abget in one of the executions
carried out with TCP interfering traffic was due to the fact that the tool was

not, able to connect to the web server at the host mnemosyne under heavy
load.
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Fig. 4: Performance of the estimation tools in the first scenario.

The levels of intrusion expressed as the volume of injected bytes by each
tool during its execution are shown in Figure 4(b). We observe that abget is
more stable than pathload. The pathload tool tends to reduce its generated
traffic as the links get less available. This happens because the transmission
rate of pathload, at each iteration of the algorithm, is not guided by the binary
search implemented in abget. In this way, after some iterations, pathload can
reduce its transmission rate and inject less traffic than abget.

Some of the results obtained in the second set of measures are shown in
Figures 5 and 6. Results for the levels of intrusion of the tools were quite similar
to those obtained with just one instance of the estimation tools in execution,
so they have been omitted here for the sake of clarity. We make a remark that



in order to allow the simultaneous execution of pathload, its source code was
modified because the ports used by the program are statically defined in the
original code.

Figures 5(a) and 5(b) show the results when pathload and abget estimated
the available bandwidth between the host eolo and the host mnemosyne. Re-
sults considering the hosts cronos and mnemosyne were quite similar and they
will not be shown. Again, pathload provided more accurate estimations than
abget. The main difference between these results and those obtained in the
first set of measures (see Figure 3) is the width of intervals given by pathload
in the second set. UDP traffic sent at fixed rate decreases the bandwidth avail-
ability and, as a consequence, intervals given by pathload decrease.
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Fig. 5: Simultaneous executions in the first scenario — eolo case.

The execution time values provide the main difference between the exper-
iments with two simultaneous executions and the experiments with a single
execution. Figure 6 shows the execution time for samples collected between the
host eolo and the host mnemosyne (similar results were observed between the
host cronos and the host mnemosyne). Comparing the execution time when
a single estimation was involved (Figure 4(a)), an increase in execution time
of the abget tool can be observed. The simultaneous executions increased the
execution time starting at 4Mbps (UDP) while such increase started only at
8Mbps (UDP) when only one execution was involved.

In general, in the first scenario, pathload provided better estimations than
abget, although abget executed faster and was less intrusive. Both tools ex-
ecuted relatively fast (< 2m20s) and with a relatively low level of intrusion
(< 6MB) considering the expected amount of data transfer done by grid ap-
plications.

3.2 Second scenario: large nominal link capacities

In the second scenario, the tools were evaluated (without using NCTUns) in a
local network with links of 1Gbps interconnecting the hosts. The iperf [16]



10

140 [ abget (e0l0) —@—
athload (eolo) --4--

120

100 -

Runtime (s)

No  2(UDP) 4(UDP) 6(UDP) 8(UDP) 10(UDP) TCP
traffic Interfering Traffic (Mbps)

Fig. 6: Execution time of tools (simultaneous execution — eolo case).

tool was employed to generate interfering traffic. Virtual hosts and routers
were created in the urano machine (see Figure 2) using virtual network inter-
faces. Estimations were performed using the same hosts of the first scenario.
Although links have nominal capacity of 1Gbps, the observed actual capac-
ity was 525Mbps, so this value was considered as the reference value to the
maximum available capacity. The same metrics and steps of the first scenario
were considered in this second scenario. The difference is in the rates of UDP
interfering traffic: 105, 210, 315, 420, and 525Mbps.

Figure 7 shows the observed accuracy of the tools when estimations were
performed only between the hosts cronos and mnemosyne. Estimations pro-
vided by pathload (Figure 7(a)) were more accurate than those given by abget
(Figure 7(b)). In contrast with the first scenario, pathload estimations clearly
track the available bandwidth value. Similarly to the first scenario, pathload
provided more accurate estimations under higher levels of interfering traffic.
Besides that, abget presented a different behaviour when compared with that
observed in the first scenario. Although the grid links had larger nominal ca-
pacity, abget estimated that links were almost 100% occupied regardless of
the intensity of interfering traffic. Although parameter tuning in abget was
carried out, no better result was achieved. Actually, the need to set a high
number of parameters in abget is a major shortcoming, specially when under
highly dynamic environments such as grid networks.

The execution times of abget were on average much higher than those
of pathload, as shown in Figure 8(a). The pathload tool took longer peri-
ods to execute than abget did under the influence of TCP interfering traffic.
pathload migrates to the next sending rate when it detects instability of the
delay values of the first packets sent at a certain rate, while abget always
sends the same number of packets at all rates. As a consequence, abget took
a much longer time due to the larger number of rates to cover in the second
scenario.

Figure 8(b) shows that pathload injected more traffic than abget. More-
over, the variability of bytes sent by abget was lower than that of pathload.
Comparing these results with those given in Figure 4(b), it can be observed
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Fig. 7: Estimations provided by pathload and abget (second scenario).
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that the level of intrusion increased with the increase of the link capacity and
that the level of intrusion had a larger variability when interfering traffic was
composed of UDP traffic. However, when TCP interfering traffic was used,
both estimation tools produced more stable results.

Figures 9 to 11 show the results when two simultaneous estimations were
pursued. Intervals produced by abget were wider (Figure 9) and the pathload
tool produced estimations that diverged from the real availability when links
were congested. The enlargement of the intervals provided by pathload also
happened when no interfering traffic existed.

Another point to highlight is the significant increase in the execution time
of abget in congested network. The execution time of abget increased by
one order of magnitude when UDP interfering traffic grew from 420Mbps to
525Mbps (Figure 10).

It is important to point out the behaviour of pathload in the second set of
measures, specially when the transmission rate of the UDP interfering traffic
was 105Mbps (Figure 11). In one of the executions, this tool generated about
300MB of data, a volume far from being negligible. Such behaviour evinces
that available bandwidth estimation tools can be highly intrusive, which moti-
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vates the implementation of preventive procedures to avoid overhead. A simple
solution would be either to request the users a maximum value for the exe-
cution time or to quantify the maximum allowed value for the injected bytes.
Although external criteria for stop the execution of the estimators may result
in less precise estimations, the overall outcome can be preferable if all the
involved metrics are jointly considered.

In summary, for the second scenario, pathload provided good results even
in an environment with high capacity links. The execution time of pathload
was lower than that of abget, although abget was less intrusive on the aver-
age. Schedulers using abget to estimate available bandwidth in this type of
scenario would provide schedules that would lead to underutilization of net-
work links due to the underestimation of the available bandwidth. Moreover,
the pathload tool has the potential to flood the network with traffic that may
directly impact other applications in execution.
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4 Conclusion

Resource availability in grids is not only a function of its heterogeneous and
decentralized nature but also of the variable level of concurrency found in grid
networks. Having a network-based high performance computing environment
only renders this scenario more challenging. Estimating the available band-
width in network links thus plays a key role for scheduling and rescheduling of
tasks, specially to highly demanding e-Science applications which are strongly
dependent on the transfer of large amount of data.

This paper evaluated the performance of two tools for the estimation of the
available bandwidth in network scenarios. Our performance analysis has been
driven by the potential integration of these tools into grid systems for helping
the decision making process of (re)scheduling the tasks of applications. Several
metrics were considered such as estimation accuracy, execution time, level of
intrusion, and effectiveness when concurrent estimations were performed.

Overall, pathload is the preferable tool for estimating available bandwidth
in grid networks. Nevertheless, users and administrators of grid environments
should consider the potential impact the estimations can have in other flows
during measurements. Furthermore, pathload has to be executed in both end
hosts, a negative characteristic that might motivate modifications in abget to
improve its accuracy. The code of pathload must also be changed so that the
adopted ports can be dynamically defined, allowing the simultaneous use by
several pairs of end hosts in large-scale distributed grid environments.
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