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Flow shop scheduling problem is a typical NP-hard problem, and the researchers have established many different multi-objective
models for this problem, but none of these models have taken the inventory capacity into account. In this paper, an inventory based
bi-objective flow shop scheduling model was proposed, in which both the total completion time and the inventory capacity were as
objectives to be optimized simultaneously. To solve the proposed model more effectively, we used a tailor-made crossover operator,
and mutation operator, and designed a new local search operator, which can improve the local search ability of GA greatly. Based
on all these, a hybrid genetic algorithm was proposed. The computer simulations were made on a set of benchmark problems, and

the results indicated the effectiveness of the proposed algorithm.

1. Introduction

Scheduling is a major issue faced everyday in manufactur-
ing systems and industrial settings, so it is significant to
develop effective and eflicient advanced manufacturing and
scheduling technologies and approaches. The first research
on the flow shop scheduling problem (FSSP) was completed
by Johnson [1]. Johnson developed an exact algorithm to
minimize makespan for the n-jobs and 2-machines FSSP.
With the increase in the number of jobs and machines, FSSP
becomes a strong NP-complete combinatorial optimization
problem [2]. Most researches for single objective FSSPs result
in a schedule to minimize the time required to complete all
jobs, that is, to minimize the makespan. Historically, FSSP
has been primarily treated by exact methods [3], such as
linear programming, branch and bound, and Lagrangian
relaxation. Recently, meta-heuristics have gained a wide
attention [4], including the topics such as genetic algorithms
(GAs), simulated annealing (SA), ant colony optimization
(ACOQ), particle swarm optimization (PSO), tabu search (TS),
and differential evolution (DE).

However, in many real world situations, several objec-
tives must be considered. The purely single objective FSSP
cannot totally reflect the needs of the modern practical
applications, that is to say, multiple objectives must be
optimized simultaneously. It is important to find out the
trade-off solutions among these objectives, particularly in
conflicting situations. So far, few researchers have attempted
to tackle the multi-objective FSSPs (MOFSSPs). The most
commonly used method in the current study of MOFSSPs
is constant weight weighting method. It assigns constant
weights to objectives according to the importance of each
objective. By this way, an MOFSSP is transformed into
a single objective FSSP through a linear combination of
objectives and weights. The following works are examples of
the representative works of this approach: Ravindran et al.
[5] proposed some multi-criterion approaches to FSSP by
considering makespan time and total flow time. Eren and
Giiner [6] considered a bicriteria scheduling problem with
sequence-dependent setup times on a single machine. The
objective function of the problem is the minimization of the
weighted sum of total completion time and total tardiness.



Lemesre et al. [7] proposed a parallel exact method to solve
bi-objective permutation flow shop problem. Tseng and Liao
[8] considered an n-job, m-machine lot-streaming problem in
a flow shop with equal-size sublots where the objective is to
minimize the total weighted sum of earliness and tardiness.
Naderi et al. [9] applied a novel simulated annealing to
hybrid FSSP to minimize both total completion time and total
tardiness. The major disadvantage of this transformation is
that the weight of each objective must be given subjectively
in advance. It results in great gaps between the real and
expected solutions if the decision maker is not experienced
enough. An alternative method used to solve the MOFSSP
does not specify the weights in advance. It provides various
solutions to the decision makers for reference. These solutions
are called Pareto optimal solutions. The number of Pareto
optimal solutions is often not sole, and decision makers can
select one of the solutions to meet their demands. It is a more
flexible way than the constant weight weighting method. The
representative works of this approach include the following:
Qian et al. [10] proposed an effective differential evolution
based hybrid algorithm for MOFSSP. Pasupathy et al. [11]
proposed a multi-objective genetic algorithm named Pareto
GA with an archive of nondominated solutions subjected to
alocal search. Melab et al. [12] proposed a grid-based parallel
GA with the aim of obtaining an accurate Pareto front. They
focused on FSSP with the minimization of the makespan
and the total tardiness criteria. Tavakkoli-Moghaddam et al.
[13] investigated a novel multi-objective model for a no-
wait FSSP that minimizes both the weighted mean com-
pletion time and weighted mean tardiness. Li and Wang
[14] solved the MOFSSP using a hybrid quantum-inspired
GA. Chang et al. [15] presented a mining gene structures
on subpopulation genetic algorithm which is combined with
mining gene structure approach and subpopulation genetic
algorithm. Dugardin et al. [16] focused on the multi-objective
resolution of a reentrant hybrid FSSP. The two objectives are
the maximization of the utilization rate of the bottleneck and
the minimization of the maximum completion time. Karimi
et al. [17] presented a multiphase approach to tackle hybrid
flexible FSSP considering the minimization of makespan
and total weighted tardiness simultaneously. Geiger [18]
described the proposition and application of a local search
metaheuristic for MOFSSP. Chiang et al. [19] considered the
makespan and the total flow time as objectives and proposed
a memetic algorithm to solve the FSSP. Dubois-Lacoste et al.
[20] presented a new, carefully designed algorithm for five
bi-objective permutation FSSPs that arise from the pair
wise combinations of the objectives: makespan, the sum of
the completion times of the jobs, and the weighted and
nonweighted total tardiness of all jobs. Cho et al. [21] dealt
with a scheduling problem for reentrant hybrid flow shop
with serial stages where each stage consists of identical
parallel machines.

The previous literature shows that the researchers have
established many different multi-objective models for FSSP
by considering different factors, but none of these models
have taken the inventory capacity into account. The com-
pletion time, tardiness, flow time, lateness, earliness, and
the number of tardy jobs are often used as the objectives
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in MOESSP. Therefore, we considered both the inventory
capacity and the completion situation of the jobs, established
an inventory based MOFSSP model in this paper. To solve
the proposed MOFSSP model more effectively, we used
some tailor-made genetic operators and designed a new
local search operator. Based on these genetic operators, we
proposed a hybrid genetic algorithm (HGA). Finally, the
efficiency of the proposed algorithm was verified by computer
simulations on some typical FSSPs.

The remainder of the paper is organized as follows. In
Section 2, we introduce the concepts of multi-objective prob-
lems. Then, we describe MOFSSP and its model in Section 3.
In Section 4, a hybrid genetic algorithm to the MOFSSP is
presented. Section 5 presents the experimental results. The
conclusions are made in Section 6.

2. Multi-Objective Optimization and
Pareto Optimality

Usually, a k objective multi-objective optimization problem
can be described as follows [22]:

minimize y = f(X) = [f1 (X))fz(X)w'-)fk(X)L
i=12,...D,

)
subject to  g; (X) >0

where X = (x,,%,...,x,)" is the decision vector, X €
©® C R", O is the search space. Y is the objective space, and
y €Y is the objective vector. g;, i = 1,2,... D is a constraint
function.

The following concepts are often used in multi-objective
optimization problems.

Definition 1. Let a decision vector X, € ©.

(1) X, is said to dominate a decision vector X, € O(X; <
X,) ifand only if f;(X,) < fi(X,)i=1,2,...,k, and
i e{1,2,...,k} satisfying f;(X,) < f;(X,).

(2) X, is said to be Pareto optimal if and only if -3X, €
O satisfying X, < X.

(3) g = {X, € ® | =3X, € O satisfying X, < X} is
said to be Pareto optimal set of all Pareto optimal
decision vectors.

) Pp = {f(X) = (f1(X), /L(X),..., fi(X)) | X € P}is
said to be Pareto optimal front of all objective func-
tion values corresponding to the decision vectors in
Ps.

(5) X, is said to be non-dominated regarding a given set
if X, is not dominated by any decision vectors in the
set.

Pareto optimal decision vector cannot be improved in any
objectives without causing degradation in at least one other
objective. When a decision vector is non-dominated on the
whole search space, it is Pareto optimal.
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3. Problem Definition and
Mathematical Modeling

In classical FSSP [23], we have a set of n jobs and a set of
m machines. Each job consists of m operations that have to
be processed in a specified sequence. All jobs visit machines
in the same processing route, starting from machine 1 until
finishing on machine m. The operation of job i on machine j
lasts for a fixed and predetermined amount of time, denoted
by t; ;. Other assumptions commonly characterized for FSSP
are as follows.

(i) Each machine can only process one operation at a
time, and each job can be processed by one machine
at a time.

(ii) A job can visit a machine once and only once, and
preemption of operations is not allowed.

(iii) There are no precedence constraints among the oper-
ations of different jobs.

(iv) Neither release times nor due dates are specified, and
setup times are included in processing times.

(v) There is no machine failure; therefore, machines are
always available.

The objective of FSSP is to find the optimal schedule,
that is, the schedule of the operation sequences and starting
time on each machine so that one or more given criteria are
optimized.

In the most of previous MOFSSPs, the completion time,
flow time, lateness, earliness, tardiness, and the number of
tardy jobs are often used as the optimization criteria. These
objectives are established based on the completion situation
of the jobs and are almost not taking the inventory capacity
into account. As we all know, the completion situation of each
job is the most concerned problem in FSSP, but the inventory
capacity is also an important issue which should not be
ignored. Especially for those factories with high inventory
costs but very low transportation costs, if the volume (or size)
of each operation is large, then we need a very large depot to
put all the operations, and this will increase inventory cost.
In order to reduce the inventory cost, we can try to use as
little space of depot as possible by delivering the operations
required in batches to the depot and transported them
away after process. Of course, the operations are different
for different schedules at a fixed time, and what we need
to do is finding a reasonable scheduling scheme with the
inventory capacity needed as small as possible. Thus, we can
construct an inventory based MOFSSP model to minimize
the makespan and the inventory capacity simultaneously.

Given a feasible schedule, we can know the operation
sequences and the completion time on each machine. We
introduce several notations at first:

(i) »: the total number of jobs to be scheduled;
(ii) m: the total number of machines in the process;
(iii) #; ;: the processing time for job i on machine j;

(iv) C; ;: the completion time for job i on machine j;

(V) S = (s, j)mxn: the processing sequence matrix of all
jobs, where (s; ;) means the jth processed job number
on machine i.

(vi) Wj;: the volume of the operation for job i on machine

j.
We use C,,, = C; , to represent the maximum make-
" n m
span and Sy, = MaXocpec, Yoy 2ot (Nijp X W) to repre-

sent the maximum inventory capacity needed, where

y _{1’ Cj—t;=p
ijp — —
0, Cj—t;#p, )

i=1,2,...,n j=12,....,m, p=0,1,...C

ax*

Then, a two objective optimization model for FSSP can be
formulated as follows:

minimize f (X) = [CmaX’Smax] >

subject to  C; | =1f;
CSU’1 = CSLH,1 +ioon =20
c c , 3)
s = Cspjm1 + tsj,l,j’ j=2,....m

Csj,i’j = max {Csj,i—l)j’ Csj,i’j_l} + tsj,i’j)

i=2,...,mj=2,...,m,

where (3) is to minimize a vector of objective functions, in
which X is a feasible schedule.

4. A Hybrid Genetic Algorithm for MOFSSP

Genetic algorithms were proposed by Holland [24] and
have been successfully used in a variety of combinatorial
optimization problems. In general, GA works by keeping a
fixed number of candidate individuals (population). Each
corresponds to a solution of the problem. To describe or for-
mulate a solution, an appropriate representation of individual
must be defined, which encodes a set of genes and joins them
together to form a string of values. In each generation of GA, a
fitness function is required to evaluate the fitness value of each
individual. Then, a scheme which favors fitter individuals
is used to randomly select parents from the population
to form the mating pool. Next, crossover and mutation
operators are used to generate better offspring. Furthermore,
the offspring are inserted into the current population to form
new population for next generation. The process is iterated
until a specified stopping criterion is reached.

Our proposed hybrid genetic algorithm adopts the gen-
eral structure described earlier. We will explain the details of
our implementation of the genetic algorithm for the MOFSSP
in the following.

4.1. Encoding and Decoding. Defining an appropriate encod-
ing scheme is one of the most important and critical issues
for constructing an efficient GA. The following encoding



scheme proposed by [25] is adopted in this paper: a chro-
mosome is composed of m substrings, corresponding to m
different machines. Each substring represents the sequence
of the operations processed on each machine, denoted by a
permutation of integers from 1 to n. The total length of a
chromosome is n x m. Consider a 4-job and 3-machine FSSP
as an example. Suppose a chromosome is: [(2143) (3412) (2
13 4)], then the substrings (214 3), (3412), (213 4) represent,
respectively, the sequences of the operations processed on
machine 1, 2, and 3.

4.2. Fitness Function and Selection Operation. The fitness
function is defined as follows in this study.

Suppose the current population set is P(f). Each individ-
ual X; € P(t) is compared with all other individuals in P(t)
first and then we get a set C(X;) = {Xj | X; e P(t)(Xj > X))
Let f(X;) = |C(X;)|, where f(X;) is the fitness value of
individual X; € P(t), and |C(X;)| represents the number of
the individuals in C(X;).

Suppose N is the population size and f(X;) means the
fitness value of individual X; € P(t), then the selection

probability of X; is defined by p(X;) = f(X,)/ Yry f(Xp).

4.3. The Crossover Operator. Information is swapped among
the chromosomes presenting in the mating pool to create new
chromosomes in crossover operator. A crossover operator
proposed by [26] is adopted in this paper. Suppose that x,
y are two parent individuals, the crossover operator can be
described as follows.

Algorithm 2 (crossover operator).

Step 1. Divide the machines 1, 2,...,m into two complemen-
tary sets A and B.

Step 2. For two parent individuals x and y exchange the genes
in the substrings that belong to set A with probability of p,
and get two children x’ and y'.

Exchanging the genes in the substrings that belong to set
A is equivalent to exchanging the sequences of the operations
processed on machines which belong to set A. In this way,
the children can effectively inherit the sequences of the
operations processed on machines.

From the proposed crossover operator, we can see that
this operator is easy to implement, and the children can
inherit the sequences of the operations processed on some
machines of their parents.

4.4. The Mutation Operator. The mutation operator avoids
convergence to local optima solution and diversifies the
search directions.

We use a mutation operator designed in [27]. It can
be described as follows. Given chromosome x, mutation
generates y by the following procedure:

Algorithm 3 (a mutation operator based on the critical path).

Step 1. Calculate the critical path of individual x.
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Step 2. Swapping two successive operations v and w pro-
cessed on the same machine with probability p,,,, where v and
w are two successive operations on a critical path of parent 1.
Then, we can get the offspring, denoted by y.

As can be seen from [28], for any feasible solution x, it is
possible to construct a finite sequence of mutation operations,
which will lead x to a globally minimal solution. Thus, the
mutation operator used in this paper improved the possibility
of production of the excellent individuals and ensured the
convergence of the algorithm.

4.5. A New Local Search Operator. To improve the conver-
gence speed of the algorithm, a new local search operator is
designed in this paper. For individual x, suppose x' is the
final offspring through our local search operator, and k is the
number of the new solutions to be generated by our local
search operator.

Algorithm 4 (a new local search operator).

Step 1. Leti = 1, N, = ¢ (¢ represents an empty set).
Step 2. If i < x, go to Step 3, else, go to Step 5.

Step 3. Randomly select a substring of x, randomly generate
a sequence of the selected substring and get a new solution
Nl'.
Step 4. Put solution Njinto set N,, i = i + 1, and then turn to
Step 2.

Step 5. Choose the best individual from N, as offspring x'.

4.6. The Framework of the HGA. We proposed a hybrid
genetic algorithm (briefly HGA) to solve the MOFSSP based
on aforementioned genetic operators. The framework of the
HGA can be described as follows.

Algorithm 5 (HGA).

Step 1. Generate initial population P(0), and let t = 0.
Calculate the fitness value of each individual in P(0).

Step 2. Randomly select two individuals from P(f) and
use Algorithm 2 to get two offsprings. Repeat the above
procedure N/2 times and get N offspring, denoted the set of
these offspring by P'(t).

Step 3. For each individuals in P'(t), use Algorithm 3 to get a
set of offspring, denoted by P" (t).

Step 4. Calculate the fitness value of each individual in P"(t).

Step 5. For each individual in P"(t), use Algorithm 4 with
probability p, and get a set of offspring, denoted by P'"'(t).
Step 6. Select N individuals from P" () to get a tentative

population, still denoted as P""'(¢), then use the elitist strategy
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to the union of P"'(¢) and P(¢) to get the next generation

population P(f + 1).

Step 7. I the stop criterion is satisfied, then stop. Otherwise,
lett =t + 1, and turn to Step 2.

5. Simulation Results

5.1. Algorithm Description and Test Problems. We selected
several benchmarks with different scales to test the perfor-
mances of HGA in this Section. Benchmarks Rec0l-Rec41
are selected from [29]. The proposed HGA was compared
with a non-dominated sorting multi-objective evolutionary
algorithm, called NSGA-II reported in [30], which is recently
used by many researchers to illustrate the superiority of their
algorithms.

5.2. Measures for Comparing Nondominated Sets. Multiple
and uniformly distributed solutions are required to form
a Pareto front in multi-objective problems. It is not easy
to compare the non-dominated solution sets between two
algorithms. The following three comparison metrics are
considered in this paper [31]. Suppose algorithm j, j = 1,2
obtains a non-dominated solution set S;. The union of two
non-dominated solution sets (i.e., S = §; U S,) is denoted by
S.

(1) The number of the obtained non-dominated solutions
can be defined as

NDSN (S;) =|S; - {xeS;[qyeS:y<x}|. (4

The larger the value NDSN(S ;) 1s, the better the solution set
S. is.
j
(2) The distance of the obtained non-dominated front to
Pareto front (if known) can be defined as

1S;1 *
_ Zi:]1 D(xi’x )

s )

NDSAD ($;) |
i

NDSAD(S;) denotes the average distance from each solution
x; (x; €S j) to an ideal solution x*, where D(x;, x™) is the
distance between x; and an ideal solution x*in the objective
space,

D (xx") = V(i (x) = L )+ (f (x) - fo <x*>>2(. |
6

Since x"is unknown, D(x;, x*) cannot be directly measured.
We use an approximated value f;(x*) = min,; f;(x;) and
f(x") = min; f(x;) to replace f; (x*) and f,(x"). Obviously,
the smaller the value NDSAD(S j) is, the better the solution
set §; is.

(3) The spread and distribution of the obtained non-
dominated solutions can be defined as

() - J X1 (d-d)

(n-1) (7)
d; = min (|£ () - £ 0| +]£200 - £ 0)),

where j = 1,2,...nand i # j. d are the mean value of all d,,
and 7 is the number of solutions in set S ;.

5.3. Test Results and Discussions. The algorithms are imple-
mented in Visual C++ on a computer with a 3.20 GHz Pen-
tium(R) Dual-Core CPU. The parameters used in simulations
are as follows: for both the NSGA-IT and HGA, the population
size N = 100, the crossover probability p. = 0.7, and the
mutation probability p,, = 0.1. For HGA, the local search
probability p; = 0.5 and o = 10. For all benchmarks, suppose
the volume of operation Oy is W, = i, where O;; represents
job i when processed on machine j, i = 1,2,...n, j =
1,2,...m. The algorithms were run 10 independent runs on
each benchmark. The proposed HGA is applied to a number
of benchmarks, and its performance is compared with NSGA-
1L

Table 1lists the values of metrics NDSN(S ) NDSAD(S j),
and SM(S;) obtained by HGA and NSGA-II, respectively.
From the values of NDSN(Sj), we can know that the set
of the non-dominated solutions obtained by NSGA-II are
dominated by that obtained by HGA for all test problems. It
indicates that HGA tends to find non-dominated solutions
with higher quality than NSGA-II. From the values of
NDSAD(S]-), we can know that the values of NDSAD(Sj)
obtained by HGA are smaller than those of NSGA-II for all
the test problems. It shows that the distance between the
Pareto front and the non-dominated solutions obtained by
HGA is smaller than those by NSGA-II. From Table 1 we
also can know that the values of SM(S j) obtained by HGA
are smaller than those of NSGA-II for all the test problems.
It shows that uniformity of the distribution of the non-
dominated solutions obtained by HGA is better than that of
NSGA-II.

By the above comparison, we can know that both the
quality and the distribution of non-dominated solutions
obtained by our algorithm are better than those by NSGA-II.
This shows that the genetic operator designed in this paper is
effective, and HGA performs better than NSGA-I1.

6. Conclusions

We considered both the completion time of the jobs and the
inventory capacity as objectives and constructed an inventory
based MOFSSP model in this paper. To solve the proposed
model, a local search operator was designed in order to
improve the quality of the solutions. Based on these, a hybrid
genetic algorithm was proposed. The experimental results
show that the proposed algorithm is effective and performs
better than the compared algorithm.
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TaBLE 1: Comparisons of metrics NDSN(SJ-), NDSAD(SJ-), and SM (Sj).
Problem Size fi(x") f(x%) NDSN ($)) NDSAD (S;) SM (Sj)
NSGA-II HGA NSGA-II HGA NSGA-II HGA
Rec01 20 x5 1245 20 0 1 69.5866 23.6526 15.0548 6.3485
Rec03 20 x5 1093 20 0 16 89.6586 34.2652 9.1562 4.2596
Rec05 20 x5 1228 20 1 1 54.5394 21.0078 9.1548 3.0051
Rec07 20 x 10 1545 20 1 58.3495 19.3526 8.2549 2.5486
Rec09 20 x 10 1530 20 0 102.6843 18.8546 13.2385 4.5786
Recll 20 x 10 1402 20 0 12 148.6842 34.5263 8.2548 4.4532
Recl3 20 x 15 1930 20 0 9 125.6841 32.1532 71548 2.1354
Recl5 20 x 15 1950 20 0 8 57.2593 33.3562 14.2596 6.5489
Recl7 20 x 15 1902 20 1 13 45.2985 28.1354 22.4519 8.4865
Recl9 30 x 10 2093 30 1 13 85.4872 48.9564 14.1258 4.9515
Rec21 30 x 10 2017 30 0 15 111.1531 58.1465 13.6529 2.4631
Rec23 30 x 10 2008 30 0 14 123.6521 62.5852 9.4582 3.5647
Rec25 30 x15 2513 30 0 1 98.3643 45.6287 7.5628 2.5864
Rec27 30 x15 2373 30 0 12 96.3325 371524 19.1548 7.6531
Rec29 30 x 15 2287 30 1 8 86.1452 32.1654 18.6543 8.6525
Rec3l 50 x 10 3045 50 1 12 106.5842 57.1491 22.6532 4.9846
Rec33 50 x 10 3093 50 0 15 88.6452 36.5843 24.1592 12.0356
Rec35 50 x 10 3262 50 0 17 94.6321 49.0150 18.6345 9.4521
Rec37 75 % 20 4951 75 2 9 84.2564 38.1572 9.5482 3.5986
Rec39 75 % 20 5087 75 0 12 134.5263 64.8132 26.3468 11.0248
Rec41 75 % 20 4960 75 0 8 128.4524 78.3154 33.2158 14.9854
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