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In this work, we explore the transition of absolute instability and convective instability in a compressible inviscid shear layer, through
a linear spatial-temporal instability analysis. From linearized governing equations of the shear layer and the ideal-gas equation
of state, the dispersion relation for the pressure perturbation was obtained. The eigenvalue problem for the evolution of two-
dimensional perturbation was solved by means of shooting method.The zero group velocity is obtained by a saddle point method.
The absolute/convective instability characteristics of the flow are determined by the temporal growth rate at the saddle point. The
absolute/convective nature of the flow instability has strong dependence on the values of the temperature ratio, the velocity ratio,
the oblique angle, and𝑀 number. A parametric study indicates that, for a great value of velocity ratio, the inviscid shear layer can
transit to absolute instability. The increase of temperature ratio decreases the absolute growth rate when the temperature ratio is
large; the effect of temperature ratio is opposite when the temperature ratio is relatively small. The obliquity of the perturbations
would cause the increase of the absolute growth rate.The effect of𝑀 number is different when the oblique angle is great and small.
Besides, the absolute instability boundary is found in the velocity ratio, temperature ratio, and𝑀 number space.

1. Introduction

A high mixing rate of the fuel and air is desired in scramjet
engine for the propulsion of hypersonic aircraft, because the
residence time of the fuel and air in the combustion chamber
is very short. In the interest of the projected use of the scram-
jet engine, it is fundamental and also extremely important
to understand the stability characteristics of compressible
shear/mixing layers. Many experimental studies [1–3] sug-
gested that the mixing rates of shear layers decrease as the
Mach number increases from zero. Hence, a major concern
in the development of scramjet is the mixing enhancement
techniques. Imparting disturbances on the shear layer, which
pulsate at some prescribed frequency, is a choice of mixing
enhancement techniques. The prescribed frequency can be
obtained through linear stability analysis of the compressible
shear layer.

There have been numerous literatures on the topic of lin-
ear stability analysis of the compressible shear layer, including
the earlier studies conducted by Lessen et al. [4, 5] Drazin
and Davey [6] performed a temporal stability analysis of a
compressible mixing layer, which has a hyperbolic tangent

velocity profile and uniform temperature throughout the
layer. Jackson andGrosch [7] reported the results of the invis-
cid spatial stability of a parallel compressible mixing layer.
All these studies found multiple stability modes. Zhuang et
al. [8] and Ragab [9] both found a strong stabilization effect
on the flow when increasing Mach number. Ho and Huerre
[10] summarized the studies on linear stability analysis of
incompressible shear layer. For the studies on linear stability
analysis of compressible shear layer, the reader can refer to
the relevant literature in the monograph by Criminale et al.
[11].

The studies above are all confined in the scope of temporal
or spatial mode. When we study the stability characteristics
of shear layers in spatial-temporal mode, which treat both
spatial and temporal eigenvalue complex [12, 13], there are
two distinct instabilities for spatial-temporal evolving dis-
turbances: convective and absolute instabilities. The concept
of absolute and convective instabilities was first put forward
by Briggs [14] in the study of plasma instability and then
introduced to classical hydrodynamic stability [15]. A flow is
convectively unstable if the unsteady response to an impulsive
perturbation grows along some rays that pass away from the
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Figure 1: Schematic of a shear layer between two streams.

forcing location but decays at the forcing location itself. A
flow is absolutely unstable if the impulse response grows at
the forcing location [16].

An absolutely unstable flow is not sensitive to external
disturbances and initial conditions; consequently, the “flow
management” techniques such as forcing the shear layer at
some prescribed frequency could be useless. [17]. Thus, if
we want to control the downstream evolution of the flow, it
is essential to determine whether the shear/mixing layer is
convectively or absolutely unstable. Kulikovskii and Shikina
[18–20] studied the asymptotic behavior of localized pertur-
bations on the surface of a shear discontinuity separating
two homogeneous steady flows of ideal incompressible fluid
in the linear approximation. The effect of surface tension,
gravity forces, and viscosity is taken into account. Pavithran
and Redekopp [21] investigated the absolute and convective
instabilities for a subsonic mixing layer with the hyperbolic-
tangent-like profiles in velocity and temperature fields. The
study on transition of absolute and convective instability
for compressible shear layer is rare. Caillol [22] analyzed
the transition of absolute and convective instabilities for
an inviscid mixing layer. The Mach number in his work
attained high supersonic values.However, he did not consider
the density stratification within the mixing layer. Large
density stratification is possible for binary mixing layers at
high pressures, which is usually encountered in power and
propulsion system.

The aim of this paper is to track the transition between
the absolute instability and convective instability in a com-
pressible shear layer. The density stratification is taken into
account. The effects of flow parameters on the spatial-
temporal stability of a compressible shear layer are examined
by observing whether an increase of the value of parameter
tends to increase or decrease the value of absolute growth rate.

2. Theoretical Framework

The base flow is a shear layer between two streams with
its far-stream condition denoted by the subscripts ∞ and−∞, as shown in Figure 1. The thickness of shear layer
increases with increasing distance downstream, denoting

that the base flow is nonparallel. Here, we made a locally
parallel flow assumption, implying that the present results
yield the instability characteristics of individual profiles to
leading order when the shear layer thickness grows slowly
with downstream distance [23]. The streamwise direction is
defined as 𝑥 and the cross stream is defined as 𝑦. In the
present study,𝑈 denotes the velocity, 𝜌 the density, and 𝑇 the
temperature. Taking the momentum thickness 𝜃 and average
mean velocity 𝑈 = (𝑈∞ + 𝑈−∞)/2 as the characteristic
length and velocity scale, respectively, the flow properties
can be normalized. Superscript ∗ denotes a nondimensional
quantity.

The linear stability analysis, the features of which are
standard and, hence, are not presented in detail here, is
performed for a flow governed by the conservation equations
of continuity, momentum, and energy. The thermodynamic
condition of the layer is assumed far above the critical
point, so the ideal-gas equation of state is used to close
the formulation. Linearization of these equations starts by
splitting the dependent variables into base and perturbation
components. A base flow is assumed that is described by the
normalized velocity profile 𝑢∗(𝑦∗) and temperature profile
𝑇∗(𝑦∗) specified as (1)-(2) and by a constant thermodynamic
pressure [24]:

𝑢∗ = 1 + Λ tanh(𝑦∗2 ) (1)

𝑇∗ = 𝑆𝑇 + 12 + 𝑆𝑇 − 12 tanh(𝑦∗2 ) , (2)

where the velocity ratio is defined asΛ = (𝑈∞ −𝑈−∞)/(𝑈∞ +𝑈−∞) and the temperature ratio is defined as 𝑆𝑇 = 𝑇∞/𝑇−∞.
The density distributions are obtained by employing the
ideal-gas equation of state on the shear layer with the
temperature distribution defined in (2).

We perturbed the steady-state solution of the flow with a
small-amplitude wave in normal modes:

𝑞 (𝑥, 𝑦, 𝑧, 𝑡) = �̂� (𝑦) exp [𝑖𝑘 (𝑥 cos𝜙 + 𝑧 sin𝜙 − 𝑐𝑡)]
= �̂� (𝑦) exp [𝑖 (𝑘𝑥 cos𝜙 + 𝑘𝑧 sin𝜙 − 𝜔𝑡)] , (3)

where 𝑞 denotes the perturbation components, �̂� denotes
the perturbation wave amplitude, 𝑘, 𝑐, and 𝜔 (𝜔 = 𝑘𝑐) are
the wave number, phase speed, and frequency, respectively.𝜙 denotes the angle between the wave propagation direction
and the streamwise direction of the mean flow. When the
disturbance wave propagates in the axial direction, 𝜙 equals
zero, and the resultant system is a two-dimensional problem.

To derive the governing equation for �̂�∗(𝑦∗), the gov-
erning equations and equation of state are linearized by
considering small perturbations to the mean flow whose
velocity and temperature profiles are 𝑢∗(𝑦∗) and 𝑇∗(𝑦∗),
respectively. By employing a process of elimination, a single
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Figure 2: Contours of 𝜔∗𝑖 = constant in the complex 𝑘∗ plane (Λ = 1, 𝜙 = 0,𝑀 = 0, 𝑆𝑇 = 5).

equation can be derived for the radial component of the
pressure perturbation �̂�∗ [25–28]:

𝑑2�̂�∗𝑑𝑦∗2 − [
2𝑢∗𝑦 cos𝜙𝑢∗ cos𝜙 − 𝑐∗ +

𝜌∗𝑦𝜌∗] 𝑑�̂�
∗

𝑑𝑦∗
− 𝑘∗2 [1 −𝑀2] �̂�∗ = 0,

(4)

where𝑀 = (𝑢 cos𝜙− 𝑐)/𝑎, 𝑎 denotes the speed of sound. For
simplicity of notation, the subscript 𝑦 stands for the spatial
derivative with respect to the 𝑦 coordinate. The governing
equation of the two-dimensional incompressible shear layer
can be found by setting 𝜙 = 0 and𝑀 = 0.

Solution of (4) poses an eigenvalue problem due to the
presence of the wave parameters, 𝑘∗, and frequency, 𝜔∗ =𝑘∗𝑐∗. The boundary conditions are obtained by considering
that (i) at far stream the base flow derivatives are zero and that
(ii) the solution must be bounded. The solution is obtained
by treating the frequency as the eigenvalue for an externally
specified wavenumber and by using a shooting iterative
procedure. ODE45 in MATLAB is employed to perform the
numerical integration of the ordinary differential equation,
and the Newton-Raphson shooting method is utilized to
perform the iterative shooting to find the eigenvalue. Conver-
gence is found to be strongly dependent on a good starting
guess for 𝜔∗. The detailed process is as follows: to obtain
the 𝜔∗(𝑘∗) relations, we begin from an intermediate 𝑘∗ (e.g.,𝑘∗ = 0.4) andmake an initial guess for𝜔∗.Then, theNewton-
Raphson shooting method is used, assuming the initial guess
for 𝜔∗ is good enough to obtain the exact 𝜔∗. Then we
decrease or increase 𝑘∗ by Δ𝑘∗ and use 𝜔∗ calculated with
the old 𝑘∗ as the initial guess for the new shooting iteration.
If the shooting iteration converges again, we will move to
the smaller or larger 𝑘∗. With this computing process, the𝜔∗ − 𝑘∗ curve extends from the middle to both low and high𝑘∗ regimes. If, at some point, the shooting method diverges
or can not obtain a physical solution, or the resultant 𝜔∗ − 𝑘∗
curve is not smooth enough,we conclude that the initial guess

for𝜔∗ at 𝑘∗ = 0.4 is incorrect andwe provide a new guess and
start over again. It is by this process that the 𝜔∗ −𝑘∗ contours
presented in this article are obtained.

This study focuses on the transition between absolute
instability (AI) and convective instability (CI) for a com-
pressible inviscid shear layer, which are dominated by modes
with zero group velocity. These correspond to complex pairs,(𝑘∗0 , 𝜔∗0 ), which satisfy (4) and also the further property that𝜕𝜔∗/𝜕𝑘∗ = 0.

The saddle point method is used to determine the solu-
tionwith zero group velocity. In general, there are two distinct
spatial branches of solutions of (4) on the complex 𝑘∗ plane.
The two branches will approach each other as the growth
rate 𝜔∗𝑖 is decreased from large positive values, and a saddle
point on the complex 𝑘∗ plane will occur at point 𝑘∗ = 𝑘∗0 . It
is necessary to identify the physical and nonphysical saddle
points. The physical saddle point must satisfy the Briggs-
Bers collision criterion [14, 29]. According to the Briggs-Bers
collision criterion, the only relevant complex pair (𝑘∗0 , 𝜔∗0 ) is
the physical pair, if the two branches come, respectively, from
the downstream-propagating branch 𝑘∗+(𝜔∗) and upstream-
propagating branch 𝑘∗−(𝜔∗) on the complex 𝑘 plane. Then if𝜔∗0𝑖 < 0 the flow is said to be convectively unstable, while if𝜔∗0𝑖 > 0, the flow is said to be absolutely unstable.Normally, 𝑘∗0
is referred to as the absolutewave number and𝜔∗0𝑖 the absolute
growth rate.

3. Results and Discussion

In this section, the effects of dimensionless parameters on the
spatial-temporal instability of an inviscid shear layer will be
checked by taking a parametric study.The complex frequency𝜔∗ is solved as function of the wave number 𝑘∗ and the
parameter set (Λ, 𝑆𝑇,M, and 𝜙).

The typical contour plots of the imaginary part of the
complex frequency 𝜔∗𝑖 in the complex wave number 𝑘∗
plane for an inviscid compressible shear layer are shown
in Figure 2. Apparently, there is a saddle point in the plot,
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Figure 3:The variation of absolute growth rate with velocity ratioΛ
(𝜙 = 0,𝑀 = 0, 𝑆𝑇 = 3).

which is marked with “𝑆.” The location of the saddle point is𝑘∗0 = (0.458, −0.742) and the value of real part of complex
frequency at the saddle point is 𝜔∗0𝑖 = −0.245. The saddle
point satisfies the Briggs pinching criterion. In Figure 2,
the absolute growth rates are negative, indicating that the
inviscid shear layer is convectively unstable with the given
dimensionless parameters.

The effect of velocity ratio Λ on the absolute instability
of an inviscid shear layer is illustrated in Figure 3. It appears
in Figure 3 that the absolute growth rate increases with the
increases of velocity ratio Λ. In particular, when the velocity
ratio is larger than 1.47, the absolute growth rate becomes
positive. The transition velocity ratio 1.47 was close to the
value obtained by Huerre and Monkewitz [12], which was
1.315. Huerre and Monkewitz [12] stated that the mixing
layer is absolutely unstable when velocity ratio is larger than
1.315. That is because Huerre and Monkewitz considered
shear layer in incompressible fluid, whereas the present paper
deals with perfect gas. The velocity ratio represents the
shear force imparted on the shear layer; therefore, it can be
said that, for a two-dimensional inviscid shear layer, it is
absolutely unstable when the shear force imparted on it is
relatively large. Manoharan and Hemchandra [23] proposed
a mechanism through which absolute instability can cause
combustion instability in combustor of power generation
and propulsion system. Hence, avoiding the occurrence of
absolutely unstable flows in combustors, at least at desired
operating conditions, represents a possible passive control
strategy to mitigate the occurrence of combustion instability.
According to Figure 3, to depress absolute instability, a possi-
ble smallest velocity ratio is recommended. However, small
velocity ratio, denoting weak shear force imparted on the
shear layer, shows no advantage on mixing. Thus the velocity
ratio should be designed specially in a combustor.

Figure 4 gives the effects of the temperature ratio, 𝑆𝑇,
on the absolute growth rate of a two-dimensional inviscid
shear layer, by increasing 𝑆𝑇 and keeping other parameters
constant for every plot. Figure 4 shows that, for different
cases, as the temperature ratio increases, the absolute growth
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Figure 4: The variation of absolute growth rate with temperature
ratio 𝑆𝑇.
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Figure 5: The variation of absolute growth rate with oblique angle𝜙 (Λ = 1,𝑀 = 0, 𝑆𝑇 = 2).

rate decreases. Hence the strategy for suppressing absolute
instability is to increase temperature ratio.

However, the temperature effects do not always tend to
depress the absolute instability. When the temperature ratio
is relatively small (𝑆𝑇 < 1), the absolute growth rates shows
minor increase with increase of 𝑆𝑇 for every case. That is to
say when 𝑆𝑇 is relatively large, the effect of 𝑆𝑇 on absolute
growth rate is more remarkable; when 𝑆𝑇 is small, 𝑆𝑇 has
minor promotion effect on absolute instability of the shear
layer.

Now, we check the effect of obliquity of the disturbance
wave on the absolute instability by varying the oblique angle,𝜙. Figure 5 shows the variation of absolute growth rate 𝜔∗0𝑖
with oblique angle 𝜙. It shows in Figure 5 that when the
flow is two-dimensional (𝜙 = 0), the absolute growth rate is
the smallest. When the oblique angle increases, the absolute
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Figure 6: The variation of absolute growth rate with oblique angle and𝑀 number (Λ = 1, 𝑆𝑇 = 2).
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Figure 7: The boundary of transition between AI and CI in the parameter space of Λ,𝑀, and 𝑆𝑇 (𝜙 = 0).

growth rate increases. The increasing rate becomes larger
when the oblique angle is greater. However, the absolute
growth rate is always negative when 𝜙 varies from 0 to 𝜋/2.
Hence, it can be concluded that the increase of oblique angle
can increase the absolute growth rate, and the effect is more
remarkable when the oblique angle is greater, or we can
say that the three-dimensional disturbance waves are more
dominant in inviscid shear layer than two-dimensional wave.
But the increasing of 𝜙 would never change the flow into
absolute instability.

The parameter𝑀 is naturally supposed to be parameter
influencing the absolute instability behavior of flow. Here we
check the effect of 𝑀 and oblique angle comprehensively.
Figure 6 gives the variation of absolute growth rate with 𝑀
and oblique angle. It shows that, for a constantM, the increase
of oblique angle would increase the absolute growth rate,

which can also be seen from Figure 5. For a given oblique
angle, the effect of𝑀 number on absolute growth rate differs
when oblique angle is larger or relatively small. When the
oblique angle is small, the increase of 𝑀 would decrease
the absolute growth rate; while the oblique angle is greater
(close to 𝜋/2), the effect of increasing𝑀 is minor.Thatmeans
the effect of 𝑀 number is opposite when the disturbances
propagate upstream and downstream.

Figure 7 shows the critical value of Λ at which the flow
transits into absolute instability at different𝑀 and 𝑆𝑇. It can
be seen from Figure 7 that the increase of 𝑆𝑇 would cause
the critical value of Λ decrease; that is, the increase of 𝑆𝑇
would expand the absolute instability region in 𝑆𝑇 -Λ-𝑀
space. However, the variation of 𝑀 has no influence on the
absolute instability boundary, although the increase of𝑀 can
decrease the absolute instability growth rate.
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4. Conclusions

In this work, we explore the transition of absolute instability
and convective instability in a compressible inviscid shear
layer, through a linear spatial-temporal instability analysis.
From linearized governing equations of the shear layer
and the ideal-gas equation of state, the dispersion relation
for the pressure perturbation was obtained. The dispersion
relation was solved using a shooting iterative procedure. The
numerical results show that the increasing velocity ratio can
make the inviscid shear layer transition to absolute instability.
The increase of temperature ratio decreases the absolute
growth rate when the temperature ratio is large; the effect
of temperature ratio is opposite when the temperature ratio
is relatively small. The obliquity of the perturbations would
cause the increase of absolute growth rate. The effect of 𝑀
number is different when the oblique angle is large or small:
when the oblique angle is relatively smaller, the increase of𝑀
number would decrease the absolute growth rate; while the
oblique angle is relatively large (close to 𝜋/2), the variation
of 𝑀 number has no influence on the absolute growth rate.
The absolute instability boundary has been given in the 𝑆𝑇
-𝑀-Λ space. The increase of 𝑆𝑇 would expand the absolute
instability region in the 𝑆𝑇 -𝑀-Λ space, but the variation of𝑀 has no influence on the absolute instability boundary.
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