
Improving Test Suites for Efficient Fault Localization

Benoit Baudry and Franck Fleurey
IRISA, Campus Universitaire de Beaulieu, 35042

Rennes Cedex, France

{ffleurey, bbaudry}@irisa.fr

Yves Le Traon
France Télécom R&D

2, av. Pierre Marzin - 22 307 Lannion Cedex – France

yves.letraon@francetelecom.com

ABSTRACT
The need for testing-for-diagnosis strategies has been identified
for a long time, but the explicit link from testing to diagnosis
(fault localization) is rare. Analyzing the type of information
needed for efficient fault localization, we identify the attribute
(called Dynamic Basic Block) that restricts the accuracy of a
diagnosis algorithm. Based on this attribute, a test-for-diagnosis
criterion is proposed and validated through rigorous case studies:
it shows that a test suite can be improved to reach a high level of
diagnosis accuracy. So, the dilemma between a reduced testing
effort (with as few test cases as possible) and the diagnosis
accuracy (that needs as much test cases as possible to get more
information) is partly solved by selecting test cases that are
dedicated to diagnosis.

Categories and Subject Descriptors
D.2.5 [Software Engineering] : Testing and Debugging.

General Terms
Measurement, Verification.

Keywords
Test generation, diagnosis, mutation analysis.

1. INTRODUCTION
In practice, no clear continuity exists between the testing task and
the diagnosis one, defined in this paper as the task of locating
faults in the program code. While the former aims at generating
test data and oracles with a high fault-revealing power, the latter
uses, when possible, all available symptoms (e.g. traces) coming
from testing to locate and correct the detected faults. The richer
the information coming from testing, the more precise the
diagnosis may be. This need for testing-for-diagnosis strategies is
mentioned in the literature [1, 9], but the explicit link from testing
to diagnosis is rarely made. In [17], Zeller et al. propose the Delta
Debugging Algorithm which aims at isolating the minimal subset
of input sequences which causes the failure. Delta Debugging
automatically determines why a computer program fails: the
failure-inducing input is isolated but fault localization in the
program code is not studied.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE'06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

Considering the issue of fault localization, the usual assumption
states that test cases satisfying a chosen test adequacy criterion are
sufficient to perform diagnosis [1]. This assumption is verified
neither by specific experiments nor by intuitive considerations.

Indeed, reducing the testing effort implies generating a minimal
set of test cases (called a test suite in this paper) for reaching the
given criterion. By contrast, an accurate diagnosis requires
maximizing information coming from testing for a precise cross-
checking and fault localization. For example, the good diagnosis
results obtained in [9] are reached thanks to a large amount of
input test data. These objectives thus seem contradictory because
there is no technique to build test cases dedicated to an efficient
use of diagnosis algorithms.

The work presented in this paper proposes a test criterion to
improve diagnosis. This test-for-diagnosis criterion (TfD)
evaluates the ‘fault locating power’ of test cases, i.e. the capacity
of test cases to help the fault localization task. This TfD criterion
allows bridging the gap between testing and diagnosis: an existing
test suite which reveals faults is improved to satisfy the TfD
criterion so that diagnosis algorithms are used efficiently. The
goal is to obtain a better diagnosis using a minimal number of test
cases.

To define the TfD criterion we identify the main concept that
reduces the diagnosis analysis effort. It is called Dynamic Basic
Block (DBB) and depends both on the test data (traces) and on the
software control structure. The relationship between this concept
and the diagnosis efficiency is experimentally validated.
Experimental results also validate the optimization of test suites
that satisfy the TfD criterion, in comparison with coverage-based
criteria.

All the experiments use the algorithm proposed by Jones et al. [9]
for diagnosis. We apply a computational intelligence algorithm
(bacteriologic algorithm [3]) to automatically optimize a test suite
for diagnosis, with respect to a criterion. Finally, we use mutation
analysis [6, 14] to systematically introduce faults in programs.
The efficiency of a test suite for fault localization is estimated on
the seeded faults. This estimate experimentally validates the
benefit provided by the TfD criterion based on DBB for fault
localization.

Since the scalability issue is crucial when dealing with fault
localization, the whole approach is integrated in an optimization
process which allows dealing with the possibly large size of the
program under diagnosis.

Section 2 details the algorithm proposed by Jones et al. in [9].
Section 3 investigates the relationship between testing and
diagnosis. The proposed model identifies a test criterion that fits

82

mailto:yves.letraon@francetelecom.com

the diagnosis requirements. Section 4 details a technique to
automatically generate test cases with respect to the criterion
defined in section 3. Section 5 presents the experimental
validation of the technique while section 6 discusses the practical
use and the scalability of the technique in the testing/debugging
process of a program. Section 7 concludes this paper.

2. BACKGROUND ON DIAGNOSIS
ALGORITHMS
After the failure of some test cases on a program, the debugging
process consists, first in locating the faults in the source code (this
is called diagnosis), and, second, in fixing them. To reduce the
cost of diagnosis several techniques are presented in the literature
to help the programmer locate faults in the program code. Those
techniques mainly consist in selecting a reduced set of
“suspicious” statements the tester should examine first to find
faults.

2.1 Cross checking strategies and diagnosis
accuracy
The cross-checking diagnosis algorithms correlate the execution
traces of test cases, using a diagnosis matrix as presented in the
left part of Figure 1. The matrix represents the execution traces for
a set of test cases and the associated verdicts. Based on this
matrix, the algorithms determine a reduced set of “suspicious”
statements that are more likely to be faulty.

As an example, Figure 1 presents the code of a function that
computes the power y of x. A fault has been introduced in the
algorithm at statement {3} (the correct statement would be p:=-y)
and, a diagnosis matrix is presented for four test cases. Test case 3
detects the fault. Based only on this test case, the 4 statements
executed by test case 3 are equally suspected.

Cross-checking diagnosis strategies correlate several test case
executions to order the statements from the less to the most
suspect. Considering the 4 test cases and statement 4, one may
notice that it is not executed by the failed test case and executed
twice by passed test cases. Intuitively, this statement appears as
less suspect than the others. The cross-checking strategies differ
from one another by the way they correlate test cases traces to
locate faults.

The relevance of the results of a diagnosis algorithm can be
estimated by the number of statements one has to examine before
finding a fault. We define the diagnosis accuracy as the number
of statements to be examined before finding the actual faulty
statement and the relative diagnosis accuracy as the
corresponding percentage of the source code of the program to
examine.

Diagnosis accuracy. For an execution of a diagnosis
algorithm, the diagnosis accuracy is defined as the number
of statements one has to examine before finding a fault.

Example: In Figure 1, the diagnosis accuracy obtained with the
only test case 3 is 4 since 4 statements are equally suspected (≈
57%).

2.2 Existing cross-checking techniques
This section introduces several cross-checking algorithms from
the literature.

In [1], Agrawal et al. propose to compute, for each test case, the
set of statements it executes (dynamic slice) and then to compute

the differences (or dices) between the slices of failed and passed
test cases. The intuition is that the faulty statement should be in
those dices. But, as the number of dices to examine may be
important, the authors propose, as a heuristic, to examine dices
from the smallest to the biggest. In this context, the authors
present a tool called XSlice to display dices by highlighting the
suspicious statements in the component’s code. The approach is
validated on a C program (914 lines of code) by injecting up to 7
bugs at the time and using 46 test cases generated by a static test
data generation tool.

In [10], Khalil et al. propose an adaptive method to reduce the set
of suspicious statements. First, assuming that only one statement
is faulty and that verdicts are “ideal”, the algorithm cross-checks
the positive (which verdict is pass) and negative (verdict fail)
execution traces to pinpoint the suspect statements. The authors
then describe an adaptive strategy which incrementally releases
the first “single fault” and “ideal verdicts” assumptions, until
finding the actual faulty statement. The approach is validated by
injecting faults in several VHDL and Pascal small programs.

In [5], Dallmeier et al. establish a ranking of the suspicious classes
in a Java program by analyzing incoming/outgoing sequences of
class method calls (which are called traces in that context). The
mathematical model strongly depends on the "distance" between
passing and failing runs. The model highlights the classes which
behave very differently between passing and failing runs. A
deviation is relevant in terms of diagnosis iff the program runs are
strongly related. In their case study, with an average number of
10.56 executed classes, over 386 program runs, the algorithm
reduces the search to 2.22 classes while a random placing of the
faulty class would result in an average search length of 4.78
classes. Their conclusions are also relative to this sole experiment.
In [4], the authors introduce the notion of cause transition to
locate the software defect that causes a given failure.

The Tarantula approach proposed by Jones et al. [9] makes few
assumptions on the quality of verdicts and on the number of faulty
statements. It is validated experimentally with up to 7 faults to
locate at the same time. In [8], an empirical study validates
Tarantula as the best existing technique for fault localization.
Thus, we have chosen it for our experiments, and the following
presents more details.

The idea of the algorithm is that faulty statements more frequently
appear in the traces of failed test cases than in passed test cases.
The algorithm thus orders statements according to a trust value
computed from the diagnosis matrix (right part of Figure 1). This
corresponds to the ratio between the percentage of passed test
cases that execute a given statement and the total percentage of
test cases that execute this statement.

In addition to this measure, another value is computed for each
statement. This value, which we call Intensity(s) for a statement s,
corresponds to the maximum between the percentage of passed
test cases and the percentage of failed test cases that execute this
statement. The intuition is that the higher this value is the most
accurate the trust measurement should be.

Let us notice that in [9], Jones et al. propose a tool to visualize the
results of diagnosis, the notions of trust and intensity are thus
called colour and brightness. Since we do not use explicit
visualization here, we find it more appropriate to propose a new
vocabulary not based on visual ideas.

83

Diagnosis matrix

Test cases Diagnosis results
1 2 3 4
x=2 x=-2 x=2 x=-3
y=4 y=0 y=-4 y=-3 %Passed %Failed Trust Intens. Rank

pow(x, y:integer) : float
 local i, p : integer
 i := 0; {1} 1 1 1 1 100% 100% 0,50 100% 3
 Result := 1; {2} 1 1 1 1 100% 100% 0,50 100% 3
 if y<0 then p := -x; {3} 0 0 1 1 33% 100% 0,25 100% 1
 else p := y; {4} 1 1 0 0 66% 0% 1,00 66% 5
 while i<p do
 Result := Result * x; {5} 1 0 0 1 66% 0% 1,00 66% 5
 i := i + 1; {6} 1 0 0 1 66% 0% 1,00 66% 5
 done
 if y<0 then
 Result := 1/Result; {7} 0 0 1 1 33% 100% 0,25 100% 1
end

Verdicts : P P F P

Figure 1 – Diagnosis matrix and results

Trust value and intensity of a statement. Let s be a
statement, %Passed(s) the ratio of passed test cases that
execute s and %Failed(s) the ratio of failed test cases that
execute s. The trust in the statement s is computed as:

)(%)(%

)(%
)(

sFailedsPassed

sPassed
sTrust

+
=

))(),%((%)(sFailedsPassedMaxsIntensity =

The technique orders all the statements of the program using the
Trust value as the major component and the Intensity value as the
tie-breaker. Statements are then manually examined following the
computed order to find the actual faulty statement. For example,
Figure 1 shows the Trust and Intensity values, as well as the Rank
for each statement of the pow function. The statement ranked 1 is
the most suspect statement. In this particular example, it happens
to be the actual faulty statement. The statements that have the
same ranking are given a rank that corresponds to the lowest
number of statements that would need to be examined if one of
these statements was the faulty one.

3. FROM TEST TO DIAGNOSIS
This section presents the ideas and discussion that lead to the main
contribution of this work: a test-for-diagnosis criterion. As the
diagnosis uses information collected during the test, the intuition
is that the diagnosis should be as accurate as the number of test
cases is high. Unfortunately, this idea is contradictory with test
generation practices which consist in minimizing the number of
test cases to satisfy a given test criterion. To deal with this we
discuss several test criteria in order to fit the diagnosis
requirements.

3.1 Code coverage based criteria
In order to detect and locate faults anywhere in the program, any
diagnosis technique requires each statement to be covered by the
tests. So, a first test criterion for an accurate diagnosis is statement
coverage. However, this criterion is inadequate for diagnosis. For

example, using Jones et al. algorithm, if the test cases simply
cover the code, the ranking produced by the algorithm may
contain many indistinguishable statements (same values for trust
and intensity). This produces poor results for diagnosis as the
actual faulty statements may be lost in a large amount of
indistinguishable correct statements.

This analysis of diagnosis algorithms leads us to define a second
test criterion for diagnosis: having least N test cases that cover
each statement of the program. In the following we call this
criterion N-Coverage (1-Coverage corresponds to simple
statement coverage). The intuition is that the higher is N, the more
statements can be distinguished by the test cases.

However none of these criteria focuses on the specificity needed
for good fault localization: the algorithm needs test cases that
enable it to distinguish statements one from the other. Next
section introduces an original test-for-diagnosis criterion directly
based on statements distinction, which specifically aims at
improving the diagnosis.

3.2 Distinguishing statements
The diagnosis objective being to pinpoint faulty statements in a
program, it requires being able to distinguish any statement of the
program from each others. In other words, no matter how
sophisticated the technique is, if its inputs do not allow
distinguishing statements (particularly the faulty ones from the
others), it will fail producing an accurate diagnosis. In this paper,
as we focus on diagnosis techniques based on cross-checking test
execution traces, the particular input we have to deal with is the
diagnosis matrix. Thus, to improve diagnosis accuracy the test
suite must be designed to minimize the number of
indistinguishable statements in the diagnosis matrix.

3.2.1 Dynamic basic blocks
If two statements have identical lines in the coverage matrix, they
are indistinguishable. On the matrix presented Figure 1, for
instance, the statements {3} and {7} covered by test cases 3 and 4
are indistinguishable, independently of the diagnosis algorithm

84

which may be used. From this observation, we introduce the
notion of dynamic basic block (we chose the name as a reference
to basic block defined for compilers: any basic block is included
in a DBB). In practice, dynamic basic blocks (DBB) can be easily
computed from the diagnosis matrix by grouping statements that
are covered by the same test cases. For example, we can identify
four dynamic basic blocks in the coverage matrix of Figure 1: {(1,
2), (3, 7), (4), (5, 6)}.

Dynamic basic block. Let P be the program under test and TS
a test suite (a set of test cases). A dynamic basic block DBB
is the set of statements of P that is covered by the same test
cases of TS. Two statements s and s’ belong to a DBB if
they have identical lines in the coverage matrix.
The set of dynamic basic blocks in P, distinguished by TS, is
denoted B(TS).

3.2.2 Size of the DBB and diagnosis accuracy
This section investigates the relationship between distinguished
DBBs and the diagnosis accuracy. The models and discussion
presented here are relevant for any diagnosis algorithm that uses
the diagnosis matrix as an input.

By the definition of the DBB itself, all statements in a single DBB
are indistinguishable. This way, if one statement is classified as
suspect by the diagnosis algorithm, then every statement that
belongs to the same DBB will also be selected as suspicious.
Using Jones et al. algorithm for instance, every statement from a
single DBB has the same values for Trust and Intensity and comes
out with the same Rank. We can interpret the results of the
diagnosis algorithm as a ranking of the DBBs distinguished in the
program.

Based on this interpretation, let us define the theoretical notion of
optimal diagnosis algorithm. This “virtual” algorithm always
selects the dynamic basic block containing the actual faulty
statement as the most suspicious.

With this notion of optimal diagnosis algorithm, one can model
the ideal accuracy of diagnosis under the following assumptions:

1 Faults are uniformly distributed: each statement has the
same probability to be faulty.

2 The diagnosis algorithm is optimal.

Ideal accuracy of diagnosis. Let P be the program under test,
TS the test suite and B(TS) the set of dynamic basic blocks
distinguished by TS in P (as defined above). The average
amount of suspected code is:

∑∑
∈∈ ×

=×=
BbBb P

b
bnbpPTSAccuracy

2
)()(),(

2

where:

p(b) is the probability that the fault is located in b∈ B(TS).
We have p(b)=|b|/|P|.

n(b) is the average amount of code to examine. We have
n(b)=|b|/2.

This estimate, based on an ideal diagnosis, reveals the main
parameter which impacts on diagnosis accuracy: the size of a
dynamic basic block. In fact, for a particular program, the ideal
diagnosis accuracy only depends on the sizes of the DBB (in

section 5.2 the experiments show that the size of DBBs is also
decisive even if the algorithm is not ideal). To improve the
accuracy of the diagnosis, the size of dynamic basic blocks should
be minimal.

We can notice that the actual minimal value for the size of the
DBB is the size of the smallest block of statements sequentially
executed. This minimal size is generally not statically decidable.
So, the TfD criterion to improve the accuracy of diagnosis selects
a test suite that maximizes the number of dynamic basic blocks.
The maximum possible number is the number of static basic
blocks. However, static blocks can be indistinguishable, and it is
not possible to statically decide if they are. A better target for the
maximum number of DBBs is the number of control-dependence
regions, because we know that basic blocks in such regions are
indistinguishable. However, it is still possible that two regions are
indistinguishable, and again, it is not possible to statically know
that.

3.3 Test for diagnosis criterion
From the discussions presented earlier, we can conclude that a test
suite must at least cover the code to be useful for diagnosis, and, if
it covers the code N times diagnosis is improved. This N-coverage
(N > 0) criterion is a minimum requirement to apply the diagnosis
algorithm. Going further in the analysis of the problem we have
defined an original test criterion that is dedicated to diagnosis.
This criterion is called a test-for-diagnosis (TfD) criterion. In the
following of the paper, we investigate and compare the relevance,
for fault localization, of the three criteria proposed in this section:
Coverage, N-Coverage and TfD.

Test-for-Diagnosis (TfD) criterion. A test suite satisfies the
TfD criterion if it maximizes the number of dynamic basic
blocks distinguished in the program under test.

The TfD criterion is different from classical test criteria in two
ways. First, it has a different role: the expected role of test
adequacy criteria is to qualify the fault-revealing power of the
tests while, the TfD criterion qualifies the ability of a test suite to
optimize fault localization. Second, this criterion guides the test
generation (while the generation distinguishes new DBBs, it
continues), but it does not provide an exact stopping criterion (in
terms of an exact number of elements that should be covered).

MutantsMutants
Initial

test
suite

test suite
optimization with
the TfD criterion

MutantsMutants
Initial set

of test
cases

Optimized
test suite

-Built for fault detection
-Satisfies any test criterion

-Greater or equal fault detection power
-Optimized fault localization power

Optimization: add a minimal
number of test cases to distinguish
as many DBB as possible

MutantsMutants
Initial

test
suite

MutantsMutants
Initial

test
suite

test suite
optimization with
the TfD criterion

MutantsMutants
Initial set

of test
cases

Optimized
test suite

MutantsMutants
Initial set

of test
cases

Optimized
test suite

-Built for fault detection
-Satisfies any test criterion

-Greater or equal fault detection power
-Optimized fault localization power

Optimization: add a minimal
number of test cases to distinguish
as many DBB as possible

Figure 2 -Global test suite optimization process

In practice, the TfD criterion is used to optimize a test suite that
has been generated with other criteria and that detects faults in a
program. The idea is to use this criterion to improve the “fault
localization power” of an existing test suite. Figure 2 summarizes
this particular usage. Next section presents the bacteriologic
algorithm that can be used to automatically optimize a test suite.

4. AUTOMATIC TEST OPTIMIZATION
In this section, we discuss the problem of automatically
optimizing test cases that satisfy the criteria defined in the
previous section. This section adapts the algorithm proposed in [2,

85

3] to optimize a test suite. As the experimental studies in section 5
will show, it is well suited for the three criteria we are studying in
this paper.

4.1 Dynamic test data generation
Dynamic test data generation mainly consists in a function that
associates a fitness value (related to a test criterion) to each input
of the system. The value of this function is dynamically computed
during the system’s execution. The idea is to use this feedback
information to search test data that satisfy the considered test
criterion. In practice, test data are incrementally modified to
optimize their fitness value. In this context, the test optimization
problem becomes an optimization problem. Traditional
optimization algorithms like gradient descent have been applied to
solve this problem [11], but, the most efficient techniques are
based on genetic algorithms that have been successfully applied in
several works [13, 16]. However, these works focus on generating
one test case for each test objective but cannot be applied to
generate a global test suite. This is the reason why our approach
focuses on the global optimization of a test suite with a dedicated
algorithm, called bacteriologic algorithm.

4.2 The bacteriologic approach
The bacteriologic algorithm is an original adaptation of genetic
algorithms as described in [3]. It is designed to automatically
improve the quality of a test suite. The aim of this algorithm is to
generate an efficient test suite for a given component under test.
The algorithm also takes into account the number of test cases in
the generated set. Since it is specialized for test cases generation,
it is more efficient than the genetic algorithm (faster convergence,
easier to tune).

The algorithm is a pseudo-random algorithm based on the
biological process of the bacteriologic adaptation [15], and aims at
generating a test suite that satisfies a given criterion. The
algorithm takes an initial test suite as an input (each test case
being modelled as a bacterium). Its evolution consists in series of
mutations on bacteria, to explore the whole scope of solutions.
The final test suite is incrementally built by adding bacteria that
can improve the quality of the set. Along the execution there are
thus two sets, the solution set that is being built, and the set of
potential bacteria.

Bacterium modeling. A bacterium is a test case. In the special
case of system testing, a bacterium is an ordered set of
commands. This set must be a legal input for the system
under test.

Two operators are needed for this algorithm: a bacterium mutation
operator, and a fitness function to evaluate the quality of a given
set of bacteria. The bacterium mutation operator consists in
slightly altering the value of bacteria to create a new one that
carries other information. For the case studies presented in this
paper, it replaces a command in the set by another licit command.

Bacterium mutation operator. Let B=[c1,…, cn] be a
bacterium composed of n commands. Let ci be a randomly
selected command in B. The bacterium mutation operator
consists in replacing ci by a randomly generated valid
command c’i.

 B=[c1,…, ci ,…, cn] → B=[c1,…, c’i ,…, cn]

The fitness function computes the quality (fitness value) of a set of
bacteria for a particular criterion. This function serves two

purposes: stop the algorithm when the fitness value of the solution
set reaches a particular value, and evaluate the information a
bacterium can add to the solution. Along the execution of the
algorithm, a bacterium is added to the solution set if it can
improve the quality of the set. The quality of a bacterium at a
given moment is evaluated by the fitness value the solution set
would have if this bacterium was added. We define a fitness
function for a bacterium as follows.

Fitness function for a bacterium. Let S be a set of bacteria,
and F a fitness function. The fitness f(b) of a bacterium b is
computed as follows: f(b) = F(S∪{b})-F(S). The more
information the bacterium can bring to improve the set, the
greater fitness value it has.

The fitness value for a test case, is thus related to its efficiency to
satisfy a given test criterion. Based on the criteria identified in the
previous section, two fitness functions are defined in the
following to optimize test cases for an efficient diagnosis.

Fitness function for statement coverage. Let S be a test suite
for a program P, |P| the number of statements of P, and
|C(S)| the number of statements of P covered by S. The
fitness function F for statement coverage for S is defined as:

P
SC

SF
)(

)(= .

Fitness function for TfD. Let S be a test suite for a program P
and |B(S)| the number of dynamic basic blocks
distinguished by S in P, the fitness function F for TfD is
defined as: F(S) = |B(S)|.

These two fitness functions are based on the statement coverage
and TfD criteria. A test suite that satisfies the N-Coverage
criterion can also be generated using a bacteriologic algorithm.
Since the bacteriologic algorithm is a pseudo-random algorithm,
the resulting test suites are not the same from one execution to
another. It is thus possible to produce N tests suites that each
covers all the statements and to merge them to get a new test suite
which cover at least N times each statement.

5. EXPERIMENTAL VALIDATION
The experiments conducted with two case studies aim at
validating the ideal model of diagnosis presented section 3.2 and
at comparing the relevance of the TfD criterion with N-coverage.
The section starts with the presentation of the experimental
process and the tools we used. Then, it presents the systems under
test we studied and details the obtained results.

5.1 Experimental process and tools
The experimental process used to validate the approach is
presented in Figure 3. It consists of 5 steps:
1 The initial test suite is optimized using a bacteriologic

algorithm and based on the chosen fitness function (e.g.
TfD criterion).

2 Mutants are generated for the program under test
3 Test cases are executed against all mutants. Verdicts and

execution traces are collected.
4 Based on the results collected at previous step, a diagnosis

matrix is built for each mutant
5 The diagnosis algorithm is executed for each mutant

The whole process can be automated using specific tools. JTracor,
produces the execution trace for a particular execution of a
program. JMutator, is a mutation tool for Java which produces

86

mutants for a program using 7 mutation operators detailed in
Table 1, and runs a test suite on each mutant. Mutation analysis
allows the generation of many faulty versions of a program, and
thus provides trends and replicable results. The source code and
documentation for these tools are available at [7]. The
bacteriologic and Jones’ fault localization algorithms have also
been implemented for Java programs.

Table 1 - Mutation operators implemented by JMutator

Mutation operator Abbreviation
Additive operator Insertion AI
Constant Replacement CR
Identifier by Constant Replacement ICR
Identifier Replacement IR
Relational Operator Replacement ROR
Statement Deletion SD
Unary Operator Insertion UOI

In the first step of the experimental process (Figure 3), the initial
test suite that covers all statements is generated. Then, it is
optimized with the bacteriologic algorithm to satisfy the N-
Coverage and TfD criteria. It has to be noticed that no oracle
function is needed for the test suite optimization: a new test case
is produced based on the fitness function, which is automatically
computed with the execution trace. At the end of the process, an
oracle is required only for the additional test cases which have
been selected to satisfy the TfD criterion.

MutantsMutantsTest
cases

Test suite
optimization

Mutation tool
(JMutator)

Mutants
generator

MutantsMutantsMutants

Execution

System
under test

MutantsMutants
Diagnosis
matrix for

each mutant

Slicing tool
(JTracor)

(1)(2)

(3)

(4)

(5) Diagnosis
algorithm

Test cases
traces

Verdicts

Diagnosis accuracy
for each mutant

(JMutator)

Test suite that
detects faults

MutantsMutantsTest
cases

MutantsMutantsTest
cases

Test suite
optimization

Mutation tool
(JMutator)

Mutants
generator

MutantsMutantsMutants
MutantsMutantsMutants

Execution

System
under test

MutantsMutants
Diagnosis
matrix for

each mutant

MutantsMutants
Diagnosis
matrix for

each mutant

Slicing tool
(JTracor)

(1)(2)

(3)

(4)

(5) Diagnosis
algorithm

Test cases
traces

Verdicts

Diagnosis accuracy
for each mutant

(JMutator)

Test suite that
detects faults

Figure 3 – Experimental process

Once a test suite is obtained, the experiment aims at estimating its
quality for fault localization. This consists in executing the test
suite on several faulty versions of the system under test (mutants),

and then applying the fault localization algorithm to evaluate the
accuracy of diagnosis.

JMutator executes the test suites on each mutant and records the
verdicts for each test case on each mutant. JMutator uses the usual
oracle for mutation: a test case fails iff the result of the mutant is
different from the result of the correct program. Thus, for the case
studies, the oracle function is automatic. The test cases are also
executed with JTracor to obtain their execution traces. Both
execution traces and verdicts are then used to compute the
diagnosis matrix for each mutant version of the program.

The localization algorithm is applied, for each mutant, with the
diagnosis matrix, to order the program’s statements from the most
to the least suspicious. Since the actual faulty statement is known
by the tool, for each mutant, it is possible to determine the
position of this statement in the list produced by the diagnosis
algorithm (diagnosis accuracy). The closer it is from the
beginning of the list the more accurate the diagnosis is. Using all
mutants, the average diagnosis accuracy is computed, it estimates
the quality of the test suite for the diagnosis.

5.2 Systems under test
To study the relevance and compare the criteria proposed for
diagnosis we apply the experimental process previously described
with two object-oriented systems. The first one, BOOK is a small
example used to study the relationship between the diagnosis
accuracy and the DBB sizes. It consists in a library management
sub system composed of 16 classes for a total of 247 executable
lines of codes (excluding comments and blank lines). The second
system, VIRTUALMEETING (VM), is a server that simulates
business meetings over network. It is made of 72 classes and 1478
executable lines of code. We validate the TfD criterion on this
larger system. The source code of both systems can be
downloaded from [7]. We believe that applying the diagnosis
process on 346 faulty programs is sufficient to obtain confidence
in the TfD criterion.

The inputs of these systems are textual commands, thus a test case
for such systems is a sequence of syntactically correct commands.

5.3 Diagnosis accuracy vs. DBB size
The first study, with the BOOK system, validates the relationship
between the diagnosis accuracy and the size of the DBB that
contains the faulty statement.

5.3.1 Test suite optimization
Following the experimental protocol, first tests for the BOOK
system are generated. With a fitness function based on code
coverage, the bacteriologic algorithm optimized several test suites.
Six test suites were obtained, each composed of 7 to 9 test cases
and covering over 95,6 % and 96,4 % of the system’s code. Let
us notice that the code not covered by the test cases appears to be
some exception handling code that is not reachable in the context
of our experiments (it consists for instance in catching
Input/Output errors when reading the input file).

By merging these test suites, we obtain a test suite composed of
47 test cases that covers 96.4% of the code. This test suite satisfies
the 6-coverage criterion and is used to experimentally investigate
the relationship between diagnosis accuracy and DBB size.

87

0

10

20

30

40

50

1 11 21 31 41 51 61 71 81

Mutants

%
 o

f c
od

e
to

 e
xa

m
in

e

Figure 4 - ratio of suspicious code for each mutant

0

20

40

60

80

100

1 11 21 31 41 51 61 71 81

Mutants

si
ze

 o
f D

B
B

s

Figure 5 - Sizes of the DBBs containing the fault

5.3.2 Faulty versions of the system
Using JMutator, we obtained 96 mutants of the BOOK system.
Each mutant contains a single fault located in any class of the
system. For information, we looked at the quality of the test suite
in terms of fault detection: the proportion of mutants detected by
the test cases, also called mutation score. This score is computed
by the mutation tool and is equal to 90.6% for the test suite (87
mutants out of 96 are detected). Among the 9 undetected mutants,
4 were not detected because the faulty code is not covered
(exception handling code), and, 5 because some behaviour is not
tested.

5.3.3 Results
Jones’ diagnosis algorithm is applied on the 87 mutants detected
by the test suite (the diagnosis algorithm cannot help locating a
fault if no test case detects it).

The results displayed on Figure 4 clearly illustrate two different
behaviours for the algorithm: faults in mutants 1 to 46 are easily
located (in average 4,3% of the system’s code has to be examined
before locating the fault) while faults in mutants 47 to 87 are very
difficult to locate. For these last mutants an average of 24.76% of
the system code is suspected and it can go up to 43% for mutants
60 and 68.

Using the diagnosis matrices, we computed the size of the
dynamic basic block that contains the actual faulty statement for
each mutant (Figure 5). For mutants 1 to 46 the blocks have an
average size of 3.4 whereas the size of DBBs for mutants 47 to 87
is mostly 90 with few small blocks of 8 statements (average is 60).

It appears that the faults that are difficult to localize are mostly
located in large dynamic basic blocks (comparing Figure 4 and
Figure 5), which shows a strong correlation between the size of
the dynamic basic block and the accuracy of the diagnosis
algorithm. For this particular experiment, the large dynamic basic
block corresponds to the initialization code of the BOOK system.

5.3.4 Conclusion and discussion
The mathematical model of an ideal diagnosis algorithm presented
section 3.2 identified the size of the dynamic basic blocks as
decisive for diagnosis accuracy. The results obtained on the BOOK
system confirm a strong correlation between the size of the DBB
and the diagnosis accuracy: the algorithm performs much better
when the DBB containing the fault is small. Similar results have
been observed with the virtual meeting case study.

This study also shows that the diagnosis algorithm we use is not
ideal: the diagnosis accuracy varies from one mutant to another
even if the faulty statement is in the same DBB. This means that
the actual faulty DBB is not always ranked as the most suspicious

88

according to this algorithm. In practice, this is mainly due to the
problem of ideal verdicts: some test cases pass even if they
execute a faulty statement.

This experiment illustrates that, although the diagnosis algorithm
is not ideal, the notion of dynamic basic blocks is relevant
regarding the diagnosis accuracy. This result is encouraging since
the TfD criterion we propose section 3.2 is based on this idea.

5.4 Minimizing DBB to improve diagnosis
In this section, we experimentally compare the TfD criterion with
N-coverage using the VIRTUALMEETING case study. The aim of
this study is to estimate the benefit provided by using a TfD
criterion based on minimizing DBB rather than coverage criteria
to optimize a test suite for diagnosis.

5.4.1 Test suite optimization
First, test suites are produced. For Coverage and N-coverage
criteria we use a bacteriologic algorithm with a fitness function
based on code coverage. For the TfD criterion we also use a
bacteriologic algorithm to optimize a test suite with the fitness
function based on the number of distinguished DBB presented in
section 4.2.

As in the previous study, several test suites are built, each of them
covering the code of the system. Then, by merging N of those test
suites we built test suites that satisfies the N-Coverage criterion.
Running the bacteriologic algorithm 4 times, with an initial test
suite randomly generated, we obtained 4 test suites composed of
14 to 18 test cases, each covering around 87% of the code of the
application. In [7], we study these results in detail and show that
only 88.8% of the code is coverable (the rest is dead code and
exceptional code). It has to be noticed that the goal of this study is
to enhance an existing test suite which already detects faults. Even
if the whole code is not covered, and even if the test suite does not
fully satisfy a chosen test adequacy criterion, the test suite can be
optimized for locating the detected faults. This illustrates the
difference between a test adequacy criterion and the TfD one.
Mutants injected in the non-covered code were not considered in
the study, since faults were not detectable by the test cases.

100

110

120

130

140

150

160

170

180

190

200

0 50 100 150 200

Generation

of

 d
yn

am
ic

 b
as

ic
 b

lo
ck

s

Figure 6 – Bacteriological algorithm maximizing the number

of DBBs

To reach the TfD criterion, from one initial test suite that covers
all statements (15 test cases), the algorithm adds a test case to the

test suite if it allows distinguishing more DBBs in the program
under test than the test suite already selected.

Figure 6 presents an execution of the bacteriologic algorithm. It
shows the growth of the number of DBBs distinguished along the
execution of the algorithm. As initial test suite, we use a test suite
previously generated to cover the code of the application
composed of 15 test cases that distinguish 113 DBBs. After
around 150 iterations of the algorithm the final test suite is
composed of 31 test cases and is able to distinguish 186 DBBs.

5.4.2 Faulty versions of the VM system
Using JMutator, 250 mutants were generated by injecting faults in
the functional code of the system. No faults were introduced in the
dead and exceptional code as they cannot be detected by the
generated tests. We also chose not to introduce faults in the
initialization code as the diagnosis algorithm is not adequate for
this code executed by every test case. This problem was first
identified by Jones et al. in [9] and confirmed by the study on the
BOOK system presented previously.

5.4.3 Results and discussions
Table 2 – Test suites for the virtual meeting

Test suite Code coverage Number of DBBs
TS1 86,60 113
TS2 86,94 148
TS3 88,56 177
TS4 88,56 182
TS5 86,94 186

Table 2 summarizes data for the test cases optimized for the
virtual meeting. TS1 to TS4 have been obtained using criteria
from 1-Coverage to 4-Coverage and TS5 with the TfD criterion.
Figure 7 displays the number of test cases in each test suite and
the diagnosis accuracy obtained using each test suite. The
accuracy is the average number of statements that must be
analyzed to locate the fault. It is computed for the 250 mutants of
the VM system.

Test generated
w.r.t. code
coverage

Test generated
to distinguish
dynamic basic

blocks

test cases
Diagnosis Accuracy

statements
0 2 4 6 8 10 12 14

1

2

3

4

5

16

15

29

47

63

31

Test generated
w.r.t. code
coverage

Test generated
to distinguish
dynamic basic

blocks

test cases
Diagnosis Accuracy

statements
0 2 4 6 8 10 12 14 16

1

2

3

4

5

15

29

47

63

31

Figure 7 - Results summary for the virtual meeting system

This study confirms the intuition that using an N-Coverage
criterion, the number of distinguished DBBs increases and the
diagnosis accuracy is better when N increases. With the 1-
Coverage criterion, an average of 15 statements has to be
examined to find the actual faulty statement while using 4-
Coverage only 9 statements have to be examined. Yet, increasing
N also significantly increases the number of test cases: from 15
test cases for 1-Coverage to 63 test cases for 4-Coverage.
Studying the diagnosis accuracy of the optimized test suite with
TfD criterion shows that the average number of statements to

89

inspect is divided by two with respect to the initial test suite (from
14.95 to 7.09 statements).

The TfD criterion seems to fit better the diagnosis requirements:
with only 31 test cases, the test suite TS5 optimized with the
bacteriologic algorithm is able to distinguish 186 DBBs and leads
to an average diagnosis accuracy of 7 statements. In fact, with half
as many test cases as in TS4 this test suite allows a better
diagnosis accuracy.

To conclude, this study confirms the intimate relationship between
the notion of DBB and the accuracy of diagnosis. It
experimentally validates the benefit provided by the TfD criterion
for fault localization: it allows a better diagnosis using a small
number of test cases.

Next section discusses the practical use of this criterion in the
test/debugging process.

6. THE TEST-FOR-DIAGNOSIS PROCESS
We now study how to apply the proposed approach in a real-
diagnosis process, through an incremental methodology to deal
with large scale programs.

6.1 Methodology
The diagnosis aid techniques considered in this paper are helpful
for large programs. The method we propose for optimizing tests
should then be scalable enough to be applied on large systems. As
shown with VIRTUALMEETING case study, the approach can be
applied on several thousand statements. Yet, on a much bigger
system, even if it is fully automated, the optimization process may
be really time-consuming.

To deal with scalability, we propose an incremental methodology,
which reduces the diagnosis scope step-by-step. In a large system,
a subset of code must be selected and test cases are improved to
maximize the number of DBBs (i.e. minimize the size of DBBs)
in this subset. Several techniques can be used to select this sub-set
of code that contains the fault to locate:

• The tester expertise: She may allow selecting a particular
sub-set of the system’s classes regarding the test cases that
failed. More generally, the tester may know from which sub-
system the problem comes.

• Using failed test cases execution traces: if an error is detected
by a test, there is a faulty statement in its trace. To locate this
faulty statement, the test suite can be optimized to distinguish
as many DBBs as possible in the set of statements executed
by the test case that detects the error.

• Using a diagnosis algorithm: the most suspicious DBBs are
automatically selected by the diagnosis algorithm. Then, the
local optimization process is used to split those DBBs.

Then, the test case optimization will try to break the DBBs in this
subset of the program code. Figure 8 summarizes this local test
suite optimization process.

Using the local optimization process allows an incremental
approach for fault localization and improves the scalability of the
technique. Next section discusses some remaining problems
regarding the link between the testing task and the diagnosis one.

MutantsMutantsInitial set
of test
cases

Bacteriological
algorithm with

MaxDBB criterion

MutantsMutants
Initial set

of test
cases

Optimized
set of

test cases

-Built for fault detection
-Satisfies any test criterion

-Greater or equal fault detection power
-Optimized fault localization power for

the errors detected in the program

Optimization: add a minimal number of test
cases to distinguish as many DBB as possible
in a sub-set of the program’s code

Sub-set of the
code of the program
that contains the
errors to locate

MutantsMutantsInitial set
of test
cases

MutantsMutantsInitial set
of test
cases

Bacteriological
algorithm with

MaxDBB criterion

MutantsMutants
Initial set

of test
cases

Optimized
set of

test cases

MutantsMutants
Initial set

of test
cases

Optimized
set of

test cases

-Built for fault detection
-Satisfies any test criterion

-Greater or equal fault detection power
-Optimized fault localization power for

the errors detected in the program

Optimization: add a minimal number of test
cases to distinguish as many DBB as possible
in a sub-set of the program’s code

Sub-set of the
code of the program
that contains the
errors to locate

Figure 8 - Local test suite optimization process

6.2 Using assertions to break DBBs
The TfD criterion has been defined to maximize statement
distinction while cross-checking the test cases traces. However, all
statements cannot be individually distinguished: the initialization
code is an example of large statements block in which the fault
localization algorithm fails producing an accurate diagnosis. To
solve the problem, some complementary information is needed (in
addition to the test cases traces) as an input of the diagnosis
algorithm. It must allow distinguishing statements that belong to a
same static basic block. Adding assertions in the code of the
program under test may be a way to split the static blocks. For
instance, the Design by Contract approach [12], which consists in
adding pre and post conditions to every method of the program,
may be used.

7. CONCLUSION AND FUTURE WORK
This work establishes an explicit connection between testing and
diagnosis. Specifically, the main contribution is the identification
of a “test for diagnosis criterion” which is defined to ensure a
satisfactory “fault locating power” for a test suite with respect to
the studied diagnosis techniques. This criterion consists in
maximizing the number of distinguished dynamic basic blocks.
The benefits of such a criterion are two-fold:

• It allows minimizing the number of test cases required for an
accurate diagnosis. It thus reconciles the actual test practices
with the diagnosis requirements.

• It provides a way to automatically estimate the quality of a
particular test suite with respect to the diagnosis
requirements. This estimation can be used to improve a test
suite in order to improve the efficiency of the diagnosis aid
technique.

The technique is experimentally validated on an OO system made
of over a thousand statements. We detail a method to apply this
technique on large programs. In future work, experiments will be
carried out to evaluate whether classical test adequacy criteria can
efficiently isolate DBBs.

8. ACKNOWLEDGEMENTS
The authors are grateful to Sebastian Elbaum, Jim Jones and the
anonymous reviewers for their helpful comments on the
preliminary version of the paper.

90

9. REFERENCES
[1] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault

Localization using Execution Slices and Dataflow Tests.
Proceedings of ISSRE'95 (Int. Symposium on Software
Reliability Engineering), Toulouse, France, October 1995.

[2] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon.
Automatic Test Cases Optimization using a Bacteriological
Adaptation Model: Application to .NET Components.
Proceedings of ASE'02 (Automated Software Engineering),
Edimburgh, Scotland, UK, September 2002.

[3] B. Baudry, F. Fleurey, Y. Le Traon, and J.-M. Jézéquel. An
Original Approach for Automatic Test Cases Optimization: a
Bacteriologic Algorithm. IEEE Software, 2005. 22(2): 76-82.

[4] H. Cleve and A. Zeller. Locating Causes of Program
Failures. Proceedings of ICSE (International Conference on
Software Engineering), St. Louis, Missouri, USA, May 2005.

[5] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight Defect
Localization for Java. Proceedings of ECOOP'05 (European
Conference on Object-Oriented Programming), Glasgow,
Scotland, July 2005.

[6] R. DeMillo, R. Lipton, and F. Sayward. Hints on Test Data
Selection : Help For The Practicing Programmer. IEEE
Computer, 1978. 11(4): 34 - 41.

[7] F. Fleurey, B. Baudry, and Y. Le Traon. Improving Test
Cases for Accurate Diagnosis. Accessed on: May 2005.

 http://www.irisa.fr/triskell/results/Diagnosis/index.htm
[8] J.A. Jones and M.J. Harrold. Empirical Evaluation of the

Tarantula Automatic Fault Localization Technique.
Proceedings of ASE'05 (Automated Software Engineering),
Long Beach, California, USA, November 2005.

[9] J.A. Jones, M.J. Harrold, and J. Stasko. Visualization of Test
Information to Assist Fault Localization. Proceedings of
ICSE'02 (Int. Conference in Software Engineering), Orlando,
FL, USA, May 2002.

[10] M. Khalil, Y. Le Traon, and C. Robach. Towards an
automatic diagnosis for high-level design validation.
Proceedings of International Test Conference, Washington,
DC, USA, October 1998.

[11] B. Korel. Dynamic method for software test data generation.
Software Testing, Verification and Reliability, 1992. 2(4):
203 - 213.

[12] B. Meyer. Object-oriented software construction. Prentice
Hall, 1992.

[13] C.C. Michael, G. McGraw, and M.A. Schatz. Generating
Software Test Data by Evolution. IEEE Transactions on
Software Engineering, 2001. 27(12): 1085 - 1110.

[14] A.J. Offutt, A. Lee, G. Rothermel, R.H. Untch, and C. Zapf.
An Experimental Determination of Sufficient Mutant
Operators. ACM Transactions on Software Engineering and
Methodology, 1996. 5(2): 99 - 118.

[15] M.L. Rosenzweig. Species Diversity In Space and Time.
Cambridge University Press, 1995.

[16] J. Wegener, A. Baresel, and H. Stahmer. Evolutionary Test
Environment for Automatic Structural Testing. Information
and Software Technology, 2001. 43(14): 841 - 854.

[17] A. Zeller and R. Hildebrandt. Simplifying and Isolating
Failure-Inducing Input. IEEE Transactions on Software
Engineering, 2002. 28(2): 183-200.

91

http://www.irisa.fr/triskell/results/Diagnosis/index.htm

	INTRODUCTION
	BACKGROUND ON DIAGNOSIS ALGORITHMS
	Cross checking strategies and diagnosis accuracy
	Existing cross-checking techniques

	FROM TEST TO DIAGNOSIS
	Code coverage based criteria
	Distinguishing statements
	Dynamic basic blocks
	Size of the DBB and diagnosis accuracy

	Test for diagnosis criterion

	AUTOMATIC TEST OPTIMIZATION
	Dynamic test data generation
	The bacteriologic approach

	EXPERIMENTAL VALIDATION
	Experimental process and tools
	Systems under test
	Diagnosis accuracy vs. DBB size
	Test suite optimization
	Faulty versions of the system
	Results
	Conclusion and discussion

	Minimizing DBB to improve diagnosis
	Test suite optimization
	Faulty versions of the VM system
	Results and discussions

	THE TEST-FOR-DIAGNOSIS PROCESS
	Methodology
	Using assertions to break DBBs

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

