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This paper presents hierarchical improvements to the combinatorial stochastic annealing
algorithm using a new and efficient sampling technique. The Hammersley sequence sampling
technique is used for updating discrete combinations, reducing the Markov chain length,
determining the number of samples automatically, and embedding better confidence intervals
of the samples. The improved algorithm, Hammersley stochastic annealing, can significantly
improve computational efficiency over traditional stochastic programming methods. Three
distinctive example functions considered proved the efficiency improvement of Hammersley
stochastic annealing to be up to 99.3% better than the traditional counterparts. Thus, this new
method can be a useful tool for large-scale combinatorial stochastic programming problems.
Application of this new algorithm to a real world problem of solvent selection under uncertainty

is presented in part 2 of this series.

1. Introduction

Optimization under uncertainty refers to that branch
of optimization problems where there are uncertainties
involved in the data or model, popularly known as
stochastic programming problems. Stochastic program-
ming gives the ability to optimize in the face of uncer-
tainties and requires that the objective function and
constraints be expressed in terms of some probabilistic
representation (e.g., expected value, variance, fractiles,
or most likely values). The general way to treat the
probabilistic functional of the objective function and
constraints is to use stochastic models instead of
deterministic models in the problem formulation. Thus,
the stochastic optimization problem, where there are
decision variables and uncertain parameters, can be
viewed as

(P1) min z = P,[f(x,8)] 1)

s.t. P,[h(x,£)] =0

Pslg(x,8)] =0
XeX ek

where X is a vector of decision variables and & is a vector
of uncertain parameters of the domain Z. The perfor-
mance metric to be optimized is represented by a
probabilistic function P;, and the model equality and
inequality constraints are defined by a set of probability
functions P, and P3, respectively. The probability func-
tion P; represents the cumulative distribution functional
such as the expected value, mode, variance, or fractiles.
For example, if P; is the expected value, the above
optimization problem becomes
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(P2) min z = E.f(x,§) (2

where E¢ is the mathematical expectation with respect
to &. The optimal solution and optimal value of problem
P2 are x* and z*, respectively. The main difficulty of
stochastic programming stems from evaluating the
uncertain functions and their expectations. A general-
ized method to propagate the uncertainties is to use a
sampling method. A common method is to propagate
Nsamp samples generated from the random values of &
and optimize the following approximated problem:

Nsamp

(P3) min z = f(x,&) (3)
2

samp

Similarly, the optimal solution and optimal value of this
approximation problem are X and 2, respectively. To
solve this approximated stochastic problem, the opti-
mization and sampling techniques for § are performed
simultaneously. Thus, the generalized stochastic frame-
work for solving optimization under uncertainty prob-
lems involve two recursive loops: (1) the inner sampling
loop and (2) the outer optimization loop. For example,
sampling is embedded into the L-shaped method, which
is an approximation of the nonlinear term in the
objective function of stochastic programming prob-
lems.12

In the sampling loop, Monte Carlo sampling (MCS),
a pseudo-random number generator, has been commonly
used for representing &. Even though MCS generates
independent and random samples of a given probability
distribution, it is known that MCS requires a large
number of samples, Nsamp, t0 approximate the “true”
mean or variance. Decreasing the distance between the
true and approximated optimal solutions |x* — X|,
therefore, increases Nsamp and results in a high compu-
tational intensity. To reduce the computational burden
of stochastic programming problems, one can use either
decomposition methods with sampling?=2 or efficient
sampling methods. However, most of the decomposition
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methods require convexity conditions and dual-angular
structures and are only applicable to problems involving
continuous decisions. The area of discrete optimization
problems, the focus of this paper, contains computa-
tionally intensive stochastic programming problems.

Recently, a new quasi-random sampling technique
referred to as Hammersley sequence sampling (HSS)*5
was proposed, and it has been shown to exhibit better
homogeneity over the multivariate parameter space.
Further, for this new sampling technique, it has been
found that the number of samples required to converge
to the different performance measures (such as mean,
variance, or fractiles) of an output random variable,
subject to input uncertainties, is lower than the crude
MCS or the variance reduction techniques such as Latin
hypercube sampling (LHS).6 This rapid convergence
property of HSS has important implications for stochas-
tic programming, suggesting that precise estimates of
any probabilistic function evaluations are achievable by
taking a smaller sample size. These uniformity and
faster convergence properties of HSS can be used for
the outer optimization loop as well as the inner loop to
achieve better computational efficiency, with the sto-
chastic programming problems involving discrete deci-
sion and continuous decision variables.

Discrete optimization problems involving determin-
istic models can be classified as IP (integer program-
ming), MILP (mixed-integer linear programming), and
MINLP (mixed-integer nonlinear programming) prob-
lems. They involve discrete decision variables that have
many real world applications: molecular design, DNA
alignment, vehicle routing, staff scheduling, production
planning, inventory management, facility location, very
large-scale integration design, image processing, data
network design, etc. For representing discrete variables,
the binary variable representation has been used in
traditional mathematical programming algorithms. The
approaches for solving discrete optimization methods
such as branch and bound, cutting plane, generalized
Bender's decomposition, and outer approximation’—°
involve bounding heuristics or integer relaxation at the
discrete optimization level and use the traditional
nonlinear programming or linear programming algo-
rithms for solving the continuous optimization problem.
Probabilistic methods such as simulated annealing
(SA),10 on the other hand, use physical analogy in a
discrete space to progress toward optimum. These
methods can also be used to solve MINLPs but tend to
be less efficient than their mathematical programming
counterparts. However, coupling SA with mathematical
programming algorithms for continuous optimization,
such as the traditional nonlinear programming algo-
rithms, can provide a viable alternative to the math-
ematical programming methods. Further, like the math-
ematical programming approach, this coupled approach
does not encounter difficulties when functions do not
satisfy convexity conditions, when systems have large
combinatorial explosion, or when the solution space has
discontinuity. In recent years, a new variant of SA called
stochastic annealing''~13 was designed to efficiently
optimize a probabilistic objective function by automati-
cally selecting the number of samples needed to ap-
proximate the uncertain surface. This paper focuses on
improving the efficiency of the SA-based algorithms. The
probabilistic nature of these SA-based algorithms is the
basis for the hierarchical improvement to be presented
in this paper.

Ind. Eng. Chem. Res., Vol. 41, No. 5, 2002 1277

Optimal
Configuration Stochastic
Annealing
Feasible T ¢ Discrete Decisions

Solution
Probabilistic Objective? ¢ Continuous
& Constraints Decisions

Optimization

Sampling

Figure 1. Coupled framework of STA—NLP for MINLP problems.

Table 1. Three-Level Efficiency Improvement in
Stochastic Optimization

level algorithm modification target
i ESA optimization loop
ii ESTA sampling loop
i HSTA confidence interval

Hierarchical improvements of stochastic annealing for
reducing computational intensity are achieved by using
a new efficient sampling technique, HSS, both in the
inner sampling and in the outer optimization loops. New
improved SA-based stochastic programming algorithms
are summarized in Table 1. In SA and its variants, each
configuration that is a set of discrete decision variables
is randomly generated from the previous configuration,
and this update is generally based on a random prob-
ability given by a uniform distribution of the neighbor-
ing configurations. Because it is known that this prob-
ability can significantly affect the overall efficiency of
the annealing process,'* efficient SA (ESA) aims to
improve this generation mechanism by using the uni-
formity property of HSS. The efficient stochastic an-
nealing (ESTA) algorithm not only improves the gen-
eration mechanism but also reduces the number of
samples required in the inner sampling loop by using
the faster convergence property of HSS. Finally Ham-
mersley stochastic annealing (HSTA) applies an ac-
curate confidence interval of the samples to the ESTA
algorithm. Similar to SA—NLP, a coupled framework
of STA—NLP designed to solve MINLP under uncer-
tainty is shown in Figure 1, where the upper stochastic
annealing block is modified to HSTA. The proposed
combinatorial optimization algorithm under uncertainty
can also be used for dependent uncertain variables. In
this case, the sampling loop in Figure 1 can generate
correlated samples for the uncertain variables, and the
STA—NLP algorithm can do the same thing.

This paper is composed as follows: Section 2 describes
the generalized stochastic models involved in stochastic
programming problems, section 3 explains and demon-
strates hierarchical improvements in the SA-based
algorithms, and the last section concludes the paper.
In part 2 of this series, HSTA is applied to a solvent
selection problem under uncertainty, whose aim is to
find the best promising solvents with the properties
desired. All possible solvent molecules are generated by
constructing their building blocks or groups, and their
chemical and physical properties are estimated. HSTA
is used to select groups to form molecules, impose
uncertainties on property estimation methods, and
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Figure 2. Examples of probabilistic distribution functions for stochastic modeling.

determine whether the probabilistic objective functional
is optimum.

2. Uncertainty Propagation and Sampling

The probabilistic or stochastic modeling procedure
involves (1) specifying the uncertainties in key input
parameters in terms of probability distributions, (2)
sampling the distribution of the specified parameter in
an iterative fashion, and (3) propagating the effects of
uncertainties through the process flowsheets and ap-
plying statistical techniques to analyze the results.’®

2.1. Specifying Uncertainty Using Probability
Distributions. To accommodate the diverse nature of
uncertainty, different distributions can be used. Some
of the representative distributions are shown in Figure
2. The type of distribution chosen for an uncertain
variable reflects the amount of information that is
available. For example, uniform and log-uniform dis-
tributions represent an equal likelihood of a value lying
anywhere within a specified range, on either a linear
or a logarithmic scale, respectively. The normal (Gauss-
ian) distribution reflects a symmetric but varying prob-
ability of a parameter value being above or below the

mean value. In contrast, the log-normal and some
triangular distributions are skewed such that there is
a higher probability of values lying on one side of the
median than on the other. The j distribution provides
a wide range of shapes and is a very flexible means of
representing variability over a fixed range. Finally, in
some special cases, user-specified distributions can be
used to represent any arbitrary characterization of
uncertainty, including the fractile distribution (i.e., fixed
probabilities of discrete values).

2.2. Sampling Techniques in Stochastic Model-
ing. Once probability distributions are assigned to the
uncertain parameters, the next step is to perform a
sampling operation from the multivariable uncertain
parameter domain.* Alternatively, one can use analyti-
cal methods to obtain the effect of uncertainties on the
output. These methods, however, tend to be applicable
to special kinds of uncertainty distributions and opti-
mization surfaces only. The sampling approach provides
wider applicability and is discussed below.

Monte Carlo Technique. One of the most widely
used sampling techniques is the MCS technique, which
is based on a pseudo-random number generator to



approximate a uniform distribution (i.e., having equal
probability in the range of O to 1). The specific values
for each input variable are selected by inverse trans-
formation over the cumulative probability distribution.

The main advantage of Monte Carlo methods lies in
the fact that the results from any Monte Carlo simula-
tion can be treated using classic statistical methods
because of the randomness and independence of gener-
ated samples. Results can thus be presented in the form
of histograms, and methods of statistical estimation and
inference may be applied. Nevertheless, in most ap-
plications, the actual relationship between successive
points in a sample has no physical significance. Hence,
the randomness/independence for approximating a uni-
form distribution is not critical.1® Moreover, the error
of approximating a distribution by a finite number of
samples depends on the distribution properties of the
sample used for U(0,1) rather than on its randomness.
Once it is apparent that the uniformity property is
central to the design of sampling techniques, a con-
strained or stratified sampling technique such as LHS
becomes appealing.l” LHS is one form of the variance
reduction technique and is widely used in risk and
decision analysis literature.

LHS. LHS® is one form of the stratified sampling
technique, which can yield more precise estimates of the
distribution function. In LHS, the range of each uncer-
tain parameter E; is subdivided into nonoverlapping
intervals of equal probability. One value from each
interval is selected at random with respect to the
probability distribution in the interval. The Nsamp Values
thus obtained for E; are paired in a random manner
(i.e., equally likely combinations) with Nsamp values of
E>. These Nsamp values are then combined with Nsamp
values of Z3 to form Nsamp triplets, and so on, until Nsamp
k-tuplets are formed. The main drawback of this strati-
fication scheme is that, though it is uniform in one
dimension, it does not provide the uniformity property
in a k-dimensional hypercube.

Importance Sampling. Stratified sampling tech-
niques ensure that more samples are generated from
high-probability regions. On the other hand, importance
sampling techniques! guarantee full coverage of high-
consequence regions in the sample space, even if these
regions are associated with low probabilities. This
makes importance sampling techniques problem-de-
pendent.

HSS. Recently, an efficient sampling technique, called
HSS and based on Hammersley points, has been devel-
oped by Kalagnanam and Diwekar,*> which uses an
optimal design scheme for placing Nsamp points on a
k-dimensional hypercube. This scheme ensures that the
sample set is more representative of the population,
showing better uniformity in the multidimensional
uncertain surface, unlike Monte Carlo, Latin hypercube,
and its variant, the median LHS techniques.

Figure 3 shows samples generated by different sam-
pling techniques on a unit square and provides a
qualitative picture of how uniform the samples are. It
is clear from Figure 3 that HSS has better uniformity
than the other sampling techniques. The main reason
for this is that the Hammersley points, which are one
of the minimum discrepancy designs, provide an optimal
design for placing Nsamp points on a k-dimensional
hypercube. In contrast, stratified techniques such as the
LHS technique are designed for uniformity along a
single dimension and then randomly paired for place-
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Figure 3. Sample points (100) on a unit square using (a) the MCS
and (b) the HSS techniques.

ment on a k-dimensional cube. Therefore, the likelihood
of such schemes providing a good uniformity property
on high-dimensional cubes is small.

The better uniformity property of HSS results in
faster convergence to the “true” mean, variance, or
fractiles of a function with multidimensional uncertain-
ties. Because there are no analytical approaches (for
stratified designs) to calculate the number of samples
required for convergence to the “true” mean or variance,
Kalagnanam and Diwekar* also conducted a large
matrix of numerical tests and showed that the HSS
technique is at least 3—100 times faster than the MCS
and LHS techniques and hence is a preferred sampling
technique for uncertainty analysis as well as for sto-
chastic programming problems. This same uniformity
property of the Hammersley sequence can be used to
systematically improve the efficiency of the SA—NLP-
based framework for optimization under uncertainty
and is presented in the next section.

3. Hierarchical Efficiency Improvement

The hierarchical improvements to the SA-based al-
gorithm for discrete optimization under uncertainty are
described below. These improvements are at three
levels: (1) the inner sampling loop (MCS to HSS), (2)
the outer discrete deterministic optimization loop (SA
to ESA), and (3) the interaction between the optimiza-
tion and the sampling loops (stochastic annealing to
HSTA). While the HSS technique is described in the
earlier section, the other steps are described below.
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3.1. ESA: Backgrounds. SA, proposed by Kirk-
patrick et al.,10 is a probabilistic method for combina-
torial optimization problems based on ideas from sta-
tistical mechanics. The analogy in SA is to the behavior
of physical systems in the presence of a heat bath: in
physical annealing, all atomic particles arrange them-
selves in a lattice formation that minimizes the amount
of energy in the system, provided the initial temperature
is sufficiently high and the cooling is carried out slowly.
At each temperature T, the system is allowed to reach
thermal equilibrium, which is characterized by the
probability of being in a state with energy E given by
the Boltzmann distribution function:

Pr(E) = % exp(— le %) 4)

where 1/Z is a normalization factor and kg is Boltz-
mann’s constant (1.3806 x 10722 J/K). Furthermore, at
each temperature level, the system should follow Mark-
ovian moves, where the next move is only dependent
on the current position and not the previous ones.

In SA, the objective function (usually cost) becomes
the energy of the system, and the goal is to minimize
the energy. Simulating the behavior of the system then
becomes a question of generating a random perturbation
that displaces a current “particle” (moving the system
to another configuration). If the configuration S, rep-
resenting a set of discrete decision variables that results
from the moves, has a lower energy state, the move is
accepted. However, if the move is to a higher energy
state, the move is accepted according to the Metropolis
criterion that is given by van Laarhoven and Aarts:14

accepted if Pr < A;; =
{exp(—AE/T) ifAE=E,—E =0

1 otherwise } Oijes )

where Aj; is the acceptance probability for generating
configuration j from i. [G;; is not a part of the Boltzmann
energy distribution (eq 4). Instead, a sufficient condition
in order to guarantee that the configurations follow eq
4 is the following balance condition (please remember
that configurations i and j are vectors): G;;Aij exp(—E(i)/
T) = G;jiAji exp(—E()/T). Because Gj; is a symmetric
function (=G;j), the balance equation becomes the
Metropolis criterion as shown in eq 5. Therefore, the
Metropolis criterion is independent of Gj; as long as Gj;
is symmetric.] The uphill moves can be accepted if a
random probability (Pr) is less than or equal to Aj.
Hence, the Metropolis criterion implies that, at high
temperatures, a large percentage of uphill moves are
accepted. However, as the temperature gets colder, only
a small percentage of uphill moves are accepted. Note
that these uphill moves are not allowed in all local
optimization algorithms. After the system has evolved
to thermal equilibrium at a given temperature, then the
temperature is lowered, and the annealing process
continues until the system reaches a certain “freezing”
temperature determined a priori. Thus, SA combines
both iterative improvements in local areas and random
jumpings to help ensure that the system does not
become stuck in a local optimum.

Because SA is a probabilistic method, several random
probability functions are involved in this procedure. Ajj
represents the acceptance probability, and one or more
generation probabilities G;; are used to generate sub-
sequent configurational moves. It is known that the

efficiency of the annealing algorithm is affected little
by the use of different acceptance probability distribu-
tions.1* However, Gj; for generating configuration j from
i at each temperature can significantly affect the overall
efficiency of the annealing process. The cooling schedule
is strongly dependent on G;;: if the cooling is fast, then
Gij should cover a wider range of the configuration space
at each temperature level. Generally, G;j; is a random
probability given by the uniform distribution within the
neighborhood. Thus, recent research efforts for SA
improvement have been focused on modifying or chang-
ing Gjj. These new SA algorithms differ mainly in the
choice of Gjj and the cooling schedule.!8

Among the proposed SA variants, fast SA (FSA)!° and
hybrid SA (HSA)!® are worth mentioning. Gjj in FSA
has a Gaussian-like peak and Lorentzian long tails
which can make an occasional long jump from the
current configuration to increase the speed of annealing.
However, this G;; cannot guarantee uniform coverage
of the moves over the configuration surface. HSA applies
the hybrid Monte Carlo method to obtain Gjj, in which
the design variable x and a Gaussian-like auxiliary
momenta p are mapped using Hamilton’s equations of
motion. The acceptance probability is similar to the
Metropolis criterion, but the energy difference AE is
replaced by the Hamiltonian function difference A%(x,p).
Although this algorithm is found to be very fast, HSA
requires an evaluation of the derivative of the objective
function, —af(x)/ax;, for mapping and hence destroys one
of the advantages of the standard SA algorithm: that
SA does not require derivative information.

3.2. ESA. The G;jj generation of the current annealing
algorithms rely on pseudo-random number generators
such as the crude MCS, which can result in clustered
moves over the configuration surface, as shown in
Figure 3a. Therefore, more moves or generations are
required to cover the whole configuration surface evenly,
and this results in a longer Markov chain length
(number of moves) at each temperature level. As
described in the previous section, the HSS technique
(Figure 3b), a quasi-random number generator, can
generate uniform samples over the k-dimensional hy-
percube. In this work, we use HSS to generate the G;j;
for SA and derive a new SA algorithm called ESA. It
should be noted that, in using the HSS for ESA, one
has to keep the k-dimensional uniformity property of
HSS by generating the k probabilities for G;j; from
configuration i in a complete space of a Markov chain
length. To illustrate this, consider the following sto-
chastic IP (SIP) problem from Birge and Louveaux:2°

min —2y, — 3y, (6)

st.y, +2y,<& —x

Yi=8& %
y = 0, integer

where & = (2, 2)T or (4, 3)7, each with an equal
probability, and the current iterate point is at x = (0,
1)T. The optimal solution is at y = (2, 1)T. The imple-
mentation of SA to this example requires four random
probabilities: one for assigning &, two for moving y, and
one for the Metropolis criterion. In traditional SA
algorithms, these probabilities are established by gen-
erating a pseudo-random number based on MCS at a
time. However, to exploit the k-dimensional uniformity
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Figure 4. Generation probabilities, Gj, for HSS and MCS,
example I, with ND = 10 (several points of HSS are overlapping).

of HSS, these four probabilities are generated together
by generating all of the N (number of moves at each
temperature) quasi-random numbers based on HSS at
once and then using them one at a time.

To compare the performance of ESA with SA, both
MCS and HSS ways are used to generate the four
probabilities. The average value of the total moves is
obtained from six different initial conditions. The total
moves for the SIP with the HSS technique is found to
be 691, while the MCS technique required a total of
1503 moves, a significant savings.

To further demonstrate the efficiency improvement
of ESA over SA, the following examples are tested:

Example I:
ND
)=y ¥/’ W)
Example I1:
Y1
) =) {0~ 3)* + Iy, (i) — 31 + [ys(i) — 31%} (8)
Example I11:

ND ND

i 2 ND
WM=Z@—E§+Zﬁ—wawo (9)

where x denotes a vector of continuous variables and y
denotes a vector of discrete variables. Example | is a
multidimensional parabolic function taken from Salazar
and Toral'® where ND is the dimension of the function.
This example has one global optimum at zero for all
decision variables. The second example, a pure combi-
natorial problem, appears in work by Painton and
Diwekar,2! in which the objective space is discontinuous
with respect to y;. This example also has one global
optimum when y; is 3 and all y,(i) and y3(i) are 3 (i = 1,
..., Y1). Because the third example involves discrete and
continuous decision variables, this example function is
a MINLP problem. As an alternative to MINLP, a
coupling of SA and NLP, SA—NLP,2 is used to solve
this problem. This function has one global optimum
[f(x,y) = —1] and many local optima.

Figure 4 shows G;j probabilities of HSS and MCS for
example I with ND = 10. Because there are 10 elements
in y, the ideal probability of selecting any element is
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Figure 5. Cost trajectories of ESA and SA with different Markov
chain lengths (ND = 10).

Table 2. Comparison of SA and ESA in Terms of the
Total Number of Moves

total number of moves

example ND SA ESA % savings
| 10 3109 1536 50.6
50 18598 12995 30.1
100 39790 23000 42.0
1 1285 592 54.0
1 10 2742 1700 38.0
40 13238 6985 47.2

0.1, and the value of a selected element can be randomly
bumped up or down with a probability of 0.5. Thus, the
dotted lines in this figure are used to show ideal two-
dimensional Gj; probabilities, while circle and cross
symbols are for the actual generation probabilities from
HSS and MCS, respectively. Because HSS can generate
more uniform samples in the multivariate space, Gj;
probability, generated using HSS, is closer to the ideal
probabilities than the results from MCS. In contrast,
Gij, generated from MCS, has a high deviation from the
ideal probabilities, and hence, MCS requires a large
number of moves to approximate the ideal probabilities.

Figure 5 shows trajectories of the objective value for
example | with different Markov chain lengths. ESA
found the global solution with a Markov chain length
of 45 at each temperature, while the traditional SA
exploited a Markov chain length of 75 to reach the same
solution. As can be seen, ESA provides a significant
reduction in moves at each temperature. Table 2
presents the efficiency improvements of the ESA algo-
rithm in terms of the total number of configurational
moves. The results obtained here are the average values
for 10 different initial conditions used. From this table,
it can be said that ESA is approximately 30—54% more
efficient than SA.

3.3. ESTA. Diwekar and co-workers!—13 recently
proposed stochastic annealing, a variant of SA, that is
designed to solve discrete optimization problems under
uncertainty. This algorithm is designed to efficiently
optimize a probabilistic objective function by balancing
the solution accuracy and computational efficiency. In
the stochastic annealing algorithm, the optimizer ob-
tains not only the decision variables but also the number
of samples required for the stochastic model. Stochastic
annealing uses a substitute objective function, which
involves the true value of the probabilistic objective
function augmented by a penalty term involving an
error in sampling related to the number of samples.
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Table 3. Main Steps in the Stochastic Annealing Algorithm

1. initialize variables: Tinitial, Trreeze, @, accept and reject limits, and initial configuration (S)
2.if T > Ttreeze, then perform the following loop N (number of moves at a given temperature) times
2.1. generate a move S' from the current configuration S as follows:
2.1.1. select the decision variables for new configuration S' (0—1, integer, discrete, and continuous variables)
2.1.2. select the parameter level randomly within the neighborhood
2.2. select the number of samples Nsamp by a random move. If rand(0, 1) < 0.5,

then

Nsamp = Nsamp + 5 x rand(0, 1)

else

Nsamp = Nsamp — 5 x rand(0, 1)
2.3. generate Nsamp samples of the uncertain parameters

2.4. perform the following loop Nsamp times
2.4.1. run the model

2.4.2. calculate the objective function cost, f(x,5)

2.5. evaluate the expected value Egf(x,5) and the variance of the cost function

2.6. generate the weighting function b(t) = bg/kt
2.7. calculate the modified objective function:

Nsamp

Z f(x.&) + b(t)

samp f=

2(S) =

2.8. let AE = z(S") — z(S)

20

Nsamp

2.9.if AE < 0, then accept the move and set S = S'; else if (AE > 0), accept with a probability exp(—AE/T)

3.set T =aT; if T > Tireeze, return to step 2
4. stop

Thus, the stochastic programming problem (P3) can be
modified to a new one (P4) that consists of the expected
cost function E£f(x,5) and the penalty term b(t) ¢ and is
given by

(P4) min z = Ef(x,§) + b(t) €

Nsamp

= f(x,&) + b(t) € (10)

samp J=

The penalty function is composed of the weighting
function b(t) and the error bandwidth (confidence in-
terval) € of the sampling method. The weighting function
b(t), governed by the cooling schedule, can be expressed
in terms of the annealing temperature level (t). At high
temperatures, the sample size (Nsamp) can be small
because the algorithm is exploring the functional topol-
ogy in the configuration space. Thus, at this stage,
computational efficiency is more important than solu-
tion accuracy. As the system gets cooler, the algorithm
searches for the global optimum. Consequently, it is
necessary to take more samples to get more accurate
and realistic objectives. Based on these properties, an
exponential function for b(t) can be devised as

b(t) = by/k' (11)

where by is a small constant (e.g., 0.001) and Kk is a
constant (e.g., 0.92) which governs the rate of increase.
These two empirical parameters depend on the cooling
schedule and must be predetermined through experi-
mentation such that the penalty term is less than 5%
of the real objective function.

The error bandwidth of random samples can be
estimated from the following equation based on classic
statistical methods. No matter what the distribution of
X, the central limit theorem allows one to calculate the
probabilistic error bands on the expected value of the
random samples, given by (X — Z1-w20/4/Ngymp, X +
zl_wzo/./Nsamp), where z1—q2 is a standard normal vari-
ate such that the range (—zi-a2, Z1-w2) e€ncloses 1 — a
probability of the unit normal distribution. For a higher
confidence interval such as 1 — a = 0.95, the standard

normal variate is approximately equal to the constant
2, resulting in the following equation:

€Mcs O 1/\/ Nsamp (12)

In our first approach for the development of stochastic
annealing algorithms, we have used this error band-
width in the penalty function, allowing stochastic an-
nealing to control the number of samples.

The main steps of the STA algorithm are summarized
in Table 3. A new configuration S' is generated from
the current configuration S based on the given genera-
tion probability G;jj (steps 2.1.1 and 2.1.2). Nsamp in step
2.2 can be randomly increased or decreased but eventu-
ally is governed by the weighting function used in the
penalty term. After Nsamp Uncertain samples are deter-
mined and generated, the model runs Nsamp times with
different uncertain parameters to find Esf(x,§). The new
stochastic objective function shown in eq 13 is then used
to evaluate the effect of uncertainties on the optimiza-
tion problems. The remaining steps are the same as the
SA algorithm steps.

The idea for reducing the Markov chain length by
using HSS, as done in ESA, is exploited here for the
new stochastic annealing algorithm. Additionally, HSS
is used in the inner sampling loop for uncertainty
analysis. This is likely to reduce the number of samples
needed to calculate the objective function accurately. We
call this two-level improved stochastic annealing algo-
rithm the ESTA algorithm.

Consider the nonconvex deterministic MINLP prob-
lem given in eq 9 that incorporates uncertainties (&).
This problem results in the following objective function,
a stochastic MINLP, to be minimized.

. B ND i \2 ND . ND
(x.y,8) = Z(Eixi - ﬁ) + 2 Gyi) — Dcos(4n§(ii/i3))

Because this example problem has a continuous decision
vector (x) and a discrete decision vector (y), a coupling
of STA and NLP (STA—NLP), similar to SA—NLP, is
used.



Table 4. Comparison of STA and ESTA in Terms of the
Average Number of NLP Subprogram Calls

ND STA ESTA % savings Markov chain length
2 6218 3298 47.1 100

10 5670 3265 42.4 100

10 4015 1439 64.2 minimum

Table 4 shows the total NLP subprogram calls using
the STA and the new ESTA algorithms. Even for the
same Markov chain length (the first two rows), ESTA
is approximately 45% more efficient than the STA
approach. This reduction is mainly attributed to the
faster convergence property of the HSS technique.
Further reduction can be achieved when a minimum
Markov chain length for each STA is determined (the
last row). To find a minimum Markov chain length, the
concept of cost of epoch proposed by Skiscim and
Golden® is applied to determine a pseudo thermal
equilibrium at each temperature level. A current epoch
(summation of certain consecutive cost values) is com-
pared with the previous epoch, and if the difference
between epochs is within tolerance, then we assume
pseudo thermal equilibrium. The minimum Markov
chain lengths at each temperature level were 60 for STA
and 40 for ESTA, and hence the efficiency improvement
reaches up to 65%. This reduction is a combined effect
of the uniformity property of the HSS-based random
number generator and the faster convergence property
of HSS.

3.4. HSTA. The error bandwidth used in the STA and
ESTA algorithms presented in the previous section are
based on classic statistical methods (eq 12). Classical
statistical methods provide good estimates for the
bounds (confidence intervals) of the MCS but may not
be applicable to other less random, yet uniform, sam-
pling techniques. It has been shown that classic statisti-
cal methods used to characterize the error bandwidth
for any confidence level of HSS overestimate either the
confidence intervals or bounds.324 Hence, the combina-
tion of the HSS technique and the classic error band-
width (emcs) in the ESTA algorithm is not the most
efficient approach, and further improvement is made
possible by using a modified error bandwidth that is
specific to the HSS technique.

An approach to quantify the error bandwidth for any
probabilistic function is well outlined in the refer-
ences'®24 and based on concepts from fractal geometry.
In this literature, it was established that the relative
error bandwidth of the Monte Carlo and HSS techniques
shows a scaling relationship (Nsamp®) with respect to the
number of samples. For the HSS technique, the expo-
nent for the error bandwidth for the mean is found to
be —1.8 from comprehensive simulations, and thus the
HSS-specific error bandwidth is given by

1

€pss U (14)

1.8
samp

Note that d of the MCS technique is estimated as —0.5.
That is exactly the same value obtained from the classic
statistical methods as shown in eq 12.

A new variant of stochastic annealing, HSTA, there-
fore, incorporates HSS for the generation probability Gj;,
HSS in the inner sampling loop for Nsamp determination,
and the HSS-specific error bandwidth in the penalty
term. To evaluate the efficiency improvement by this
new HSTA algorithm, the same probabilistic objective
equation (eq 14) is used.
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Figure 6. Trajectories of Nsamp and penalty percentage of the
ESTA and HSTA algorithms.

Table 5. Comparison of Levels of Algorithm
Improvements (ND = 10)

algorithm problem total moves % savings
SA + fixed Nsamp? P3 274200
ESA + fixed Nsamp P3 170000 38.0
STA P4 5670 97.9
ESTA P4 3265 98.8
HSTA P4 1793 99.3

2 Fixed Nsamp = 100.

Figure 6 shows trajectories of Nsamp and the penalty
term in a percentage of the objective function for the
ESTA and HSTA algorithms. From this figure we can
see that Nsamp is significantly reduced when stochastic
annealing based algorithms are used. A further decrease
in Nsamp is observed for the HSTA algorithm because of
a reduced error bandwidth. Note that there is a large
difference in the penalty percentage values between
ESTA and HSTA. Table 5 shows results comparing the
hierarchical improvements from stochastic optimization
with fixed Nsamp to the newest HSTA algorithm. In the
table, problem P3 is the stochastic optimization with
fixed Nsamp, while problem P4 is the stochastic optimiza-
tion with automatically varying Nsamp. The fixed Nsamp
is 100 in this comparison, while the varying Nsamp at
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P4 algorithms spans from 15 to 90. The base case for
comparison is SA with fixed Nsamp, in which the objective
function in SA is modified to P3. The base case requires
274 000 moves to find the optimal solution x*. This
stochastic programming can be improved up to four
levels: ESA with fixed Nsamp, STA, ESTA, and HSTA.
A large improvement in computational efficiency can be
achieved if ESA is used instead of SA. We can further
see that there is significant improvement when we
change the problem type from P3 to P4. The improve-
ment is over 97% and is mainly attributed to the use of
the penalty term and the properties of the HSS sam-
pling technique. Among the P4 algorithms, HSTA is 68%
faster than the basic STA algorithm.

4. Conclusion

This paper presented hierarchical improvements in
the SA-based algorithms for solving large-scale discrete
optimization problems under uncertainty. At first, the
deterministic SA was modified to ESA, which exploited
the uniformity property of the HSS technique, and
resulted in a shorter Markov chain length at each
temperature level. The same concept was then applied
to the stochastic annealing algorithm, resulting in the
new ESTA algorithm that provided the tradeoff between
computational efficiency and solution accuracy by au-
tomatically determining Nsamp. In addition, the faster
convergence property of HSS is also incorporated in this
algorithm. The efficiency is improved further in the
HSTA algorithm by using the HSS-specific error band-
width in the penalty term of the probabilistic objective
functional. For stochastic MINLP problems, HSTA was
coupled with the NLP algorithm. For the test problems
considered in this study, the combined improvement of
all of the steps in the hierarchy was shown to result in
a 99.3% savings in computational time over the tradi-
tional stochastic optimization algorithms. Therefore, the
HSTA algorithm can be a useful tool for large-scale
combinatorial stochastic programming problems. A real
world problem of solvent selection under uncertainty for
acetic acid extraction is presented in part 2 of this series.
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