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Treating inertia in passive microbead rheology
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The dynamic modulus G∗ of a viscoelastic medium is often measured by following the trajectory of a small
bead subject to Brownian motion in a method called “passive microbead rheology.” This equivalence between
the positional autocorrelation function of the tracer bead and G∗ is assumed via the generalized Stokes-Einstein
relation (GSER). However, inertia of both bead and medium are neglected in the GSER so that the analysis based
on the GSER is not valid at high frequency where inertia is important. In this paper we show how to treat both
contributions to inertia properly in one-bead passive microrheological analysis. A Maxwell fluid is studied as the
simplest example of a viscoelastic fluid to resolve some apparent paradoxes of eliminating inertia. In the original
GSER, the mean-square displacement (MSD) of the tracer bead does not satisfy the correct initial condition. If
bead inertia is considered, the proper initial condition is realized, thereby indicating an importance of including
inertia, but the MSD oscillates at a time regime smaller than the relaxation time of the fluid. This behavior is
rather different from the original result of the GSER and what is observed. What is more, the discrepancy from
the GSER result becomes worse with decreasing bead mass, and there is an anomalous gap between the MSD
derived by naı̈vely taking the zero-mass limit in the equation of motion and the MSD for finite bead mass as
indicated by McKinley et al. [J. Rheol. 53, 1487 (2009)]. In this paper we show what is necessary to take the
zero-mass limit of the bead safely and correctly without causing either the inertial oscillation or the anomalous
gap, while obtaining the proper initial condition. The presence of a very small purely viscous element can be used
to eliminate bead inertia safely once included in the GSER. We also show that if the medium contains relaxation
times outside the window where the single-mode Maxwell behavior is observed, the oscillation can be attenuated
inside the window. This attenuation is realized even in the absence of a purely viscous element. Finally, fluid
inertia also affects the bead autocorrelation through the Basset force and the fluid dragged around with the bead.
We show that the Basset force plays the same role as the purely viscous element in high-frequency regime, and
the oscillation of MSD is suppressed if fluid density and bead density are comparable.
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I. INTRODUCTION

Microbead rheology is a powerful alternative to measure the
linear viscoelastic properties of soft matter [1]. It has become
a very popular tool in materials science and biophysics [2–7],
and even commercial versions are now available. Unlike bulk
rheometers, microbead rheology requires only very small
samples. The technique can also be applied to living cells,
where no other technique currently exists. The concept is
straightforward. In passive microbead rheology, a tracer bead
of radius R sufficiently small to be subjected to Brownian
motion (R � 1 μm) is placed in the medium, and the mean-
square displacement (MSD)

〈�rb(t)2〉eq := 〈[rb(t) − rb(0)]2〉eq (1)

of its position rb is followed by using some optical technique.
Here t is time and 〈· · ·〉eq is an average taken at equilibrium.
Analysis is typically made in the frequency domain via the
generalized Stokes-Einstein relation (GSER)〈

�r2
b [ω]

〉
eq = kBT

πRiωG∗(ω)
, (2)

where G∗ is the dynamic modulus of the medium [8], kB

is the Boltzmann constant, T is the temperature, and we
indicate the one-sided Fourier transform f [ω] ≡ F{f (t)} :=∫ ∞

0 f (t)e−iωtdt by an overbar and frequency argument ω

with square brackets [ω] (the left side is the abbreviation of
F{〈�r2

b (t)〉eq}). Neither bead inertia nor medium inertia are

included in the GSER. A derivation of Eq. (2) is given by
Mason in Ref. [9].

Before showing all the details, we briefly sketch the
derivation of the GSER here, which is comprised of two
important relations. One is the Einstein component that relates
the MSD and the frequency-dependent friction, or the memory
function ζ [ω] of the bead in the medium through

〈
�r2

b [ω]
〉
eq = 6kBT

(iω)2ζ [ω]
. (3)

This is derived from the equation of motion of the bead in
the medium when neglecting bead inertia. The other is the
Stokes component that connects the memory function and the
dynamic modulus of the medium via

ζ [ω] = 6πRG∗(ω)

iω
. (4)

This is a generalized version of Stokes’ law so that the
frequency-dependent modulus that characterizes viscoelas-
ticity of materials is estimated from the memory function.
Medium inertia is not taken into account in this expression. By
eliminating ζ [ω] from both relations, the GSER is obtained.

Consider the simplest possible linear viscoelastic fluid,
the single-mode Maxwell model G(t) = g exp(−t/λ) with
dynamic modulus

G∗(ω) := iωF{G(t)} = g
iωλ

1 + iωλ
. (5)
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FIG. 1. (Color online) Mean-square displacement of a bead with
mass m = 10−6ζλ suspended in a Maxwell fluid. Dashed line is a
result from the GSER for the mass-less bead [Eq. (6)].

It is straightforward to insert Eq. (5) into Eq. (2) and invert the
bead displacement back into the time regime to find [10]〈

�r2
b (t)

〉
eq = 6kBT

H
+ 6kBT

ζ
t, (6)

where H := 6πRg is the spring constant of the elastic
component of the Maxwell model and ζ := λH is the friction
coefficient of its viscous component. In the short-time regime
t � λ, the bead displacement is bounded due to the elastic
component of the fluid giving a plateau, while it diffuses away
in the long time regime t � λ due to the viscous component of
the fluid. However, the displacement does not satisfy the proper
initial condition, that is, 〈�r2

b (t = 0)〉eq = 6kBT/H 	= 0. This
result is clearly anomalous in the sense that it contradicts the
definition of �rb(t) at the initial time 0 irrespective of the
initial value of rb(t).

If bead inertia is included in the GSER, the correct initial
condition for the MSD is achieved as shown in Sec. II C.
Figure 1 shows the MSD of a bead in the Maxwell fluid
calculated from the GSER which includes bead inertia. The
MSD satisfies the proper initial condition, but it oscillates
for t � λ with the frequency ∼1/

√
m, where m is bead

mass [10–13]. The smaller the bead’s mass, the higher the
frequency of the oscillation so that one recognizes that Eq. (6)
is never recovered in the zero-mass limit. Such a result is
rather different from experimental observation for Maxwell
fluids (e.g., wormlike micelle solutions [14–16]); that is, no
matter how small the tracer mass is, it has a finite mass that
should lead to a highly oscillatory MSD, which is not observed
in real systems. These facts give rise to one naı̈ve question:
what are the minimal requirements to eliminate inertial effects
for Maxwell fluids that are once introduced in the GSER? We
answer this question here. The effects of both material inertia
and bead inertia are considered.

Recently, McKinley et al. [12] and Fricks et al. [13] studied
tracers’ individual paths (or positions) and the MSD for the
memory kernel of the Prony series with an arbitrary number of
modes N that corresponds to the generalized Maxwell model.
McKinley et al. [12] indicated that in the zero-mass limit of

the tracer bead for a fixed finite N , (i) the oscillatory term
of the tracer position itself goes to zero in a weak sense, but
(ii) this term remains in the MSD giving a finite correction (or
anomalous gap) to the MSD, and (iii) this correction vanishes
in the limit of N → ∞ for a fixed, finite m. They also detailed
the issue of the time window of anomalous diffusive scaling
(see also Ref. [17]) which we will not discuss here. In the
present paper we give the essential idea to take the zero-mass
limit of the bead safely and correctly without causing either
the inertial oscillation nor the anomalous gap as observed in
actual viscoelastic fluids and with the proper initial condition.
We consider much milder assumptions than do McKinley
et al. We show that if the purely viscous component of the
solvent is taken into consideration, the oscillation and the
anomalous gap of the MSD disappear in the zero-mass limit
even for the smallest number of modes N = 1, that is, for
the Maxwell fluid. It is not necessary to have multiple modes
for the elimination of the oscillation. Methods by McKinley
et al. and Fricks et al. could be extended to add one zero-size
relaxation time (i.e., a pure viscosity term), but the critical
roles of this term are not considered in their papers. We also
discuss the combined effects of bead inertia and fluid inertia,
and show that material inertia tends to suppress the oscillation
of the MSD for the Maxwell fluids. Thus, the apparent paradox
about the initial condition, anomalous gap, and the inertial
oscillation for the Maxwell fluid is resolved. It should be
emphasized that the elimination of the MSD oscillation by
the presence of the purely viscous element or fluid inertia
is also valid for more realistic systems with a large number
of relaxation modes because the broad relaxation spectrum
also tends to suppress the oscillation, as already indicated by
McKinley et al. [12]. Thus, through the study of our ideal
system we gain a better understanding why these paradoxes
are not observed in actual viscoelastic fluids. On the other
hand, inertia actually gives sizable effects for real fluids such
as worm-like micelle solutions at frequency of order MHz [15].
The GSER that includes tracer inertia and medium inertia can
cover this high frequency regime properly in a self-contained
way without the help of data from mechanical measurements
of the modulus [18]. We treat issues of experimental data
analysis in a separate paper [19].

We discuss the Einstein component of the GSER in the sub-
sequent section. In Sec. II A we rigorously rederive the Einstein
component of the GSER that includes the mass of the tracer
bead on the basis of the explicitly stationary generalized
Langevin equation (GLE). After recalling the equivalence of
the GLEs with lower limit of the memory integral of either 0
or −∞ in Sec. II B, we revisit the Maxwell fluid in Secs. II C
and II D and show that the zero-mass limit of the bead in the
MSD and the power spectral density (PSD) can be taken safely
if a purely viscous component of the fluid is considered. The
memory function including a purely viscous component is a
novel class of kernels with regularized properties compared to
a GLE without this component. The addition of a pure viscous
mode suppresses oscillations where the same exponential
terms in the kernel would have oscillations, and the zero-mass
limit is not singular as it is without the viscous mode. By
taking the low-viscosity limit of the purely viscous component
after the zero-mass limit, the original GSER result Eq. (6) is
recovered safely.
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Even in the absence of a purely viscous element, the inertial
oscillation of the MSD can be attenuated inside the typical
experimental time window if there are other modes in the
relaxation spectrum outside the frequency window of G∗
where the Maxwell behavior is observed. The width of this
time window is determined by the relaxation spectrum outside
the window. In Sec. II E we consider the two-mode Maxwell
fluid for which one Maxwell mode is inside the experimental
frequency window of G∗ and the other has frequency outside
the window, and seek the conditions where the GSER result for
a single-mode Maxwell fluid is recovered. McKinley et al. [12]
showed that the oscillation tends to decay in the limit of
N → ∞. Our results indicate that only a single additional
mode is sufficient for the elimination of the oscillation inside
the experimental window. Multimode systems have also been
studied by Fricks et al. [13] for the 4-mode Rouse model
and the 22-mode Zimm model. In the last part of this section
(Sec. II F) we discuss the anomalous gap pointed out by
McKinley et al. indicating that the inclusion of the purely
viscous element can eliminate the gap.

In Sec. III we discuss the Stokes component of the GSER
that includes medium inertia. The single-mode Maxwell fluid
is again considered as an example to study the effects of
fluid inertia concretely. We show that if fluid density and
bead density are comparable, the oscillation of the MSD is
suppressed even if there is no purely viscous element in the
system. Conclusions are devoted to Sec. IV.

II. EINSTEIN COMPONENT

A. Rederivation of the GSER including bead inertia

As in the original paper that introduced the technique [1],
we analyze the GSER through the generalized Langevin
equation (GLE) for bead position

m
d2rb(t)

dt2
= −

∫ t

−∞
ζ (t − t ′)

d rb(t ′)
dt ′

dt ′ + f B(t), (7)

where m is an appropriate mass, f B is the Brownian force, and
ζ is some as-yet-unspecified memory function. If fluid inertia
is not considered, m is purely bead mass, but in the presence
of fluid inertia, the mass of fluid dragged around with the bead
should be included in m (Sec. III B). We make two important
notes. Any spherical Brownian bead in any isotropic medium
should be described by the GLE above. An anisotropic medium
would have a tensorial ζ . Secondly, most previous attempts to
derive the desired expression use t = 0 as the lower limit of
the integral of Eq. (7). Mason derived the expression from
such an apparently unstationary GLE but with causality and
the equipartition theorem [9]. These conditions are necessary
to make a GLE with the lower integral limit 0 stationary when
t � 0. Instead, we employ the explicitly stationary GLE with
the lower limit of the integral −∞ to avoid the ill-defined
initial condition [20] or unstationarity [20, pp. 37–39]. It is
shown below that our result is the same as Mason’s result when
bead mass is not neglected, but we consider our derivation to
be more natural. We discuss the choice of the lower limit in
Sec. II B.

It can be proven using the projection operator technique of
Mori [20, pp. 97–108] that the Brownian force must have zero
mean and satisfy the fluctuation-dissipation theorem (FDT)

〈 f B(t) f B(t ′)〉eq = kBT ζ (t − t ′)δ, (8)

where δ is the identity matrix. In other words, the statistics of
the Brownian forces are determined by the memory kernel. For
example, if one assumes that the drag force has no memory,
so that ζ (t) is a constant times the Dirac δ-function δ(t),
Eq. (7) reduces to the usual Langevin, or stochastic differential
equation.

In the frequency domain, the FDT can be written as

〈 f B[ω] f B[ω′]〉eq = 2πkBT δ(ω + ω′)ζ [ω]δ. (9)

This relation can be proven by twice taking the inverse two-
sided Fourier transform of each side, once for each frequency.
Similarly, taking the two-sided Fourier transform of the GLE,
Eq. (7), we obtain

rb[ω] = f B[ω]

−mω2 + iωζ [ω]
, (10)

where rb[ω] = F{r(t)} := ∫ ∞
−∞ r(t)e−iωtdt is the two-sided

Fourier transform of bead position. Note that it is the one-sided
Fourier transform of the memory kernel ζ that arises here, but
the two-sided version in the fluctuation-dissipation theorem,
Eq. (9). The two-sided Fourier transform for the memory ker-
nel satisfies ζ [ω] = ∫ ∞

−∞ ζ (t)e−iωtdt = 2Re{ζ [ω]}, because ζ

is an even function of time and Re{· · ·} represents taking the
real part of the argument.

There exists a relationship between the bead-position
autocorrelation in the time and frequency domains similar to
that for the Brownian forces, Eqs. (8) and (9). Therefore, it is
useful to use Eq. (10) to write

〈rb[ω] · rb[ω′]〉eq = 〈 f B[ω] · f B[ω′]〉eq

(−mω2 + iωζ [ω])(−mω′2 + iω′ζ [ω′])

= 2dπkBT δ(ω + ω′)ζ [ω]

(−mω2 + iωζ [ω])(−mω′2 + iω′ζ [ω′])
,

(11)

where we used the FDT [Eq. (9)] to obtain the second line and
d is the spatial dimension arising from the inner product in
the autocorrelation function. We twice take the inverse Fourier
transform of each side to switch back to the time domain

〈rb(t) · rb(t ′)〉eq = dkBT

2π

∫ ∞

−∞

ζ [ω]eiω(t−t ′)dω

|−mω2 + iωζ [ω]|2 . (12)

The power spectral density (PSD) is a two-sided Fourier
transform of the autocorrelation function of bead position.
By putting t ′ = 0 in Eq. (12), the PSD is obtained as

I (ω) =
∫ ∞

−∞
〈rb(t) · rb(0)〉eqe

−iωtdt = 2dkBT Re{ζ [ω]}
|−mω2 + iωζ [ω]|2

= −Re

{
2dkBT

iω(−mω2 + iωζ [ω])

}
. (13)

Equation (10) can also be expressed as

rb[ω] = α(ω) f B[ω], (14)
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where α(ω) := 1/(−mω2 + iωζ [ω]) is the frequency-
dependent complex compliance. The PSD, Eq. (13), can be
rewritten in terms of the complex compliance as

I (ω) = 2dkBT
|Im{α(ω)}|

ω
. (15)

The last equation is the fluctuation-dissipation theorem [22] in
d dimensions.

Since bead displacement is a stationary process: 〈r2
b (t)〉eq =

〈r2
b (0)〉eq, the MSD can be expressed in terms of the positional

autocorrelation function:〈
�r2

b (t)
〉
eq = 2

(〈
r2

b (0)
〉
eq − 〈rb(t) · rb(0)〉eq

)
= 1

π

∫ ∞

−∞
I (ω)(1 − eiωt )dω. (16)

By taking the two-sided Fourier transform, Eq. (16) becomes

〈
�r2

b [ω]
〉
eq = 2[Itotalδ(ω) − I (ω)]

= 2Re

{
Itotalδ(ω) + 2dkBT

iω(−mω2 + iωζ [ω])

}
,

(17)

where Itotal := ∫ ∞
−∞ I (ω)dω = 2π〈r2

b (0)〉eq is the total power
of the spectrum. The MSD is an even function due to
its stationarity: 〈r(t) · r(0)〉eq = 〈r(0) · r(−t)〉eq and therefore

〈�r2
b [ω]〉eq = 2Re{〈�r2

b [ω]〉eq}, so that Eq. (17) is rewritten
as

Re
{〈

�r2
b [ω]

〉
eq

} = Re

{
Itotalδ(ω) + 2dkBT

iω(−mω2 + iωζ [ω])

}
.

(18)

With the help of the Kramers-Kronig relation [22], the
imaginary parts of 〈�r2

b [ω]〉eq and Itotalδ(ω) + 2dkBT

iω(−mω2+iωζ [ω])
are obtained uniquely from their real parts, respectively. Since
the real parts are equal with each other Eq. (18), so are the
imaginary parts. Therefore, we can conclude

〈
�r2

b [ω]
〉
eq = Itotalδ(ω) + 2dkBT

iω(−mω2 + iωζ [ω])
. (19)

The first term in the right side Itotalδ(ω) comes from the initial
value 〈r2

b (0)〉eq, and is necessary to obtain the correct MSD
from the two-sided formulas (16). However, if we use the
inverse one-sided Fourier transform (or the Laplace transform
for s := iω) to obtain the time-domain MSD directly from
Eq. (19), the term Itotalδ(ω) does not contribute to the result,
that is,

〈
�r2

b (t)
〉
eq = F−1

{
2dkBT

iω(−mω2 + iωζ [ω])

}
, (20)

where F−1{· · ·} represents taking the inverse one-sided Fourier
transform of the argument. The last equation is the Einstein
component of the GSER that takes account of bead inertia.
The Einstein component of Mason-Weitz’s GSER is derived
by just putting m = 0 in Eq. (20). We usually use Eq. (20) to

derive the inertial MSD in the time domain. We assume d = 3
in the rest of this paper.

B. Mason’s approach

For comparison’s sake, here we briefly review Mason’s
derivation of the GSER.

The stationary GLE [Eq. (7)] can be rewritten as

m
dvb(t)

dt
= −

∫ t

0
ζ (t − t ′)vb(t ′)dt ′ + f ′

B(t), (21)

where vb := d rb/dt is bead velocity and f ′
B(t) is the effective

Brownian force defined by

f ′
B(t) := f B(t) −

∫ 0

−∞
ζ (t − t ′)vb(t ′)dt ′. (22)

This Brownian force is not stationary because it depends on
the choice of the upper boundary of the time integral [or,
equivalently, the lower boundary of the integral in Eq. (21)].
This property is a “somewhat unnatural artifice” as Kubo
et al. pointed out in their book [20, pp. 37–39]. However, if it
satisfies the causality at t = 0: 〈vb(0) f ′

B(t ′)〉eq = 0 for t ′ > 0
and the equipartition theorem: 1

2m〈vb(t)2〉 = 3
2kBT holds for

t � 0, then the autocorrelation function of f ′
B is stationary and

satisfies the FDT, and the GLEs [Eqs. (21) and (7)] describe
the same Brownian motion of the bead [20, pp. 37–39].

Mason derived the GSER on the basis of Eq. (21) with the
help of the causality at t = 0 and the equipartition theorem
while neglecting the bead’s mass during the derivation [9]. If
bead mass is kept, Eq. (20) is obtained by this procedure. This
is a consequence of the statistical equivalence between the two
GLEs under these two physical conditions.

C. Maxwell fluid

The single-mode Maxwell model is often used to describe
the viscoelastic behavior of fluids having a single relaxation
time within a certain frequency window, usually at low and
moderate frequencies. The dynamic modulus of wormlike
micelle solutions [23] and telechelic associating-polymer
solutions [24] are well described in terms of the single-mode
Maxwell model at lower frequencies. The dynamics of a tracer
bead in the single-mode Maxwell fluid has been well studied
due to the simple structure of the memory kernel [13,25]. Here
we detail the effects of bead inertia on the MSD and PSD
for the single-mode Maxwell fluid as an introductory step to
investigate the influence of the purely viscous element. Most
equations in this section (II C) are already known. Inertial
effects of the fluid are not considered here, and we use Eq. (4)
to relate the memory function to G∗ in the rest of this section.
Assumptions of Eq. (4) and its extension to include fluid inertia
are detailed in Sec. III.

The frequency-dependent friction on the bead placed in
the Maxwell fluid is obtained by substituting Eq. (5) into the
Stokes component of the GSER [Eq. (4)]. By putting the thus-
obtained friction function into Eq. (20), we have

〈
�r2

b [ω]
〉
eq = 6kBT

H (iω)2

1 + iωλ

λ + λ2
m(iω) + λλ2

m(iω)2
, (23)
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where

λm :=
√

m

H
(24)

is the inertial time scale of bead position. By taking the inverse
one-sided Fourier transform of Eq. (23), the MSD of the bead
is obtained as〈
�r2

b (t)
〉
eq � 6kBT

H

[
1 + t

λ
− e− t

2λ

(
cos ωmt + 3λm

2λ
sin ωmt

)]
(m � λζ ). (25)

It oscillates with frequency ωm, where

ωm :=
√

λ2
m − 4λ2

2λλm

� 1/λm (m � λζ ). (26)

In both Eq. (25) and (26) bead mass is assumed to be very
small, that is, m � λζ . This is a rather reasonable assumption.
For example, in the microrheological analysis of wormlike
micelle solutions that exhibit Maxwellian behavior, typically
m � 10−11λζ . (The plateau modulus and the relaxation time
of wormlike micelle solutions are typically g � 100 Pa and
λ � 1 s, respectively [16], and the bead radius is R � 1 μm.
Therefore, λζ = λ2H = 6πRλ2g � 1 g. On the other hand,
bead density is about ρb � 1 g/cm3 in many cases, so that the
mass of a bead is estimated as m � 4πR3ρb/3 � 10−11 g.) In
the rest of this paper we assume the condition m � λζ and
ignore m if it is compared with λζ , unless otherwise noted.

We now consider the physics behind each time regime of
the bead displacement. Equation (25) satisfies the proper initial
condition as a result of inclusion of bead inertia. In the short-
time regime (t � λm) the bead displacement is ballistic, that is,
〈�r2

b (t)〉eq � (3kBT/m)t2. After the ballistic mode, the MSD
oscillates for λm � t � 2λ with frequency ωm. We assume
this oscillatory mode is ascribed to the resonance between
the bead motion and the elastic component in the medium.
Actually, for purely viscous (Newtonian) fluids in the absence
of an elastic trap, oscillations are not generated in the MSD
by the inclusion of bead inertia. However, due to the energy

dissipation of the bead caused by the viscous component, the
oscillation is attenuated after t � 2λ, and the diffusion motion
prevails: 〈�r2

b (t)〉eq � (6kBT/ζ )t . There is no plateau regime
in the MSD because the terminal time of the oscillation ∼2λ

is longer than the onset of the diffusive motion λ (estimated
from the coefficient of t in the MSD). In the small-mass limit,
the frequency diverges as 1/

√
m while keeping the amplitude

of the oscillation finite; therefore the result obtained from the
GSER [Eq. (6)] is never recovered (see also Fig. 2). Such a
MSD behavior is not observed experimentally for viscoelastic
fluids (it can be observed for a viscous fluid, air, when the bead
is trapped by an external force [26]).

It is instructive to consider these dynamical properties in
terms of the power spectral density. The PSD of the bead is
derived from Eq. (13) as

I (ω) = 6kBT

Hλ

ω4
m

ω2[(ω + ωm)2(ω − ωm)2 + (ω/λ)2]
. (27)

Figure 2 shows the PSD and the corresponding MSD for
several bead masses. The PSD has a resonance peak at ωm =
1/λm = √

H/m with the height 6kBT λ/H corresponding to
the oscillation of the MSD. Note that the height does not
depend on m. At frequencies near the peak, Eq. (27) is
approximately expressed as

I (ω) � 3kBT

2λH

1

(ω − ωm)2 + 1/(2λ)2
. (28)

This equation is estimated by putting ω = ωm into Eq. (27)
other than the term ω − ωm in its denominator. From Eq. (28),
the half-value width of the peak is known to be 1/λ inde-
pendent of m. Thus the area of the peak is not affected by
bead mass, and the peak remains no matter how small the
bead mass is. On the other hand, a naı̈ve elimination of m

annihilates the peak from the PSD, thereby decreasing the
total power Itotal := ∫ ∞

−∞ I (ω)dω by the peak area. This causes
an anomalous gap 6kBT/H between the MSD derived from
Eqs. (16) and (13) with m = 0 and the MSD from the same

m   =   10-2 λζ         10-3λζ        10-4λζ        10-5 λζ
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λm 2λ
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FIG. 2. (Color online) The mean-square displacement estimated from Eq. (20) and the corresponding power spectral density of a bead
embedded in the single-mode Maxwell fluid. A result from the GSER is also drawn as a reference.
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equations but for finite m. We discuss the anomalous gap in
detail in Sec. II F. Also, Eq. (27) is roughly expressed as

I (ω) � 6kBT

ζ
×

⎧⎪⎨
⎪⎩

ω−2 (ω � ωm)

λ2 (ω = ωm)

ω4
mω−6 (ωm � ω)

. (29)

At frequency lower than the peak position (ω � ωm), the
PSD is the same as that derived from the GSER without
bead mass. With decreasing bead mass, the peak at ω = ωm

moves toward the higher frequencies with its height and width
kept constant, thereby increasing the GSER domain. In the
zero-mass limit, the GSER domain extends over the full
frequency regime except at the high-frequency extreme where
the peak remains, giving rise to the oscillation of the MSD
with infinite frequency.

D. Effects of solvent viscosity

As stated above, the viscous component of the Maxwell
element attenuates the amplitude of the oscillation in the MSD
at times longer than the relaxation time of the medium due to
the energy dissipation of the bead by this viscous component.
Therefore, it is reasonable to expect that if a purely viscous
component exists in the medium, it enhances the attenuation
of the oscillation. The purely viscous element often originates
from solvent viscosity. We first consider the simplest system

of a viscoelastic fluid that includes a purely viscous part: a
single Maxwell element and a single purely viscous element
connected in parallel (called the three-parameter model or the
three-element model).

The dynamic modulus of the three-parameter model is

G∗(ω) = g
iωλ

1 + iωλ
+ iωη0, (30)

where η0 is the viscosity from the purely viscous element. In
the following, the friction coefficient of the bead ζ0 = 6πRη0

is used instead of the viscosity to make the equations simple.
The memory function of a bead in this fluid can be derived
by putting the last equation into Eq. (4). Then the MSD in
the frequency domain is obtained by substituting the memory
function into Eq. (20) as〈
�r2

b [ω]
〉
eq = 6kBT

H (iω)2

1 + iωλ

λ + λ0 + (
λλ0 + λ2

m

)
(iω) + λλ2

m(iω)2
,

(31)

where λm is the relaxation time of bead position given by
Eq. (24), and a new time constant

λ0 := ζ0

H
(32)

appears that is associated with the purely viscous element of
the medium. The power spectral density can be derived from
Eq. (31) as

I (ω) = 6kBT

H

λ + λ0 + λ0λ
2ω2

ω2
[
(λ + λ0)2 + (

λ4
m − 2λ2

mλ2 + λ2λ2
0

)
ω2 + λ2λ4

mω4
] . (33)

The inverse one-sided Fourier transform of Eq. (31) picks out
two poles, the inverse of which describe the characteristic
times of the bead suspended in the medium. These times are
given by

τb,e := 2λλ2
m

λλ0 + λ2
m ±

√(
λλ0 + λ2

m

)2 − 4λλ2
m(λ + λ0)

, (34)

where τb takes the positive sign and τe takes the negative sign.
(A subscript b indicates ballistic mode and e stands for elastic
plateau.) In the absence of the purely viscous element (ζ0 = 0),
the argument of the square root of Eq. (34) [m(m − 4λζ )/H 2]
is negative because m � λζ . Therefore, τb and τe take complex
values thereby leading to the oscillation of the MSD. However,
in the presence of the purely viscous element, the argument
of the square root can be positive for a certain range of m,
meaning that there exists a condition for which the MSD does
not oscillate. The critical mass mc for such an oscillation or
nonoscillation transition to occur is the mass that makes the
square root in Eq. (34) zero, and therefore it is given by

mc := λζ (
√

1 + λ0/λ − 1)2. (35)

The MSD does not oscillate if m < mc, while it oscillates if
m > mc. [Another root of the equation that makes the square
root of Eq. (34) zero is m′

c := λζ (
√

1 + λ0/λ + 1)2. This is

larger than mc, and is also always larger than m because λζ �
m, so that we can ignore m′

c.]
(i) m < mc : The MSD in the time domain is obtained by

taking the inverse one-sided Fourier transform of Eq. (31).
Since τb and τe are real variables, it is written as

〈
�r2

b (t)
〉
eq = 6kBT

H

(
λ

λ + λ0

)2

× [1 + t/τd − (1 + Am)e−t/τe − Ame−t/τb ],

(36)

where τd is the longest time constant with respect to the
diffusive mode of the bead:

τd := λ2

λ + λ0
, (37)

and Am := ( λ+λ0
λλ0

λm)2. The bead displacement is classified into
four regimes: the ballistic mode (t � τb), a diffusive mode
due to the purely viscous element (τb � t � τe), a plateau by
the elastic element of the Maxwell model (τe � t � τd), and
the final diffusive mode due to the two viscous elements of the
model (t � τd). See Figs. 3(b-1) and 3(b-2) for which the
bead’s mass is so small that the condition m < mc is attained.

With decreasing bead mass, the ballistic domain is placed
in the short-time regime and it disappears in the zero-mass
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m < mcm > mc

FIG. 3. (Color online) The mean-square displacement and the corresponding power spectral density of a bead embedded in the three-
parameter model fluid. The dashed curve in each MSD figure is obtained from the GSER. The shaded region represents the plateau and
succeeding diffusive regime from the GSER. (a-1), (a-2), and (a-3) satisfy the condition m > mc, whereas (b-1) and (b-2) fulfill the opposite
condition m < mc. ζ0 = 10−5ζ .

limit (i.e., τb � m/ζ0 → 0 with m → 0). Then, noting that
τe → λ0λ

λ+λ0
and Am → 0, Eq. (36) reduces to the MSD derived

from the GSER for the three-parameter model:

〈
�r2

b (t)
〉
eq → 6kBT

H

(
λ

λ + λ0

)2

×
(

1 + λ + λ0

λ2
t − e

− λ+λ0
λλ0

t

)
(m → 0). (38)

It is worth mentioning that despite the fact that the last equation
is derived with vanishing bead inertia, it satisfies the correct
initial condition. This is because the diffusive motion of the
bead at the shorter time regime (t � τe) compensates the
wrong initial condition. Next, by taking the zero-friction limit
of the purely viscous component, then the onset of the plateau
goes to 0 (i.e., τe = ζ0λ

ζ+ζ0
→ 0 with ζ0 → 0), and therefore

Eq. (38) approaches the result from the GSER for the Maxwell
model Eq. (6) as shown in Fig. 4. However, unlike Eq. (6), the
proper initial condition is satisfied and the MSD jumps at t = 0
due to the exponential function of Eq. (38), that is,〈

�r2
b (t)

〉
eq

→
{

0 (for t = 0)

6kBT/H + (6kBT/ζ )t (for t > 0)
(ζ0 → 0).

(39)

An important point here is that the zero-mass limit must be
taken before taking the zero-friction limit so that the result from
the GSER is achieved correctly for t > 0. If the zero-friction
limit is taken first, the three-parameter model simply reduces
to the single-mode Maxwell model, and does not converge to

the original GSER result in the zero-mass limit as explained
above.

In real systems where bead mass and the viscosity from the
solvent are small but finite, inertial effects appear only in the
high-frequency regime.

If we put m = 0 in Eq. (13) naı̈vely, the MSD is derived
from Eqs. (16) and (13) [not from Eq. (20)] as 〈�r2

b (t)〉eq =
(6kBT/ζ )t . This result can be obtained by introducing the
harmonic potential to trap the bead around the equilibrium
position and then removing it after going back to the
time domain. This result 〈�r2

b (t)〉eq = (6kBT/ζ )t satisfies
the correct initial condition but there is a constant gap with
Eq. (39) by 6kBT/H . This is another pathological result arising
from eliminating inertia in a naı̈ve way. This anomalous gap
corresponds to the one reported in Ref. [12]. In the presence
of an infinitesimal purely viscous element, this paradox is
resolved and the gap does not exist anymore, that is, the
MSD becomes expressed as Eq. (39). The elimination of the
anomalous gap can also be explained in terms of the PSD. In the
zero-mass limit, the PSD, when there is the small pure viscosity
Eq. (33), becomes

I (ω) = 6kBT

ζ

λω0(ω2 + ω0/λ)

ω2
(
ω2 + ω2

0

) , (40)

where ω0 := 1/λ0 = H/ζ0 and the condition λ0 � λ

(or ζ0 � ζ ) is assumed. Equation (40) can be roughly
expressed as

I (ω) � 6kBT

ζ
×

⎧⎪⎨
⎪⎩

ω−2 (ω � √
ω0/λ)

λ/ω0 (
√

ω0/λ � ω � ω0)

λω0ω
−2 (ω0 � ω)

. (41)
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FIG. 4. (Color online) The mean-square displacement of a mass-less bead embedded in the three-parameter model fluid. The friction
coefficient ζ0 of the purely viscous element is decreasing from the left to the right figures. In the limit ζ0 → 0, the GSER result for the
single-mode Maxwell fluid is recovered at t > 0 (rightmost figure).

That is, there is a plateau regime in the PSD at
√

ω0/λ �
ω � ω0 rather than the peak due to the presence of the purely
viscous element (see the PSD curve for m = 10−14ζλ in Fig. 3
as a reference). The area of the peak that exists when m > mc

corresponds to the area associated with this plateau regime,
and therefore the elimination of the peak by the naı̈ve zero-
mass limit m → 0 does not create the anomalous gap in the
total power Itotal and thus in the MSD (see Sec. II F for more
details).

The novelty of this paper is not in the methodology to
analyze the oscillation and the time scale (they are found in
Refs. [12,13] for arbitrary number of modes) but in giving the
essential idea to take the zero-mass limit safely and correctly
without causing either the anomalous gap nor the inertial
oscillation with the proper initial condition.

(ii) m > mc : If bead mass is larger than mc, then τb and τe

are complex variables and therefore the MSD is expressed in
terms of oscillating functions as

〈
�r2

b (t)
〉
eq = 6kBT

H

(
λ

λ + λ0

)2[
1 + t/τd − e

− t
2 ( 1

τb
+ 1

τe
)
(

cos ωmt + λ0

2λ2
mωm

sin ωmt

)]
, (42)

where the frequency of the oscillation is given as the imaginary
part of 1/τb and 1/τe, that is,

ωm :=
√

4λλ2
m(λ + λ0) − (

λλ0 + λ2
m

)2

2λλ2
m

. (43)

The MSD is characterized by the geometric and harmonic
mean times rather than τb,τe themselves, that is,

√
τbτe = λm

√
λ

λ + λ0
=: λb, (44)

2

1/τb + 1/τe
= 2λλ2

m

λλ0 + λ2
m

=: λe. (45)

The bead displacement is classified into four time regimes:
the ballistic mode at the shortest time regime t � λb, the
oscillatory mode at λb � t � λe followed by the plateau
regime at λe � t � τd, and the diffusive mode at the longest
time regime t � τd. See Figs. 3(a-1), 3(a-2), and 3(a-3) where
the present condition m > mc is satisfied. The width of the
plateau, or a separation of λe and τd, becomes narrow with
decreasing ζ0, and the plateau disappears in the limit ζ0 → 0
because the onset of the plateau λe(→ 2λ) comes later than

the terminal τd(→ λ). Thus the plateau does not exist in MSD
for the Maxwell fluid without a purely viscous element.

Relating to the three-element model, it is worth consid-
ering here a situation that a tracer bead embedded in a
Newtonian fluid is bound by a harmonic potential 1

2Heδr
2
b ,

for example, an externally applied optical trap. Here δrb

is the bead displacement from its equilibrium position. The
MSD of this harmonically bound Brownian particle (HBBP)
[27,28] in the frequency domain is obtained as 〈�δr2

b [ω]〉eq =
6kBT/[iω(He − mω2 + iωζ0)]. There is a threshold mass
mc = ζ 2

0 /(4He), above which the MSD oscillates. This os-
cillation condition can be realized if the medium viscosity is
so small as to satisfy m > mc. As a matter of fact, the MSD of
a Brownian particle trapped by an optical tweezer in air can
attain this condition and the MSD oscillates if the air pressure
(and therefore viscosity and density) is low [26]. On the other
hand, it is impossible for typical liquids to attain such low
viscosity. This is one reason why oscillatory behavior of the
MSD is not observed for viscoelastic liquids.

E. Effects of relaxation spectrum outside experimental window

So far we have focused on the simplest fluidal system that
has only a single viscoelastic relaxation time λ. In general,
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1/λ1

e-1M

1/λ2

λ1λ2

e-1M

FIG. 5. (Color online) The dynamic modulus of the discernible
two-mode Maxwell fluid (top) and an example of the mean-square
displacement of the bead embedded in it (bottom). The shaded
domain describes the extended single-mode Maxwell (e-1M) window
ω � 1/λ2 or t � λ2. The second Maxwell mode can attenuate the
oscillation of the MSD inside the e-1M window (see text).

however, viscoelastic fluids exhibit a more complex relaxation
spectrum with multiple modes. It is natural to expect that short
relaxation times in the spectrum contribute to the damping of
the oscillation of the MSD as the purely viscous component
does for the Maxwell fluid. We show here that the broad
spectrum that contains a short relaxation time outside the
frequency window of G∗ in which a single-mode Maxwellian

behavior is observed can attenuate the oscillation of the MSD
inside the corresponding time window. Thus, the GSER’s
result is approximately recovered inside the window even in
the absence of the purely viscous element.

As the simplest example, we consider the two-mode
Maxwell model whose dynamic modulus is described by

G∗(ω) = g1
iωλ1

1 + iωλ1
+ g2

iωλ2

1 + iωλ2
. (46)

We assume that the first mode with relaxation time λ1 and
modulus g1 is greatly separated in time from the second mode
with relaxation time λ2 and modulus g2, that is, λ1 � λ2,
so that each Maxwell mode is discernible. By taking the
limit λ2 → 0 while keeping the viscosity η2 = g2λ2 constant,
the second mode reduces to the purely viscous element.
Thus the present two-mode model is a simple extension of
the three-parameter model discussed in Sec. II D, but this
model helps us obtain an insight into more general multimode
systems.

In the following we focus on a window defined by the
frequency domain ω � 1/λ2, or by the time domain t � λ2.
We call it the e-1M (extended single-mode Maxwell) window
because this window includes not only the first Maxwell mode
but a transient regime between two modes (see Fig. 5). The
second Maxwell mode strongly influences the MSD inside
the e-1M window. An employment of such an extended
window is reasonable since the experimental window of G∗ for
Maxwell fluids such as wormlike micelle solutions observed
by conventional mechanical rheometer often includes higher
frequency modes.

By putting Eq. (46) into Eq. (20) the MSD of a bead
embedded in the two-mode Maxwell fluid is obtained in the
frequency domain as

〈
�r2

b [ω]
〉
eq = 6kBT

(iω)2

1 + (λ1 + λ2)iω + λ1λ2(iω)2

ζ1 + ζ2 + (λ1ζ2 + λ2ζ1 + m)iω + m(λ1 + λ2)(iω)2 + mλ1λ2(iω)3
, (47)

where ζj := λjHj (j = 1,2) is the friction coefficient of the viscous component of each Maxwell mode with Hj := 6πRgj being
the spring constant of each elastic component. We reasonably assume a condition m � λ1ζ1 as before, as well as λ1 � λ2.

It is useful to separate Eq. (47) into two parts, for inside and outside the e-1M window, to good approximation as

〈
�r2

b [ω]
〉
eq � 〈

�r2
b [ω]

〉(1)
eq + 〈

�r2
b [ω]

〉(2)
eq . (48)

This separation makes the denominator of Eq. (47) quadratic and therefore the method employed in Sec. II D can be applied. The
first term

〈
�r2

b [ω]
〉(1)
eq := 6kBT

(iω)2

1 + iωλ1

ζ1 + ζ2 + (λ1ζ2 + λ2ζ1 + m)iω + mλ1(iω)2
(49)

= 6kBT

m(iω)2

iω + 1/λ1(
iω + 1/τ

(1)
b

)(
iω + 1/τ

(1)
e

) (50)

describes the behavior inside the e-1M window ω � 1/λ2. Equation (49) is derived by approximating λ1 + λ2 � λ1 and by
neglecting the highest order term of ω in both the denominator and numerator of Eq. (47). Singular points of Eq. (50) give (the
inverse of) the bead’s characteristic times in the fluid at t � λ2. They are

τ
(1)
b,e := 2mλ1

λ1ζ2 + λ2ζ1 + m ±
√

(λ1ζ2 + λ2ζ1 + m)2 − 4mλ1(ζ1 + ζ2)
, (51)
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where τ
(1)
b (τ (1)

e ) takes the positive (negative) sign. On the other hand, the second term on the right side of Eq. (48) describes the
behavior outside the e-1M window ω � 1/λ2 and is given by

〈
�r2

b [ω]
〉(2)
eq := 6kBT

iω

λ1λ2

λ1ζ2 + λ2ζ1 + m + mλ1(iω) + mλ1λ2(iω)2
= 6kBT

miω

1(
iω + 1/τ

(2)
b

)(
iω + 1/τ

(2)
e

) , (52)

where

τ
(2)
b,e := 2mλ1λ2

mλ1 ±
√

(mλ1)2 − 4mλ1λ2(λ1ζ2 + λ2ζ1 + m)
(53)

are bead characteristic times at t � λ2 for which τ
(2)
b (τ (2)

e )
takes the positive (negative) sign. This term is obtained by
neglecting the first and the second terms in the numerator and
the first term in the denominator of Eq. (47).

Typical behaviors of the MSD are shown in Fig. 6 for several
different bead masses. Mathematical descriptions of the MSD
and details of relevant time constants in Fig. 6 are given in
Appendix. There are two critical masses m(1)

c and m(2)
c defined

by Eqs. (A4) and (A11), respectively. If m > m(1)
c , the MSD

oscillates in the e-1M window. With decreasing bead mass,
the oscillatory regime becomes narrow, and it disappears if
m = m(1)

c . The oscillation is pushed outside the e-1M window
if m < m(1)

c . Thus the second Maxwell element outside the
first Maxwell window drives the oscillation to the outside of
the window in which the GSER’s result is recovered at a large
part of the window (t � τ (1)

e ). The condition for the oscillation
to occur in each side of the window is summarized in Table I.
Note that if m(2)

c is smaller than m(1)
c and the condition

m(2)
c < m < m(1)

c is satisfied, then the MSD does not oscillate
over all time regimes as shown in Fig. 6(b). On the other hand,

if m(2)
c is larger than m(1)

c and m(1)
c < m < m(2)

c is fulfilled,
the oscillation occurs across the boundary of the observable
window (not shown here).

The oscillation inside the e-1M window (t � λ2) shifts
toward shorter times outside the window with decreasing bead
mass. The shifted oscillation never disappears outside the
e-1M window. But if there is a third Maxwell mode with
the relaxation time λ3 smaller than λ2, it shifts further toward
the shorter time regime as bead mass decreases. In general, the
broader the relaxation spectrum, the smaller the time regime
where the oscillation takes place in the MSD. This is another
reason why the oscillations of the MSD are typically not
observed and the GSER works properly inside experimental
windows in real systems.

F. Anomalous gap in the zero-mass limit

McKinley et al. [12] studied the singular nature of the
zero-mass limit for the generalized Maxwell model of an
arbitrary number of modes with uniform and random weights.
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FIG. 6. (Color online) The mean-square displacement and the corresponding power spectral density of a bead embedded in the two-mode
Maxwell fluid. Dashed curve in each MSD figure is drawn from the GSER without bead mass. The shaded domain describes the e-1M window
t � λ2. In (a-1) and (a-2) bead mass satisfies the condition m(2)

c < m(1)
c < m. In (b) a condition m(2)

c < m < m(1)
c is satisfied. (c-1) and (c-2)

fulfill the inequality m < m(2)
c < m(1)

c . See also the left table in Table I. λ2 = 10−7λ1 and ζ2 = 10−5ζ1.
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TABLE I. The condition for the oscillation not to occur in the MSD for the inside (t � λ2) and the outside (t � λ2)
of the e-1M window for m(2)

c < m(1)
c (left) and m(1)

c < m(2)
c (right).

√
means that the oscillation does not occur.

OUTSIDE INSIDE OUTSIDE INSIDE

a. m(2)
c < m(1)

c < m
√

oscillate d. m(1)
c < m(2)

c < m
√

oscillate
b. m(2)

c < m < m(1)
c

√ √
e. m(1)

c < m < m(2)
c oscillate oscillate

c. m < m(2)
c < m(1)

c oscillate
√

f. m < m(1)
c < m(2)

c oscillate
√

They started from the GLE with the lower integral limit 0,
and calculated the bead position in the Laplace space. Then
they derived the bead position (or path) in the time domain
by taking the inverse Laplace transform while keeping m

finite (a), or by naı̈vely putting m = 0 (weak zero-mass limit)
before the transformation (b), and showed that both results
do not agree even in the long time regime where the inertial
oscillation decays. The result is shown in Fig. 3 of Ref. [12]
for the 16-mode Rouse model. McKinley et al. showed that
this anomalous gap disappears in the limit of infinite number
of modes N → ∞.

Due to the equivalence of the GLEs stated in Sec. II B,
the same goes for the MSD derived from the GLE (7) with
the lower integral limit −∞. That is, the MSD derived from
Eqs. (16) and (13) with keeping m finite (a) is larger than
the MSD obtained from these equations by naı̈vely putting
m = 0 before the integration (b) in the time regime where the
oscillation decays. See Fig. 7 where the results for the two-
mode Maxwell model are shown. For the generalized Maxwell
model (ζ [ω] = ∑

j

ζj

1+iωλj
), the anomalous gap δMSD is

δMSD = lim
t→0

〈
�r2

b (t)
〉
eq = 6kBT∑

j Hj

, (54)

where the inverse one-sided Fourier transform of
limω→∞〈�r2

b [ω]〉eq = 6kBT
iω

∑
j Hj

[see Eq. (20) with m = 0] was

taken in the second equality. We can explain this gap in
terms of the inertial peak of the PSD as follows. (The
following discussion is based on the analytical results for
N = 1 and numerical results for N = 2, 3, 4 for wide range
of parameter-value sets of {λj ,ζj }, but it could be generalized
to any N in a straightforward manner.) In the case of (a) (i.e.,
m > 0), there is an inertial peak in the PSD as previously
shown for the Maxwell fluids (Sec. II C). On the other hand,
procedure (b) (i.e., naı̈vely put m = 0) eliminates the peak
in the PSD. Therefore, the total area under the PSD curve
Itotal = ∫ ∞

−∞ I (ω)dω = 2π〈r2
b (0)〉eq for (b) is smaller than that

for (a) by the peak area δItotal:

I
(b)
total = I

(a)
total − δItotal. (55)

Or, equivalently, 〈r2(0)〉eq for (b) is smaller than that for (a) by
δItotal/(2π ):

〈r2(0)〉(b)
eq = 〈r2(0)〉(a)

eq − δItotal/(2π ). (56)

Recalling that the MSD is written as 〈�r2
b (t)〉eq = 2〈r2

b (0)〉eq −
2〈rb(t) · rb(0)〉eq, the MSD for (b) (i.e., m = 0) is smaller than

that for (a) (i.e., m > 0) by the gap δItotal/π that is estimated
to be

δItotal/π = (
I

(a)
total − I

(b)
total

)/
π

= 1

π

∫ ∞

−∞
(I (ω)|m>0 − I (ω)|m=0)dω

= 6kBT

(
1∑
j Hj

− m( ∑
j ζj

)2

)
. (57)

Note that Itotal is a divergent quantity due to the singularity
of I (ω) at ω = 0 by the diffusive nature of the bead in the
long-time limit, but the difference of inertial Itotal|m>0 and
inertialess Itotal|m=0 is finite. We treat mathematical details in
a separate paper. Equation (57) becomes equal to the MSD
gap given by Eq. (54) when m � (

∑
j ζj )2/

∑
j Hj . Even if

we take the zero-mass limit in (a), the inertial peak in the PSD
just shifts toward the high frequency and never disappears as

0 10 20 30 40
0

5
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15

0 1 2 3 4 5
0

1

2

3

4

m = 0  (c)

m = 0  (b)

m > 0  (a)

δMSD

FIG. 7. (Color online) The mean-square displacement of the bead
in the two-mode Maxwell fluid derived from Eqs. (16) and (13) for
(a) the finite bead mass m = 10−3λ1ζ1, (b) from the same equations
but taking the zero-mass limit naı̈vely in the frequency domain,
and (c) from Mason-Weitz’s GSER (t > 0) that takes the zero-mass
limit naı̈vely in the frequency (or Laplace) domain. Although (b)
and (c) should give the same result because they are seemingly the
same procedure, there is a gap 6kBT/(H1 + H2). By introducing
the infinitesimal pure viscosity and then taking the zero-mass
limit in the frequency domain, the gap can be eliminated and
(b) becomes (c). In the limit of the infinite number of modes N → ∞,
(c) approaches (b) (not opposite) as 6kBT/

∑N

j=1 Hj → 0. This figure
can be compared with Fig. 3 of Ref. [12]. ζ2 = 2ζ1,λ2 = 10λ1.
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previously shown for the Maxwell fluids, and therefore the
MSD for m > 0 (a) never approaches that for m = 0 (b) no
matter how small m is. If there is a pure viscosity in the
dynamic modulus, the peak in the PSD decays in the zero-mass
limit. But the area from the pure viscosity compensates the
peak area of the PSD, so that the gap of the MSD does not
appear. Thus the correct result can be obtained by adding the
infinitesimal viscosity before taking the zero-mass limit (c).

The Einstein part of Mason-Weitz’s GSER derives the
correct inertialess MSD at t > 0 as (c) by the one-sided Fourier
transform in spite of the fact that the zero-mass limit is taken
naı̈vely as (b). This is because the term Itotalδ(ω) in Eq. (19) dis-
appears by taking the inverse one-sided Fourier transform and
therefore δItotal does not affect the MSD in the time domain.

III. STOKES COMPONENT

A. Correspondence principle

Expressions (13) and (20) relate the measurable quantity
on the left with the response of the fluid to the bead ζ (t).
More typically, we seek the material property of the medium
instead of its response to a particular probe. Hence we
seek a relationship between the memory kernel ζ (t) and the
appropriate material property. It is here where we necessarily
make assumptions that restrict the applicability of the relations.
First, we assume that the bead experiences a continuous
medium, which implies that the bead radius R is larger than
the fluid microstructure. Second, we assume that the fluid is
incompressible. A network in a solvent is expected to show
compression from bead motion, and would require a different
approach [29]. Third, we assume that the viscous solvent and
solute are coupled through viscous drag and move as one at
length scales large compared with the fluid microstructure
[30]. Finally, we assume that since the bead experiences only
Brownian forces and no external driving forces, the fluid
remains near equilibrium so is completely characterized by
its linear viscoelastic (LVE) properties. LVE theory states
that all rheological information is contained in the relaxation
modulus G(t), or equivalently the dynamic modulus G∗(ω) [8].
Since we are near equilibrium we assume that terms of the
equation of motion that are nonlinear in velocity can be ne-
glected. Our final assumption restricts us to passive microbead
rheology, or very small perturbations in active microbead
rheology.

The memory kernel ζ (t) in the GLE is a macroscopic
quantity that can be determined by solving the flow field around
a bead sphere. In the paper of Schnurr et al. [30] an explanation
is given for the generalization of Stokes law to a viscoelastic
medium. Basically, the idea is that the viscosity in the solution
of the problem for a sphere moving in the medium can be
replaced by G∗/(iω). This (correct) idea is explained in the
paper through the concept of a compressible network. We show
it in a more general and mathematically explicit way.

The correspondence principle mentioned in that paper [30]
between low-Reynolds number, purely viscous flow, and linear
viscoelasticity is made much more explicit in a recent paper
[31]. However, that paper [31] is restricted to steady-state
flow only, so it does not cover the problem at hand. The
correspondence was seen as early as 1970 by Zwanzig and

Bixon [32], when they applied the idea exactly to the problem
of a bead in a viscoelastic medium. In their paper they
restricted the relaxation spectrum to a single mode. The
original connection between Stokes flow and LVE appears
to have been made with solid mechanics by Lee [33]. We now
consider the general time-dependent case.

Conservation of momentum in an incompressible viscoelas-
tic fluid yields the equation of motion

ρ
∂v(r,t)

∂t
= −∇ · τ (r,t) − ∇p(r,t), (58)

where ρ is the fluid density, v(r,t) is the fluid velocity
field at a location r , ∇ is the vector differential, τ (r,t) is
the stress tensor, p(r,t) is pressure, and terms nonlinear in
velocity are neglected. Equation (58) requires a constitutive
equation relating stress to the flow field. For an incompressible
Newtonian fluid, this expression is

τ (r,t) = −η[∇v(r,t) + (∇v(r,t))†]. (59)

Any general viscoelastic medium near equilibrium can be
described by the LVE constitutive equation

τ (r,t) = −
∫ t

−∞
G(t − t ′)[∇v(r,t ′) + (∇v(r,t ′))†]dt ′, (60)

where G(t) is the relaxation modulus. The key to the corre-
spondence is that Eqs. (58)–(60) are linear in both velocity
and stress. Hence we can take the two-sided Fourier transform
of both sides of the last three equations. Then the equation of
motion for the Newtonian and LVE fluids have the same form
in the frequency domain

ρiωv[ω] = η∗(ω)∇2v[ω] − ∇p[ω], (61)

where η∗(ω) := η for the Newtonian fluid and η∗(ω) :=
G∗(ω)/(iω) for the LVE fluid. The argument r of both
v and p is omitted for simplicity. For our problem, both
fluids are expected to have the same (sticky) boundary
conditions v(|r| = R) = d rb/dt , so the spatial dependence
of the solution to each problem is the same—only the time
(or frequency) dependence is different. Therefore, to obtain
the LVE prediction from the creeping flow solution, we just
have to transform the creeping flow solution to the frequency
domain, and make the substitution: η → η∗(ω) = G∗(ω)/(iω).
This last observation has great practical importance: any
Newtonian creeping-flow solution can be used to find the
solution for the LVE problem. Since a great number of
analytic solutions and efficient numerical techniques exist
for creeping flow, these may be taken over directly into
LVE.

B. Medium inertia

Landau and Lifshitz [34] give a detailed solution of Eq. (61)
for the Newtonian fluid for the force F on a sphere. Zwanzig
and Bixon [32] claim that Stokes derived the essential elements
for the solution in 1851, and that the following was first found
by Boussinesq:

F[ω] = −{
6πRη + 6πR2

√
ρiωη + 2

3πR3ρiω
}
iωrb[ω].

(62)
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The first term on the right side is the well-known Stokes-law
drag term for steady displacement, the second is the Basset
force [35], and the third is the inertia of the fluid that is dragged
along with the bead [36]. We chose the sign for the square root
so that the power spectral density has positive values for all
frequencies. Note that the sign for iω in the Fourier transform
is different from that of Ref. [34], thereby causing a different
coefficient in the Basset force from that of Ref. [34].

If we take the Fourier transform of Eq. (7) and compare to
Eq. (62), we obtain

ζ [ω] = 6πRη + 6πR2
√

ρiωη (63)

for the Newtonian fluid. Note that we have added fluid inertia
as an effective mass to the bead, which is appropriate. Hence
m in Eq. (7) should be replaced with

meff := m + M/2, (64)

where M := 4
3πR3ρ is the medium mass per bead volume.

To obtain the memory kernel for the LVE fluid, we make our
substitution η → G∗(ω)/(iω),

ζ [ω] = 6πRG∗(ω)

iω
+ 6πR2

√
ρG∗(ω) (65)

for the LVE fluid. Note that the expression assumed in earlier
work does not contain the second term. This term can be
neglected if ω � ωM , where ωM is determined by√

|G∗(ωM )|
ρR2

= ωM. (66)

When a rigid body in a Newtonian fluid moves and disturbs
its surroundings, the stress penetrates through the fluid.
Propagation of the stress is characterized as the diffusion
of a vortex. In the case of an oscillatory disturbance with
frequency ω, the vortex expands away from the body to a
distance of the penetration depth (or oscillatory boundary
layer) δ = √

η/(ρω) [34,37]. For a viscoelastic material, the
penetration depth is approximately δ =

√
|G∗|/(ρω2) [31]. If

R is much smaller than δ, effects of fluid inertia and stress
propagation are negligible. This leads to the condition ω �
ωM . In other words, inertial effects of the material become
strong at frequencies higher than ωM . For example, for aqueous
solutions of wormlike micelles, G∗ is typically 102−103 Pa
in the high-frequency domain and ρ ∼ 1 g/cm3 [15]. Since
particle size is order 1 μm, the critical frequency for fluid
inertia is about ωM � 105−106 rad/s in this system, which is
attainable in a recent technique [38].

Equation (65) is quadratic in
√

G∗, so solution is straight-
forward

G∗(ω) = iωζ [ω]

6πR
+ R2ω2

2

(√
ρ2 + 2ρζ [ω]

3πR3iω
− ρ

)
. (67)

The second term comes from the Basset force, which goes
to 0 in the limit ρ → 0. The sign for the square root can be
determined from the condition that G′ and G′′ must be positive.
Therefore only the plus sign is possible.

C. Maxwell fluid

We again consider the single-mode Maxwell fluid but now
taking account of fluid inertia together with bead inertia.

There are two types of contribution from the fluid inertia:
one is the Basset force and the other is the inertia of the fluid
dragged around with the bead. The Basset force appears in the
memory function that is given by putting Eq. (5) into Eq. (65)
as

ζ [ω] = ζ

(
1

1 + iωλ
+ 1

λωM

√
iωλ

1 + iωλ

)
, (68)

where

ωM =
√

2

3

√
H

M
(69)

is the frequency defined by Eq. (66) above which the Basset
force affects bead displacement. In the following we consider
the frequency regime ω � 1/λ because we are interested in
inertial effects which appear only at high frequency (note that
ωM � 1/λ). In this condition,

√
iωλ(1 + iωλ) � ±iω and

therefore Eq. (68) is approximately

ζ [ω] � ζ

1 + iωλ

(
1 + iω

ωM

)
(ωλ � 1). (70)

The second term in parentheses, that proportional to
√

M ,
comes from the Basset force. The sign for this term must be
plus so that the PSD is positive for all ω. On the other hand,
the inertia of the dragged fluid contributes to the PSD through
the effective mass meff = m + M/2:

I (ω) = −Re

{
6kBT

iω(−meffω2 + iωζ [ω])

}
, (71)

where m in Eq. (13) was replaced with meff . The fluid
density and the bead density should be comparable so that
the bead undergoes Brownian motion in the fluid. Thus the
ratio M/m = ρ/ρb takes a value of order one. Below we take
a look at these influences of fluid inertia on the PSD one at a
time.

1. Effects of the Basset force

First we examine the effects of the Basset force alone. By
putting Eq. (70) into the last equation but with meff = 0, we
obtain

I (ω) � 6kBT

ζ

λωM (ω2 + ωM/λ)

ω2
(
ω2 + ω2

M

) (ω � 1/λ). (72)

This expression is the same as that for the single-mode
Maxwell fluid with a purely viscous element Eq. (40). The
equivalence between Eqs. (40) and (72) comes from the fact
that the contribution from the Basset force to the frequency-
dependent friction, the second term of the right side of Eq. (65),
gives the constant 6πR2√ρg = H/ωM (:= ζM ) at ω � 1/λ

that plays the same role as a constant, pure viscosity. Thus the
inclusion of the Basset force alone corresponds to the inclusion
of an effective pure viscosity ζM , thereby eliminating the peak
in the PSD and the oscillation in the MSD. As shown below,
even when the effective bead mass is considered, the peak
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FIG. 8. (Color online) The power spectral
density (left) and the mean-square displacement
(right) of a bead in the Maxwell fluid with effects
of the Basset force alone (dashed green line), and
effective bead mass alone (solid blue line), and
the Basset force and effective bead mass (dotted
red line). M = m = 10−10λζ .

in the PSD does not appear if the bead density and the fluid
density are comparable. Equation (72) is roughly expressed as

I (ω) � 6kBT

ζ
×

⎧⎪⎨
⎪⎩

ω−2 (ω � √
ωM/λ)

λ/ωM (
√

ωM/λ � ω � ωM )

λωMω−2 (ωM � ω).

(73)

See Fig. 8 (dashed line of the left figure). There appears
a plateau at

√
ωM/λ � ω � ωM , and the bead moves dif-

fusively both in lower (ω � √
ωM/λ) and higher (ω � ωM )

frequency regimes. The corresponding MSD is

〈
�r2

b [ω]
〉
eq � 6kBT

H

(
1 + t

λ
− e−ωMt

)
(74)

� 6kBT

H
×

⎧⎪⎨
⎪⎩

ωMt (t � 1/ωM )

1 (1/ωM � t � λ)

t/λ (t � λ),

(75)

where ωM � 1/λ was assumed in deriving these equations.
See also Fig. 8 (dashed line of the right figure). Since the
MSD does not oscillate, effects of the Basset force can be
erased in a naı̈ve way simply by taking a limit M → 0 (i.e.,
ωM → ∞).

2. Effective bead mass

In the absence of the Basset force, inertial effects of the
bead and the fluid dragged around with it is qualitatively the
same as that of the bare bead. The only difference is that bead
mass m is replaced with meff in which mass of the dragged fluid
is included. Therefore, as discussed in Sec. II C, the inertial
time scale is given by the inverse of the frequency ωmeff :=√

H/meff . If m � M then ωmeff � ωM , and the PSD is roughly
expressed as (see Fig. 8)

I (ω) � 6kBT

ζ
×

⎧⎪⎨
⎪⎩

ω−2 (ω � ωM )

λ2 (ω � ωM )

ω4
Mω−6 (ωM � ω).

(76)

The peak appearing at ω � ωM cannot be neglected safely by
the limit m � M → 0; it just moves toward higher frequencies
while keeping its height and width constant, and never
disappears.

3. Combined effects of fluid inertia

Finally, we examine the influence of the Basset force
together with the inertia of the dragged fluid on the PSD.
Substituting Eq. (68) into Eq. (71) we obtain

I (ω) � 6kBT

ζ

λωM

ω2

ω2 + ω/λM

(λmeffωM/ζ )2ω4 + [
(meffωM/ζ + 1)2 − 2λmeffω

2
M/ζ

]
ω2 + ω2

M

(ω � 1/λ). (77)

As before, we can assume conditions ωM � 1/λ and meff � λζ . If m � M , then ωm � ωM and Eq. (77) is approximately written
as

I (ω) � 6kBT

ζ

λω3
M (ω2 + ωM/λ)

ω2
(
ω4 + ω2

Mω2 + ω4
M

) (78)

� 6kBT

ζ
×

⎧⎨
⎩

ω−2 (ω � √
ωM/λ)

λ/ωM (
√

ωM/λ � ω � ωM )
λω3

Mω−4 (ωM � ω).
(79)
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FIG. 9. (Color online) The mean-square displacement and the corresponding power spectral density of a bead in the Maxwell fluid. Fluid
mass per bead volume M is different for each curve with a fixed bead mass m = 10−10λζ .

The only difference with Eq. (73) is that the power of the PSD
is −4 (ballistic) rather than −2 (diffusive) in the high frequency
regime ω � ωM . See Fig. 8 where numerically calculated
MSDs corresponding to Eq. (77) are also shown. Some cases
where M is not equal to m are depicted in Fig. 9 as a reference.
With increasing M toward m, a peak in the PSD decreases (or
the oscillation of the MSD attenuates) and it disappears if both
masses are comparable. Thus the inertial effects of both fluid
and bead can be erased in a naı̈ve way simply by taking a limit
M → 0 with keeping M � m. If M � m and therefore there is
no peak in the PSD (or no oscillation in the MSD), an inclusion
of the purely viscous element with infinitesimal viscosity
causes only an infinitesimal change in the PSD (and the
MSD).

IV. CONCLUSION

We studied the effects of inertia of both tracer bead
and medium on the positional autocorrelation of the bead
(mean-square displacement and power spectral density) for a
single-mode Maxwell fluid and its extension. By introducing a
small amount of bead mass in the generalized Stokes-Einstein
relation, the mean-square displacement of the bead oscillates
drastically at time regimes smaller than, but comparable to,
the relaxation time of the fluid. The frequency of oscillation
diverges in the zero limit of bead mass. However, if we include
a purely viscous element with infinitesimal viscosity in the
dynamic modulus, inertia can be eliminated safely thereby
recovering the result from the GSER without bead inertia, but
with proper initial condition. An anomalous gap indicated by
McKinley et al. between the inertialess MSD (this is different
from the one from Mason-Weitz’s GSER) and the MSD for

finite bead mass also disappears in the presence of the purely
viscous element. The anomalous gap of the MSD corresponds
to the area of the inertial peak in the PSD that is eliminated in
the naı̈ve zero-mass limit.

In real Maxwell fluids such as wormlike micelle solu-
tions, there exists a relaxation spectrum outside the window
where a single-mode Maxwell behavior is observed. Such
a spectrum attenuates the oscillation of bead displacement
at the corresponding time regime inside the window. We
studied the two-mode Maxwell model to find the condition
necessary for such a suppression of the oscillation. It was
shown that if bead mass is smaller than a specific mass
determined by the viscoelastic parameters, oscillation is
pushed outside the window and decays inside the window.
The oscillation never disappears outside the window. But if
there were a third Maxwell mode whose relaxation time is
smaller than that of the second mode, the oscillation would
shift further toward the shorter time regime. In general we
expect that the broader the relaxation spectrum, the smaller
the time regime where the oscillation takes place in the
MSD.

Fluid inertia affects the bead autocorrelation through both
the fluid dragged around with the bead and the Basset force.
The former generates a peak in the PSD (or oscillation of the
MSD) while the latter does not. Actually, the Basset force plays
the same role as the purely viscous element at high frequencies
where the storage modulus exhibits the plateau. If fluid density
and bead density are comparable, the Basset force suppresses
the peak in the PSD.

All these factors, that is, the existence of a purely viscous
component, relaxation modes at high frequencies, and medium
inertia tend to bury the oscillations of the MSD inside an
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experimental window in the noise level of particle-tracking
measurements.
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APPENDIX: THE TWO-MODE MAXWELL FLUIDS

Here we detail the MSD behavior of the bead in the two-
mode Maxwell fluids discussed in Sec. II E for each side of
the e-1M window.

1. Inside the e-1M window (t � λ2)

By taking the inverse one-sided Fourier transform of
Eq. (50), MSD inside the e-1M time window is obtained
as

〈
�r2

b (t)
〉(1)
eq = 6kBT

H1

(
ζ1

ζ1 + ζ2

)2
⎧⎨
⎩

1 + t/τ
(1)
d − ( 1+B

(1)
m

2 e−t/τ
(1)
e + 1−B

(1)
m

2 e−t/τ
(1)
b

) (
for m < m(1)

c

)
1 + t/τ

(1)
d − e−t(1/τ

(1)
e +1/τ

(1)
b )/2

(
cos ω(1)

m t + B(1)
m

′
sin ω(1)

m t
) (

for m > m(1)
c

)
,

(A1)

where

τ
(1)
d := ζ1λ1

ζ1 + ζ2
(A2)

is the time constant associated with the diffusive motion of the
tracer bead, and the coefficients are given by

B(1)
m := C(1)

λ1ζ1

√
(λ1ζ2 + λ2ζ1 + m)2 − 4mλ1(ζ1 + ζ2)

,

(A3a)

B(1)
m

′
:= −iB(1)

m = C(1)

2mλ2
1ζ1ω

(1)
m

, (A3b)

with C(1) := (λ1ζ2 + λ2ζ1 + m)2 − λ1(ζ1 + ζ2)(λ1ζ2 +
λ2ζ1 + 3m).

In Eq. (A1),

m(1)
c := λ1ζ1(

√
1 + ζ2/ζ1 − 1)2 (A4)

is the critical mass defined from the zero point of the square
root in the denominator of Eq. (51). If bead mass is so small
as to satisfy the condition m < m(1)

c , then the argument of the
square root is positive, so that τ (1)

b and τ (1)
e have real values indi-

cating that the MSD does not oscillate inside the e-1M window.
The condition τ

(1)
b < τ (1)

e < τ
(1)
d is always satisfied, but the

relaxation time of the ballistic mode τ
(1)
b can be placed inside

(λ2 < τ
(1)
b ) or outside (τ (1)

b < λ2) the e-1M window depending
on the value of bead mass. In the former case (λ2 < τ

(1)
b ), the

ballistic mode appears inside the e-1M window followed by
the diffusive mode up to τ (1)

e due to the viscous component
of the second Maxwell element [see Fig. 6(b)], while in the
latter case (τ (1)

b < λ2), it does not and only the diffusive
mode appears [see Figs. 6(c-1) and 6(c-2)]. For both cases,
a plateau appears with its height 〈rb(t)2〉eq = 6kBT

H1
( ζ1

ζ1+ζ2
)2 for

τ (1)
e � t � τ

(1)
d , and the bead diffuses as 〈rb(t)2〉eq = 6kBT

ζ1+ζ2
t

at the longest time regime t � τ
(1)
d . [The precise expression

of the plateau is 6kBT
λ1ζ1+λ2ζ2

(ζ1+ζ2)2 . Since the second term of
the denominator can be neglected in the current condition
λ1 � λ2, this is approximately expressed as 6kBT

λ1ζ1

(ζ1+ζ2)2 �

6kBT
H1

( ζ1

ζ1+ζ2
)2.] An important point here is that if ζ2 is much

smaller than ζ1, the GSER’s result is recovered at t � τ (1)
e that

exists inside the e-1M window.
With increasing m, the onset τ

(1)
b and the terminal τ (1)

e

of the internal diffusive mode approach, and if m = m(1)
c ,

both become equal with each other thereby eliminating this
diffusive mode. When m > m(1)

c , these times take a complex
value, and therefore the MSD oscillates. The imaginary part
of their inverse gives the frequency of the oscillation:

ω(1)
m :=

√
4mλ1(ζ1 + ζ2) − (λ1ζ2 + λ2ζ1 + m)2

2mλ1
. (A5)

Instead of τ
(1)
b ,τ (1)

e themselves, their mean times

√
τ

(1)
b τ

(1)
e =

√
mλ1

ζ1 + ζ2
=: λ

(1)
b , (A6)

2

1/τ
(1)
b + 1/τ

(1)
e

= mλ1

λ1ζ2 + λ2ζ1 + m
=: λ(1)

e (A7)

describe the dynamics of bead displacement in this case. These
times always satisfy the conditions λ2 < λ

(1)
b < λ(1)

e < τ
(1)
d .1

In the smaller time regime t � λ
(1)
b , the bead displacement

is ballistic. (This mode is also dominant at all time regime
outside the e-1M window.) The oscillation is observed for
λ

(1)
b � t � λ(1)

e , while gradually decreasing its amplitude as
times goes on because of the energy dissipation by the viscous
elements. After the oscillation is attenuated, a plateau appears
for λ(1)

e � t � τ
(1)
d . The bead diffuses away at the longest time

regime t � τ
(1)
d . This behavior can be confirmed in Figs. 6(a-1)

and 6(a-2).

1τ
(1)
d − λ(1)

e = λ1ζ1(λ1ζ2 + λ2ζ1)/[(ζ1 + ζ2)(λ1ζ2 + λ2ζ1 + m)]) >

0, (λ(1)
b )2 − (λ2)2 = [mλ1 − (ζ1 + ζ2)(λ2)2]/(ζ1 + ζ2) >

(λ1)2ζ1(
√

1 + ζ2/ζ1 − 1)2/(ζ1 + ζ2) > 0 where an inequality
m > m(1)

c was used.
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2. Outside the e-1M window (t � λ2)

The MSD of the bead outside the e-1M window is obtained from Eq. (52) as follows:

〈
�r2

b (t)
〉(2)
eq = 6kBT

H1

λ2ζ1

λ1ζ2 + λ2ζ1 + m

⎧⎨
⎩ 1 −

(
1+B

(2)
m

2 e−t/τ
(2)
e + 1−B

(2)
m

2 e−t/τ
(2)
b

) (
for m > m(2)

c

)
1 − e−t/(2λ2)

(
cos ω(2)

m t + B(2)
m

′
sin ω(2)

m t
) (

for m < m(2)
c

)
,

(A8)

where the coefficients are given by

B(2)
m :=

√
mλ1

mλ1 − 4λ2(λ1ζ2 + λ2ζ1 + m)
, (A9a)

B(2)
m

′
:= −iB(2)

m = 1

2λ2ω
(2)
m

, (A9b)

with

ω(2)
m :=

√
4mλ1λ2(λ1ζ2 + λ2ζ1 + m) − (mλ1)2

2mλ1λ2
, (A10)

and the critical mass is

m(2)
c := 4

λ2

λ1
(λ1ζ2 + λ2ζ1). (A11)

If m > m(2)
c , the argument of the square root of τ

(2)
b,e given

by Eq. (53) is positive, so that τ
(2)
b and τ (2)

e take real values
and the MSD does not oscillate. A condition λ2 < τ

(2)
b < τ (2)

e
holds. The first inequality assures that the bead displacement
is ballistic at all time regimes outside the e-1M window
[Figs. 6(a-1), 6(a-2), and 6(b)].

On the other hand, if bead mass is so small that the
condition m < m(2)

c is fulfilled, τ
(2)
b and τ (2)

e take complex
values and the MSD oscillates with the frequency ω(2)

m . With

decreasing bead mass, the frequency becomes high as ω(2)
m �√

λ1ζ2+λ2ζ1

mλ1λ2
, and it diverges in the zero-mass limit. Therefore

the oscillation never disappears outside the e-1M window,
although its effects disappear inside the e-1M window as
explained above. The bead’s displacement is governed by the
following characteristic times given as the means of τ

(2)
b and

τ (2)
e :

√
τ

(2)
b τ

(2)
e =

√
mλ1λ2

λ1ζ2 + λ2ζ1 + m
=: λ

(2)
b , (A12)

2

1
/
τ

(2)
b + 1

/
τ

(2)
e

= 2λ2 =: λ(2)
e . (A13)

These times always satisfy the condition λ
(2)
b < λ2 < λ(2)

e .2

The displacement of the bead is ballistic at the shortest time
regime t � λ

(2)
b , and oscillates in the rest of the regime: λ(2)

b �
t � λ(2)

e (∼ λ2). See also Figs. 6(c-1) and 6(c-2).

2(λ2)2 − (λ(2)
b )2 = (λ2)2(λ1ζ2 + λ2ζ1 − m)/(λ1ζ2 + λ2ζ1 + m) >

0 where bead mass was assumed to be small.
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