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Abstract

We use molecular dynamics simulations to study the melting of gold icosahedral
clusters of a few thousand atoms. We pay particular attention to the behavior of
surface atoms, and to the equilibrium shape of the cluster. We find that the surface
of the cluster does not pre-melt, but rather remains ordered up to the melting Tm.
However the increasing mobility of vertex and edge atoms significantly soften the
surface structure, leading to inter- and intra-layer diffusion, and shrinking of the
average facet size, so that the average shape of the cluster is nearly spherical at
melting.
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Gold particles consisting of tens to thousands of atoms have unique optical
and mechanical properties and hold great promise as building blocks for nano-
bioelectronic devices [1,2], catalysts [3], and sensors [4]. It is therefore natural
that the physics and chemistry of these materials are a current research subject
of great interest [5]. For future applications knowledge of the structure and
stability of gold nanoparticles of different size and morphology is particularly
important.

While bulk gold has an fcc crystal structure, the competition between bulk
and surface energies in nanometer sized gold crystallites can result in several
different competing structures [6,7]. Depending on cluster size and external

∗ Corresponding author: Department of Physics and Astronomy, University of
Rochester, Rochester, NY 14627; Fax: (585) 273-3237

Email address: stte@pas.rochester.edu (S. Teitel).

Preprint submitted to Elsevier Science 30 June 2004



conditions transitions between these structures have been observed [8,7]. One
such structure which has been observed both in simulations [9,10] and in ex-
periments [11,12], is the “Mackay icosahedron”[13,14], consisting of 20 slightly
distorted fcc tetrahedra, with four {111} faces each, meeting at the center to
form an icosahedral shaped cluster. The internal faces of the tetrahedra meet
at strain inducing twin grain boundaries with hcp structure, leaving the clus-
ter with 20 external {111} facets. Theoretical models [15–18] have predicted
different limits for the stability of such icosahedral clusters, and it is unclear
whether their formation is an equilibrium or rather a kinetic process [11,17–
21]. Nevertheless, it is natural to suppose that formation of this structure is
related to the very high stability of the {111} external surfaces. Simulations
[22] and experiments [23] on bulk slab-like geometries with exposed {111}
surfaces have shown that, unlike the {100} and {110} surfaces which melt
below the bulk melting temperature Tm, the {111} surface neither melts nor
roughens but remains ordered up to and above Tm, and can in fact lead to
superheating of the solid [25]. In light of this observation it is interesting to
consider how the high stability of the {111} facets effects the melting and
equilibrium shape of such icosahedral nanoclusters.

In order to address this issue, we have performed detailed numerical simu-
lations of icosahedral gold nanoclusters of a few thousand atoms, obtained
by cooling from the melt. We pay particular attention to the behavior of
the surface atoms and to the equilibrium shape. We find a sharp first order
melting transition Tm. Unlike earlier results on smaller cuboctahedral clusters
[24], which include non {111} facets that pre-melt below Tm, we find no sur-
face pre-melting of the {111} facets of our icosahedral cluster. Nevertheless,
we find that there is a considerable softening of the cluster surface roughly
∼ 200 K below Tm due to the motion of atoms along the vertices and edges
of the cluster. In this region we find both intra-layer and inter-layer diffusion
of atoms, which increases considerably as Tm is approached. The equilibrium
shape progresses from fully faceted, to faceted with rounded edges, to nearly
spherical just below Tm. Throughout this region, the interior atoms of the
cluster remain essentially perfectly ordered, until Tm is reached.

Using the many-body “glue” potential [26] to model interactions among gold
atoms, we carry out molecular dynamics simulations, integrating the classical
equations of motion with the velocity Verlet algorithm [27] with a time step of
4.3 fs. The results presented here are for a 2624 atom cluster, with a diameter
of ∼ 20 Å, but we have also considered other sizes. We start our simulations at
a high T = 1500 K > Tm, and cool using the Andersen thermostat method [27]
to 1000 K. We then cool, in intervals of 100 K, down to 200 K, using 5 × 106

steps (21 ns) at each temperature. Even though our N = 2624 atoms is not a
“magic number” for a perfect icosahedral structure (the nearest such number
being 2868), the cluster structure we find with this method is nevertheless
clearly a Mackay icosahedron consisting of slightly distorted tetrahedra with
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Fig. 1. Potential energy vs. T for a 2624 atom gold cluster. The sharp jump at
T = 1075 K indicates the first order melting transition.

different number of atoms, but with a missing central atom. Similar icosahedral
structures were obtained in runs with different particle numbers. Such a central
vacancy, postulated for copper and aluminum but not for gold [28], has been
considered previously [29] as a means of partially relieving the strain caused
by the hcp twin grain boundaries between the fcc tetrahedra.

To study melting and the equilibrium shape, we next heat the cluster up
using constant temperature molecular dynamics[30]. To compute equilibrium
properties, we take at each temperature 106 steps (4.3 ns) for equilibration,
followed by 107 steps (43 ns) to compute averages. We take fine temperature
increments in the vicinity of the cluster melting transition. In Fig. 1 we show
our results for the average potential energy vs. temperature. We found the
cluster to melt at Tm = 1075 K, with a discontinuous jump in potential energy.
Over the whole temperature range from 200 K to 1200 K gold atoms were never
observed to evaporate from the cluster.

To characterize the structure of the cluster, we measure the standard bond
orientational order parameters Q6, Ŵ6, Q4 and Ŵ4 [31] which are often used
to distinguish between different phases of condensed materials [30,32]. These
bond order parameters, designed to probe the degree and type of crystallinity,
are sensitive to the orientational correlations of “bonds”, i.e. the vectors joning
pairs of neighboring atoms. In the liquid phase, such correlations decay quickly
with growing distance and the bond order parameters vanish. In crystalline
solids, on the other hand, orientational bond correlations persist over large
distances leading to order parameters with finite values. We refer the reader
to the work of Ref. [31] for the definition of these quantities, and their values in
common crystal structures. To distinguish between bulk and surface behavior,
we first identify all atoms on the surface of the cluster, then the atoms in the

3



Fig. 2. Bond orientational order parameters, Q6, Ŵ6, Q4, Ŵ4 vs. T , averaged over
(a) bonds between interior atoms only, and (b) bonds between surface atoms only.
For Ŵ4 only a few representative error bars are shown for the sake of clarity.

first sub layer below the surface, and so on; the cluster has 9 such layers. We
label as “interior” atoms those lying below the fourth sub layer (our results
are essentially unchanged if we define the “interior” as all atoms below the
first sub layer). In Fig. 2a we plot the bond order parameters averaged over
only bonds between the interior atoms. We see Q4, Ŵ4 ≈ 0 at all T , while Q6

and Ŵ6 take finite values for T < Tm appropriate to the Mackay icosahedron.
Q6 and Ŵ6 remain essentially constant, decreasing only slightly just below Tm,
indicating that the bulk ordering remain stable up until melting. In contrast,
Fig. 2b shows the bond order parameters averaged over only bonds between
the surface atoms. Again Q4, Ŵ4 ≈ 0 at all T , while Q6 and Ŵ6 take finite
values for T < Tm. However here we see a much more pronounced decrease,
particularly in Q6 starting well below Tm, until both vanish at melting (the
finite value of Q6 above melting is a finite size effect that decreases as the
cluster size increases). Thus, while the surface remains ordered below Tm, i.e.
|Q6|, |Ŵ6| > 0, the surface order softens to a much greater extent than does
the bulk as Tm is approached.

Next we consider the diffusion of the surface atoms. In Fig. 3a we plot, for sev-
eral different temperatures, the average mean square displacement 〈|∆r(t)|2〉 ≡
〈|r(t) − r(0)|2〉 vs. time t, where the average is over all the atoms which were
initially on the surface of the cluster. At T = 600 K, diffusion is very slow,
with displacements after 20 ns remaining less than one atomic separation. At
T = 900 K, almost 200 K below Tm, diffusion is significant. At T = 1060 K,
15 K below Tm, the mean square displacement saturates at large t, indicating
that atoms now diffuse the entire length of the cluster. Fitting the early time
linear part of these curves, 〈|∆r(t)|2〉 ∼ 6Dt, we plot the diffusion constant in
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Fig. 3. (a) Mean square displacement for atoms initially on the surface, at various
temperatures; (b) Diffusion constant D vs. T for atoms initially on the surface.
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Fig. 4. For the indicated temperatures, top row: average cluster shape for a simu-
lation time of 43 ns; middle row: histogram of the maximal local curvatures of the
average shape; bottom row: ellipsoids indicate root mean square displacements of
atoms on the cluster surface over a simulation time of 1.075 ns.

Fig. 3b.
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The question thus arises how to reconcile this observed surface diffusion below
Tm with the absence of surface melting that is indicated by the finite bond
orientation order parameters of Fig. 2b. One possibility is that, as the temper-
ature approaches Tm, all surface atoms become more mobile but translational
order is maintained due to the presence of a periodic substrate formed by the
ordered sub-layers below the surface. Our simulations, however, point to a dif-
ferent picture (see last row of figures shown in Fig. 4). For each atom initially
on the surface of the cluster, we compute its average position r̄ ≡ 〈r〉, and
its average displacement correlation matrix dαβ ≡ 〈(r − r̄)α(r − r̄)β〉, where
α, β = x, y, z and the 〈. . .〉 stand for averages over 25 configurations, sampled
every 43 ps of simulation time. Taking the eigenvectors of dαβ and the square
root of their corresponding eigenvalues to define the axes and principal radii
of an ellipsoid, gives a convenient representation for the root mean square
displacement of the atom. In the last row of Fig. 4 we plot these ellipsoids
for each atom initially on the surface, centering the ellipsoid at the average
position of the atom r̄. We show such plots for the same temperatures as in
Fig. 3a. We clearly see that for T = 600 K and 900 K, the biggest ellipsoids
are at the vertices and edges, while those for atoms in the facets are in general
smaller. If we let the time that we average over increase, we find that the ellip-
soids at the vertices and edges grow in size, corresponding to diffusion, while
those in the middle of the facets stay approximately the same, corresponding
to thermal vibrations without diffusion. A more detailed analysis shows that
significant interlayer exchange takes place between the two topmost layers as
much as 200 K below Tm. In Fig. 4 one can see ellipsoids oriented normal to
the cluster surface, corresponding to this interlayer diffusion. For the higher
temperatures, T = 1060 K just below melting, and T = 1100 K just above
melting, diffusion is pronounced throughout the entire surface.

Finally, we consider the effects of the vertex and edge atom diffusion on the
equilibrium shape of the cluster. Because of the small cluster size, the in-
stantaneous shapes fluctuate significantly at high temperatures. But since our
simulation algorithm conserves angular momentum, and the angular momen-
tum is zero, our sample does not rotate as a whole. Hence we can compute a
well defined average equilibrium shape at each temperature. We measure this
equilibrium shape by averaging over the instantaneous shapes as follows. We
divide space up into 842 approximately equal solid angles [33], corresponding
roughly to the number of surface atoms. We then average the position of the
surface atoms found in each solid angle over 1000 configurations sampled at
equal times throughout the simulation of total time 43 ns. This defines the
average radial position of the cluster within each solid angle, and hence the
average cluster shape. In the top row of Fig. 4 we show the resulting equilib-
rium shapes for several temperatures. We see that the shape is rounding out
as the temperature increases, assuming a nearly perfect spherical shape above
Tm.
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To quantify this, we compute the curvature distribution of the surface as
follows. Using the average position of the surface in a given solid angle and its
nearest neighbors, we fit to determine the best tangent plane to these points.
Defining the normal to this plane as the z axis, we then find the best paraboloid
that fits through the points. The principal curvatures of this paraboloid then
give our approximation for the two principal curvatures of the surface at the
given solid angle. We define κ to be the maximum of these two principal
curvatures. In the middle row of Fig. 4 we plot histograms of κ as one varies
over all the solid angles defining the average surface. At T = 600 K and 900
K we see a sharp peak at κ = 0 corresponding to the points on flat facets, and
a high κ tail corresponding to higher curvatures on the edges and vertices.
At T = 1060 K, just below Tm = 1075 K, the peak at κ = 0 has essentially
vanished, and one has a broad distribution centered about κ ' 1/R with
R = 21.5 Å, the radius of the spherical liquid drop above Tm. At T = 1100 K,
just above Tm, the distribution becomes very sharply peaked about κ = 1/R.

To conclude, we have found that gold nanoparticles of a few thousand atoms
form a Mackay icosahedral structure, with missing central atom, when cooled
from a liquid. Upon slow heating, we find that this bulk structure remains
stable up to a sharp first order melting. The surface remains ordered with no
pre-melting below Tm, however it softens considerably with increasing diffusion
due to mobile vertex and edge atoms. As Tm is approached, this diffusion
of edge atoms leads to significant shrinkage of the {111} facet sizes in the
average cluster shape, leading to an almost spherical shape just below Tm.
In addition to the cluster of 2624 atoms reported upon here, we have also
considered clusters of different sizes with 603 and 1409 particles. While the
melting temperature Tm was observed to increase with increasing cluster size,
we continued to find the same general features, with the surface softening
tracking the increase in Tm. It would be interesting to know how this surface
softening is related to morphological transitions observed in gold nanorods at
temperatures below the melting temperature [30,34].

This work was funded in part by DOE grant DE-FG02-89ER14017.
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Societá Italiana di Fisica, Bologna, 1996, p. 345-398.

[26] F. Ercolessi, M. Parrinello, and E. Tosatti, Philos. Mag. A58, 213 (1988).

[27] D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press,
2nd ed. (2002).

[28] C. Mottet, G. Treglia, and B. Legrand, Surf. Sci. 383, L719 (1997).

[29] L. L. Boyer and J. Q. Broughton, Phys. Rev. B 42, 11461 (1990).

8



[30] Y. Wang and C. Dellago, J. Phys. Chem. B 107, 9214 (2003).

[31] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

[32] P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104,
9932 (1996).

[33] R. H. Hardin, N. J. A. Sloane and W. D. Smith, Tables of Spherical Codes

with Icosahedral Symmetry, available online, or contact N. J. A. Sloane, AT&T
Shannon Lab, Florham Park, NJ.

[34] S. Link, Z. L. Wang, and M. A. El-Sayed, J. Phys. Chem. B 104, 7867 (2000).

9


