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ABSTRACT: Using a new proof technique which is independent of the approximation fixed point of T (limn→∞ ‖xn −
Txn‖ = 0) and the convergence of the Browder type iteration path (zt = tu + (1 − t)Tzt), the strong convergence
of the Halpern iteration {xn} of Cesàro means for asymptotically nonexpansive self-mappings T , defined by xn+1 =

αnu + (1 − αn)(n + 1)−1 ∑n
j=0 T

jxn for n > 0, is proved in a uniformly convex Banach space E with a uniformly
Gâteaux differentiable norm whenever {αn} is a real sequence in (0, 1) satisfying the conditions limn→∞ bn/αn = 0 and
limn→∞ αn = 0 and

∑∞
n=0 αn =∞.
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INTRODUCTION

Throughout this paper, a Banach space E will always
be over the real scalar field. We denote its norm by
‖·‖ and its dual space byE∗. The value of x∗ ∈ E∗ at
y ∈ E is denoted by 〈y, x∗〉. The normalized duality
mapping J from E into 2E

∗
is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖x‖ = ‖f‖},

for all x ∈ E. Let F (T ) denote the set of all fixed
point for a mapping T , that is F (T ) = {x ∈ E :
Tx = x}, and let N denote the set of all positive
integers.

Let K be a non-empty closed convex subset of a
Banach space E. A mapping T : K → K is said
to be asymptotically non-expansive if for each n > 1,
there exists a non-negative real number kn satisfying
limn→∞ kn = 1 such that

‖Tnx− Tny‖ 6 kn‖x− y‖, ∀x, y ∈ K.

When kn ≡ 1, T is called non-expansive.
The concept of asymptotically non-expansive

mapping which is a natural generalization of the
important class of non-expansive mappings was in-
troduced by Goebel et al1 where the first existent
theorem of fixed points was obtained: if K is a
nonempty closed convex and bounded subset of a
uniformly convex Banach space, then every asymp-
totically non-expansive self-mapping of K has a fixed

point. Kirk et al2 improved the above result: if a
reflexive Banach space E has the property that each
of its closed bounded convex sets has the fixed point
property for non-expansive mappings (we call this the
FPP), then it will also have the fixed point property for
any asymptotically non-expansive mapping which has
a non-expansive iterate.

Baillon3 proved the first nonlinear ergodic theo-
rem: suppose that K is a nonempty closed convex
subset of Hilbert space E and T : K → K is a
non-expansive mapping such that F (T ) 6= ∅. Then
∀x ∈ K, the Cesàro means

Tnx =
1

n+ 1

n∑
i=0

T ix (1)

weakly converge to a fixed point of T .
Bruck4, 5 studied the property of Cesàro means for

non-expansive mapping in a uniformly convex Banach
space. Hirano and Takahashi6 extended Baillon’s
theorem to asymptotically non-expansive mappings.
Several authors have studied methods for the iterative
approximation of Cesàro means of (asymptotically)
non-expansive mappings. For example, it was studied
in Ref. 7 in a Hilbert space, in Refs. 8, 9 in a
uniformly convex Banach spaces with a uniformly
Gâteaux differentiable norm, and in Ref. 10 for a
Lipschitz pseudo-contractive mapping.

Halpern11 (u = 0) was the first who introduced

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2011.37.145
http://www.scienceasia.org/2011.html
mailto:songyisheng123@yahoo.com.cn
www.scienceasia.org


146 ScienceAsia 37 (2011)

the following iteration scheme for a non-expansive
mapping T which was referred to as Halpern itera-
tion: for u, x0 ∈ K, αn ∈ [0, 1],

xn+1 = αnu+ (1− αn)Txn, ∀n > 0. (2)

Subsequently, considerable research efforts, within
the past 40 years or so, have been devoted to studying
strong convergence of this scheme for approximating
fixed points of T with various types of additional
conditions. Its strong convergence was obtained by
Lions12 in the condition αn = 1

na (a ∈ (0, 1)); by
Wittmann13 under the conditions (C1) limn→∞ αn =
0, (C2)

∑∞
n=1 αn = ∞ and (C3)

∑∞
n=1 |αn −

αn+1| < ∞; by Reich14–16 in a Hilbert space;
by Shioji-Takahashi17 in a uniformly convex Banach
spaces with a uniformly Gâteaux differentiable norm;
by Song18, 19 for a non-expansive mapping sequence
{Tn}; by Song-Xu20 for a non-expansive mapping
semigroup. Also see Song-Chen21–23.

In a uniformly convex and uniformly smooth
Banach space, Xu24 obtained the strong convergence
of the Halpern iteration {xn} of Cesàro means for a
non-expansive mapping T :

xn+1 = αnu+ (1− αn)
1

n+ 1

n∑
j=0

T jxn. (3)

Subsequently, many mathematics workers studied the
strong convergence of this scheme. For example,
it has been investigated carefully by Matsushita and
Kuroiwa25 for non-expansive nonself-mappings in a
Hilbert space, by Song-Chen26 for a non-expansive
mapping in a uniformly convex Banach space with a
weakly continuous duality mapping, and by Song27

for an asymptotically non-expansive self-mapping T
in a uniformly convex Banach space with with a
weakly continuous duality mapping Jϕ.

On carefully reading the above results about
Halpern iteration, a common ground is found. That
is, their proofs all depend upon the approximation
fixed point of T (limn→∞ ‖xn − Txn‖ = 0) and
the convergence of the Browder type iteration path
(zt = tu+ (1− t)Tzt)28.

In this paper, we will employ a new proof tech-
nique which is independent of the approximation fixed
point of T and the convergence of the Browder type
iteration path to prove the strong convergence of {xn}
defined by (3) for an asymptotically non-expansive
self-mapping T defined on a uniformly convex Ba-
nach space E with a uniformly Gâteaux differentiable
norm whenever {αn} is a real sequence in (0, 1)
satisfying the conditions: (i) limnto∞ αn = 0; (ii)

∑∞
n=0 αn = ∞; (iii) limn→∞ bn/αn = 0, where

bn = 1
n+1

∑n
j=0(kj − 1).

PRELIMINARIES AND BASIC RESULTS

Let S(E) := {x ∈ E; ‖x‖ = 1} denote the unit
sphere of a Banach space E. E is said to have:
(i) auniformly Gâteaux differentiable norm, if for each
y in S(E), the limit limt→0(‖x+ ty‖−‖x‖)/t is uni-
formly attained for x ∈ S(E); (ii) a uniformly Fréchet
differentiable norm (we also say that E is uniformly
smooth) if the above limit is attained uniformly for
(x, y) ∈ S(E) × S(E). The modulus of convexity
of E is defined by

δE(ε) = inf{1− ‖x+ y‖
2

; ‖x‖ 6 1,

‖y‖ 6 1, ‖x− y‖ > ε}

for each ε ∈ (0, 2]. A Banach space E is said to be
uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2]. If E
is uniformly convex, then∥∥∥∥x+ y

2

∥∥∥∥ 6 r [1− δE(ε/r)] (4)

for every x, y ∈ E with ‖x‖ 6 r, ‖y‖ 6 r, and
‖x − y‖ > ε > 0. For more details on the geometry
of Banach spaces see Refs. 29, 30.

Lemma 1 (Theorem 3 of Ref. 8) Let C be a closed,
convex subset of a uniformly convex Banach space.
Let T be an asymptotically non-expansive mapping
from C into itself such that F (T ) is non-empty. Then
for each r > 0, there holds

lim sup
n→∞

lim sup
m→∞

sup
x∈C∩Br∥∥∥∥∥∥ 1

m+ 1

m∑
j=0

T jx− Tn( 1

m+ 1

m∑
j=0

T jx)

∥∥∥∥∥∥ = 0, (5)

where Br = {x ∈ E; ‖x‖ 6 r}.

Lemma 2 was proved and used by several authors.
For details of proofs, see Refs. 24, 31, 32. Further-
more, a variant of Lemma 2 has already been used by
Reich in Theorem 1 of Ref. 33.

Lemma 2 Let {an} be a sequence of non-negative
real numbers satisfying the property

an+1 6 (1− tn)an + tncn, ∀ n > 0,

where {tn} and {cn} satisfy the restrictions∑∞
n=0 tn = ∞ and lim supn→∞ cn 6 0. Then

{an} converges to zero as n→∞.
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MAIN RESULTS

With the help of the geometric properties of a uni-
formly convex Banach space, we can obtain the fol-
lowing lemma which extends Lemma 4 of Ref. 7
and Lemma 1 of Ref. 25 from a Hilbert space to a
uniformly convex Banach space, and simplifies the
proof of Proposition 2.4 of Ref. 27 and is different
to the proof of Lemma 3.1 of Ref. 34.

Lemma 3 LetK be a non-empty closed convex subset
of a uniformly convex Banach space E. Suppose that
T : K → K is an asymptotically non-expansive
mapping with kn ∈ [1,+∞). Suppose that for
the bounded sequence {xn} in K, there exists a
subsequence {xnk

} satisfying the condition

lim
k→∞

∥∥∥∥∥∥xnk+1 −
1

nk + 1

nk∑
j=0

T jxnk

∥∥∥∥∥∥ = 0. (6)

Let h(z) = lim supk→∞ ‖xnk+1 − z‖, ∀z ∈ K. Then
there exists a unique x ∈ K such that

h(x) = inf
z∈K

h(z) and x = Tx.

Proof : (i) First we show the existence and uniqueness
of x (also see Ref. 35). Indeed, h(z) is clearly
continuous and convex and lim‖z‖→∞ h(z) = +∞.
There exists x such that h(x) = infz∈K h(z) by the
uniformly convexity of E (Theorem 1.3.11 of Ref.
29). Suppose there exists y ∈ K also satisfying

h(x) = h(y) = inf
z∈K

h(z).

If h(x) = lim supk→∞ ‖xnk+1 − x‖ = 0, then

‖x− y‖ 6 lim sup
k→∞

‖x− xnk+1‖

+ lim sup
k→∞

‖xnk+1 − y‖ = 0,

and so x = y.
When r = h(x) > 0 suppose x 6= y. There exists

ε ∈ (0, 2] such that ‖x− y‖ > ε > 0. We may choose
a positive number a such that

(r + a)
[
1− δE

( ε
2r

)]
< r,

i.e.,

0 < a <
rδE(

ε
2r )

1− δE( ε2r )
,

where δE(·) is the modulus of convexity of the norm.
Take

c = min

{
r,

rδE(
ε
2r )

1− δE( ε2r )

}

and a ∈ (0, c). Then we have

(r + a)

[
1− δE

(
ε

r + a

)]
< (r + a)

[
1− δE

( ε
2r

)]
< r. (7)

By the definition of the function h, there exists
N1, N2 ∈ N such that

sup
k>N1

‖xnk+1 − x‖ 6 r + a

and
sup
k>N2

‖xnk+1 − y‖ 6 r + a.

Take N = max{N1, N2}. Then we have

sup
k>N
‖xnk+1 − x‖ 6 r + a

and
sup
k>N
‖xnk+1 − y‖ 6 r + a.

Hence, it follows from the uniform convexity ofE that
for all k > N ,∥∥∥∥xnk+1 −

x+ y

2

∥∥∥∥ =

∥∥∥∥ (xnk+1 − x) + (xnk+1 − y)
2

∥∥∥∥
6 (r + a)(1− δE(

ε

r + a
)) < r.

This implies that

h

(
x+ y

2

)
= lim sup

k→∞

∥∥∥∥xnk+1 −
x+ y

2

∥∥∥∥
6 (r + a)

[
1− δE

(
ε

r + a

)]
< r = h(x),

which is a contradiction to h(x) = infz∈K h(z).
Hence x = y.

Next we show that x = Tx. Let Tn =
1

n+1

∑n
j=0 T

j . Since

‖xnk+1 − T lx‖ 6 ‖xnk+1 − Tnk
xnk
‖

+ ‖Tnk
xnk
− T l(Tnk

xnk
)‖

+ ‖T l(Tnk
xnk

)− T lxnk+1‖+ ‖T lxnk+1 − T lx‖
6(1 + kl)‖xnk+1 − Tnk

xnk
‖

+ ‖Tnk
xnk
− T l(Tnk

xnk
)‖+ kl‖xnk+1 − x‖

6(1 + kl)‖xnk+1 − Tnk
xnk
‖

+ sup
x∈K∩Br

‖Tnk
x− T l(Tnk

x)‖+ kl‖xnk+1 − x‖,
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using (6) and Lemma 1 along with the fact that
liml→∞ kl = 1, we have

lim sup
l→∞

lim sup
k→∞

‖xnk+1−T lx‖ 6 lim sup
k→∞

‖xnk+1−x‖.

Hence
0 6 lim sup

l→∞
h(T lx) 6 h(x). (8)

We claim that liml→∞ T lx = x. If h(x) = 0, then by
(8) and the continuity of the function h, we have

lim
l→∞

h(T lx) = h( lim
l→∞

T lx) = h(x),

and hence it is done by the uniqueness of x.
We may assume that r = h(x) > 0 below.

Suppose liml→∞ T lx 6= x. There exists ε > 0, ∀N1,
∃l1 > N1 such that ‖T l1x − x‖ > ε. Without loss
of generality, let ε ∈ (0, 2]. Then we can choose a
positive number a satisfying (7). It follows from (8)
that for a, there is N0 ∈ N such that

sup
l′>N0

h(T l
′
x) 6 h(x) +

a

2
= r +

a

2
.

Furthermore, for N0, there exists l > N0 such that
‖T lx − x‖ > ε. Thus by the definition of lim sup,
there exists N ∈ N such that

sup
k>N
‖xnk+1 − T lx‖ 6 h(T lx) +

a

2
6 r + a

and
sup
k>N
‖xnk+1 − x‖ 6 r + a.

Hence, it follows from the uniform convexity ofE that∥∥∥∥xnk+1 −
T lx+ x

2

∥∥∥∥ 6 (r+a)

[
1− δE

(
ε

r + a

)]
< r

for all k > N . This means that

h

(
T lx+ x

2

)
= lim sup

k→∞

∥∥∥∥xnk+1 −
x+ T lx

2

∥∥∥∥
6 (r + a)

[
1− δE

(
ε

r + a

)]
< r = h(x)

is a contradiction, and hence

lim
l→∞

T lx = x.

As a consequence,

‖x− Tx‖ 6 ‖x− T l+1x‖+ ‖T l+1x− Tx‖
6 ‖x− T l+1x‖+ k1‖T lx− x‖.

Then ‖x− Tx‖ = 0, and so x = Tx. This completes
the proof. �

Theorem 1 Let K be a nonempty closed convex sub-
set of a uniformly convex Banach space E with a
uniformly Gâteaux differentiable norm. Suppose that
T : K → K is an asymptotically non-expansive
mapping with kn. Let {xn} be defined by

xn+1 = αnu+ (1− αn)
1

n+ 1

n∑
j=0

T jxn. (9)

It is assumed that αn ∈ (0, 1) satisfies
(i) limn→∞ αn = 0, (ii)

∑∞
n=0 αn = ∞,

(iii) limn→∞
bn
αn

= 0, where bn = 1
n+1

∑n
j=0(kj −

1). Then as n→∞, {xn} converges strongly to some
fixed point x∗ of T .

Proof : Take p ∈ F (T ). Since limn→∞ bn/αn = 0,
there exists N ∈ N, for all n > N , bnαn

6 1
2 . Choose a

constant M > 0 sufficiently large such that

‖xN − p‖ 6M and ‖u− p‖ 6 M

2
.

We proceed by induction to show that ‖xn−p‖ 6M ,
∀n > 1. Assume that ‖xn− p‖ 6M for some n > 1.
We show that ‖xn+1 − p‖ 6 M . From the iteration
process (9), we estimate as follows:

‖xn+1−p‖ 6 (1−αn)
1

n+ 1

n∑
j=0

‖T jxn−p‖+αn‖u−p‖

6 αn‖u− p‖+ (1− αn)bn‖xn − p‖
+ (1− αn)‖xn − p‖

6
M

2
αn +

αn
2
M + (1− αn)M =M.

This proves the boundedness of the sequence {xn}.
Let Tn = 1

n+1

∑n
j=0 T

j . Then we also obtain the
boundedness of {Tnxn} since ‖Tnxn − p‖ 6 (1 +
bn)‖xn − p‖. Therefore,

lim
n→∞

‖xn+1 − Tnxn‖ = lim
n→∞

αn‖u− Tnxn‖ = 0.

(10)
Let h(z) = lim supn→∞ ‖xn+1 − z‖, ∀z ∈ K. Then
it follows from Lemma 3 that there exists a unique
x∗ ∈ K such that

h(x∗) = inf
z∈K

h(z) and x∗ = Tx∗.

We claim that

lim sup
n→∞

〈u− x∗, J(xn+1 − x∗)〉 6 0. (11)
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In fact, we can take a subsequence {xnk+1} of
{xn+1} such that

lim sup
n→∞

〈u− x∗, J(xn+1 − x∗)〉

= lim
k→∞

〈u− x∗, J(xnk+1 − x∗)〉 = c. (12)

Let f(z) = lim supk→∞ ‖xnk+1−z‖, ∀z ∈ K. Then
using Lemma 3, there exists a unique x ∈ K such that

f(x) = inf
z∈K

f(z) and x = Tx.

Now we show x∗ = x. In fact, for p ∈ F (T ), we
have

‖xn+1 − p‖ 6 ‖xn+1 − Tnxn‖+ ‖Tnxn − p‖
6 ‖xn+1 − Tnxn‖+ (1 + bn)‖xn − p‖.

Following (10), for any {nk} ⊂ {n}, we have

lim sup
k→∞

‖xnk+1 − p‖ 6 lim sup
i→∞

‖xnk
− p‖. (13)

We may choose a subsequence {xnj
} of {xn} such

that

h(p) = lim sup
n→∞

‖xn+1 − p‖ = lim
j→∞

‖xnj+1 − p‖.

When nj > nk, following (13), we have

h(p) = lim sup
j→∞

‖xnj+1 − p‖ 6 lim sup
j→∞

‖xnj
− p‖

6 · · · 6 lim sup
k→∞

‖xnk+2 − p‖

6 lim sup
k→∞

‖xnk+1 − p‖ = f(p).

Clearly,

f(p) = lim sup
k→∞

‖xnk+1 − p‖

6 lim sup
n→∞

‖xn+1 − p‖ = h(p).

So
f(p) = h(p) for all p ∈ F (T ).

Since x, x∗ ∈ F (T ), we obtain that f(x) = h(x)
and f(x∗) = h(x∗), and hence x∗ = x and f(x∗) =
infz∈K f(z) by the uniqueness.

For any given t ∈ (0, 1), take

zt = x∗ + t(u− x∗) = (1− t)x∗ + tu.

Then limt→0 zt = x∗ and zt ∈ K by the convexity of
K, and hence f(x∗) 6 f(zt). Since xnk+1 − zt =

(xnk+1 − x∗)− t(u− x∗),

‖xnk+1 − zt‖2 = 〈xnk+1 − x∗, J(xnk+1 − zt)〉
− t〈u− x∗, J(xnk+1 − zt)〉

6
‖xnk+1 − x∗‖2 + ‖xnk+1 − zt‖2

2
− t〈u− x∗, J(xnk+1 − zt)〉.

Then,

‖xnk+1 − zt‖2 6 ‖xnk+1 − x∗‖2

− 2t〈u− x∗, J(xnk+1 − zt)〉.

Thus we have

lim sup
k→∞

‖xnk+1 − zt‖2 6 lim sup
k→∞

‖xnk+1 − x∗‖2

− 2t lim inf
k→∞

〈u− x∗, J(xnk+1 − zt)〉.

That is,

lim inf
k→∞

〈u− x∗, J(xnk+1 − zt)〉

6
f2(x∗)− f2(zt)

2t
6 0. (14)

On the other hand, since J is uniformly contin-
uous on bounded set from norm topology to weak
star topology and limt→0 zt = x∗, then for any ε >
0, ∃δ > 0,∀t ∈ (0, δ), for all k, we have

〈u−x∗, J(xnk+1−x∗)〉 < 〈u−x∗, J(xnk+1−zt)〉+ε.

By (14), we have that

lim inf
k→∞

〈u− x∗, J(xnk+1 − x∗)〉

6 lim inf
k→∞

〈u− x∗, J(xnk+1 − zt)〉+ ε 6 ε.

Since ε is arbitrary, we obtain that

lim inf
k→∞

〈u− x∗, J(xnk+1 − x∗)〉 6 0.

It follows from (12) that

c = lim inf
k→∞

〈u− x∗, J(xnk+1 − x∗)〉 6 0.

Therefore, (11) is proved.
We next show xn → x∗. In fact,

‖Tnxn − x∗‖ 6
1

n+ 1

n∑
j=0

‖T jxn − x∗‖

6
1

n+ 1

n∑
j=0

kj‖xn − x∗‖

= (bn + 1)‖xn − x∗‖.
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It follows from the equality (9) that

‖xn+1 − x∗‖2 = αn〈u− x∗, J(xn+1 − x∗)〉
+ (1− αn)〈Tnxn − x∗, J(xn+1 − x∗)〉
6αn〈u− x∗, J(xn+1 − x∗)〉
+ (1− αn)‖Tnxn − x∗‖‖xn+1 − x∗‖
6αn〈u− x∗, J(xn+1 − x∗)〉
+ (1− αn)(bn + 1)‖xn − x∗‖‖xn+1 − x∗‖
6αn〈u− x∗, J(xn+1 − x∗)〉

+ (1− αn)
(bn + 1)2‖xn − x∗‖2 + ‖xn+1 − x∗‖2

2
.

Therefore,

‖xn+1 − x∗‖2 6 (1− αn)‖xn − x∗‖2

+ (1− αn)[(bn + 1)2 − 1]‖xn − x∗‖2

+ 2αn〈u− x∗, J(xn+1 − x∗)〉
6(1− αn)‖xn − x∗‖2 + bn(bn + 2)‖xn − x∗‖2

+ 2αn〈u− x∗, J(xn+1 − x∗)〉,

that is,

‖xn+1−x∗‖2 6 (1−αn)‖xn−x∗‖2+γnαn, (15)

where γn = bn
αn

(bn + 2)‖xn − p‖2 + 2〈u −
x∗, J(xn+1 − x∗)〉.

It follows from the condition limn→∞ bn/αn = 0
and the boundedness of {xn} along with the inequal-
ity (11) that

lim sup
n→∞

γn 6 0.

Applying Lemma 2 to the inequality (15), we con-
clude that xn → x∗. This completes the proof. �

Corollary 1 Let K be a nonempty closed convex
subset of a uniformly convex Banach space with a
uniformly Gâteaux differentiable norm. Suppose that
T : K → K is a non-expansive mapping. Let {xn}
be defined by (9). Assume that αn ∈ (0, 1) satisfies
(i) limn→∞ αn = 0, (ii)

∑∞
n=0 αn = ∞. Then as

n → ∞, {xn} converges strongly to some fixed point
x∗ of T .

Remark 1 Our results are new even in a Hilbert
space and their proofs are independent of not only
limn→∞ ‖xn−Txn‖ = 0, but also the convergence of
the Browder type iteration path zt = tu+ (1− t)Tzt,
(see Ref. 28).
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