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Abstract

Shin (2006) has argued that in order to understand the equilib-
rium patterns of corporate disclosure, it is necessary for researchers
to work within an asset pricing framework in which corporate disclo-
sures are endogenously determined. Echoing this sentiment, Larcker
and Rusticus (2010) have argued that earlier empirical results claiming
to �nd a negative relationship between disclosure and cost of capital
may su¤er fatally from endogeneity issues which, once addressed by
a formal structural model, may reverse the sign of the relationship.
The purpose of this paper is to introduce a general equilibrium model
following the Black-Scholes paradigm with endogeneous disclosure in
which �rms select uniquely determined optimal probabilities of early
equity-value discovery in a noisy environment. As �rms may di¤er
also in the uncertainty (precision) with which management can fore-
cast the future, managers strategically increase the intensity of their
(voluntary) disclosures to provide partial compensation for this per-
ceived di¤erential risk. A positive relationship then results between
disclosure and the cost of capital.

�Preliminary version presented at Bachelier Society 5th World Conference, London
(2008).
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1 Introduction

An issue with studying research on corporate disclosure is that theory and
empirical work are not closely related. Empirical work often proceeds under
the a priori assumption that disclosure and cost of capital are negatively
related. However historically theoretical models often focus upon �hard to
observe�(latent) variables that are di¢ cult to implement empirically and so
do not always give clear guidance to empirical work. Moreover, some most
recent empirical and theoretical work �nds the opposite to hold - a positive
relationship.
In an empirical paper van Buskirk (2011) �nds that "the practice of reg-

ularly providing monthly revenue disclosures is not associated with reduced
information asymmetry. In contrast, I �nd that more detailed (greater quan-
tity) disclosure is associated with reduced information asymmetry." He ar-
gues that this arises because di¤erences in disclosure frequency between �rms
alter the incentives for sophisticated investors to collect more private infor-
mation. In line with Shin�s (2006) original comments (see abstract), Clinch
and Verrecchia (2011) develop a theoretical structural model allowing an
endogenized cost of capital calculation (taking as exogenous investor num-
bers, their common utility, their common belief about �rm cash-�ows, and
the prospect of early managerial discovery of true cash-�ow). Mirroring an
early result with a di¤erent model setup, due to Gietzmann and Trombetta
(2003), their theory predicts a positive relationship. We learn consistently
from theory models that �rms respond strategically to their environment.
Thus �rms subject to downgrade by investors, on account of their highly un-
certain prospects, may �nd it rational to improve their disclosures to reduce
uncertainty gaps, although this need not result in parity with other �rms
from the same sector that have higher precision (see Section 3.2).
An issue with the above model of Clinch and Verrecchia (2011) is that

they do not explain how �rms di¤er endogenously with respect to manage-
rial discovery of true cash-�ow. The principal contribution of this paper is
to provide a model of disclosure in which management of �rms endogenously
choose the discovery probability, which in�uences the disclosure. We amend
the Dye (1985) disclosure model; until now that framework has not been read-
ily amenable to empirical study. One of the di¢ culties is that an underlying
parameter (probability of information discovery, which is referred to here as
the information endowment parameter, or brie�y endowment parameter) is
a latent variable that may vary between companies. Also, that framework
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has usually been applied to returns rather than equity value; working with
arbitrage-free equity valuations (log-normal as in the Black-Scholes model1),
rather than cash-�ow valuations, we here address the in�uence of equity-
volatility and �nd that �rms with least precise forecasts of one-period-ahead
equity value will adopt the highest disclosure intensity and face the highest
cost of capital (see Section 2.4). Additional disclosure may be used strategi-
cally to compensate, but only partially, for this sort of risk (see the discussion
in Section 3.2); this is consistent with the empirical �ndings of van Buskirk
(2011). Indeed, Larcker and Rusticus (2010) have argued earlier, empirical
results that claim to �nd a negative relationship between these two variables
may su¤er fatally from endogeneity issues which, once dealt with by a formal
structural model, may reverse the sign of the relationship. That is, if one
were formally to model the cost of capital with endogenized strategic disclo-
sure, the relationship between cost of capital and disclosure might become
positive.
The purpose of this paper is to introduce a structural model in which

�rms di¤er in equity volatility and in the uncertainty (precision) with which
management can forecast the future, given their private opportunity of value
discovery. After developing the model, we are able to point to several mea-
sures of disclosure and to trace their relation to the cost of capital. For
example, we state formal conditions under which a strong monotonicity re-
sult holds in which disclosure when measured by intensity (frequency), see
de�nition below in equation (11), is positively related to managerial fore-
cast variance; furthermore, the relationship between cost-of-capital and an
alternative measure of disclosure (range of undisclosed values) is found to be
positively related to the cost of capital, in the sense that the cost of capital
rises with the range of values disclosed.
Section 2 develops the equilibrium framework. Within this framework, it

becomes possible (see Section 3) to show how the optimal disclosure strategy
of a �rm implies an observable disclosure intensity, and how that in turn can
be used to form inferences about the underlying parameters of the �rm which
determine the actual (rational) equilibrium market valuation. These �ndings
come from the assumption that investor risk-preferences may be analyzed by
reference to a risk-measure called the omega-ratio (well-known in portfolio

1We �nd that passing back and forth, via logarithms, between the additive arithmetic
averaging of classical linear regression in respect of normal returns and its log-normal
counterpart �a multiplicative geometric averaging of asset values �is straightforward and
intuitive. The non-linearity of the logarithm turns out to be highly tractable.
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theory �see Section 3.2).
Section 4 provides the principal mathematical formulas for log-normal

models which permit tractability of the proposed approach; Section 5 sketches
possible empirical research design. Concluding commentary is in Section 6.
Most of the mathematical analysis is split into appropriate appendices.

2 The Dye Disclosure Calculus with Endoge-
nous Information Endowment

This section reviews and builds on the Dye disclosure calculus, as established
in Dye (1985) and developed in Jung and Kwon (1988). In (2.1) the calculus
is established and also its underlying no-arbitrage foundations are explained
(in terms of the associated �risk-neutral�valuation measure); then in (2.2) en-
dogenous selection of information endowment by management is introduced.
It is shown how the choice-model of information endowment is consistent
with established utility theory approaches in portfolio theory, in particular
those where downside and upside risk are not viewed as having symmetric
in�uences on preferences. This is key to further developing the Dye calcu-
lus, which is essentially driven by a lower partial moment computed over the
range up to the Dye cuto¤2, as de�ned by equation (1). Section (2.3) links all
the preceding sections to show how the model of disclosure strategy leads to
a well-de�ned and tractable de�nition of disclosure intensity, which is used
in Section (2.4) to derive the cost-of-capital discount from the relationship
between the risk-neutral measure and the associated �physical�measure.

2.1 No-Arbitrage Risk-Neutral Valuation with Dye�s
disclosure calculus

In the Dye model there is a rational (equilibrium) reason why management
might not disclose information voluntarily (a relaxation of the unraveling
paradigm). This necessitates a procedure (due to Dye, further developed
below) enabling investors to value the company at other than the Grossman-
and-Hart (1980) unconditional minimum (in which �bad news�is assumed),
when investors observe non-disclosure. We point out that Dye�s disclosure-
cuto¤ should be viewed as yielding a valuation based on the methodology of

2Note that the equilibrium cuto¤ is below the opening expected value.
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arbitrage-free pricing. That is, it is determined by a no-arbitrage condition,
which has implications for the valuation of the embedded �disclosure�put
option, to be discussed below.
When analyzing information �ows, the Dye disclosure model assumes

three distinctive time � = 0; 1; 2: ex-ante, interim and terminal times. In the
model a random variable X, relating to company valuation (see below for a
comprehensive framework for this), has density f(x); an associated distribu-
tion function FX(x) and an ex-ante (i.e. at time � = 0) expected value mX .
A realization of the random variable is observed by management at the in-
terim time with a probability q (drawn independently of X): Management�s
decision whether or not to disclose an observed realization of company value
x is a voluntary (strategic) decision. Dye (1985) establishes that under conti-
nuity and positivity of f there exists a unique threshold value t =  at which
management will be indi¤erent between disclosure or non-disclosure. Here 
will be called the Dye cuto¤ , de�ned implicitly by equation (1).
It is important to note that the Dye model assumes that the �xed pa-

rameter q is known to market participants. We formulate a more general
framework in which the value of q is both deduce-able and statistically infer-
able. See the discussion on ��rst best�towards the end of Section 2.3.
The indi¤erence point is characterized by equality between a credibly

disclosed value  and the valuation formed by investors when they face
non-disclosure (ND); the latter is formally E[XjND()]; the computed ex-
pected value of the company, conditioned on the absence of information (non-
disclosure) of values observed below . The latter expression is a consequence
of Dye�s assumption that �investors cannot discern whether [the manager]
has received information but chosen not to release it or whether the manager
has not received information� (Dye 1985, §3). That is, the indi¤erence is
described by what we term the Dye equation, or the equilibrium indi¤erence
equation:

 = E[XjND()]: (1)

Under the assumptions above, this implicit de�nition of a cuto¤ value  in
fact determines it uniquely; whenever context demands, we emphasize the
cuto¤�s dependence on the underlying information endowment parameter q
of the manager and the speci�c model X of �rm value by using the notation
(q) or X(q): Later, when referring to a family of distributions F (x; �)
parametrized by � a more convenient variant of this notation will suggest
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itself.
The equation expresses the fact that in the absence of a disclosure the

market downgrades the value of the �rm from mX to X : That is, the initial
market value, is reduced to re�ect the perceived new risks, and so mX � X
should be interpreted as a risk-premium, in short it is the ex-post cost of
disclosure.
Note that Dye�s approach (see his §3) assumes that �the current share-

holders prefer a disclosure policy which maximizes the �rst-period [� = 1]
price of the �rm�and that �this disclosure policy is adopted�.
Based on the assumption of a rational expectations equilibrium (in respect

of a conjectural threshold value for the manager�s cuto¤), Jung and Kwon
(1988) derive (their equation (7)) the equation satis�ed by  to be

1� q
q
(mX � ) = HX(); (2)

where

HX(t) :=

Z
x�t
FX(x)dx =

Z
x�t
(t� x)dFX(x) = E[(t�X)+]: (3)

HX(t) is the lower �rst partial moment below t, well-known in risk manage-
ment3, and here, working in present value terms (equivalently, with riskless
rate r = 0); is seen to be the value of a put option with strike t (to which
the Black-Scholes formula can be applied in the log-normal context). As this
function is central to the Dye calculus, in our analysis we explicitly name it
the hemi-mean function4.
The appeal of this form lies in the separation of the two independent

factors of the model: the information odds, i.e. the ratio (1 � q)=q to be
henceforth denoted by �; which characterizes management information tech-
nology on one side, and on the other a convex function HX containing all the

3See for example McNeil, Frey and Embrechts (2005), Section 2.2.4.
4HX(t) is strictly convex, positive and asymptotic to t � mX (by l�Hôpital�s Rule);

clearly HX(X) = 0 and H 0
X(X) = FX(X) = 0; where X is the lower boundary of the

support of FX (possibly �1; as for the normal, if that is admissible).

lim
t!+1

R
x�(t� x)dF (x)

t�mX
= lim

t!+1

R
x�t dF (x)

1
= 1:
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information5 on the distribution of X. The equation (2), when rewritten as

(1� q)(mX � ) = qHX(); (4)

shows the expected downgrade (1� q)(mX � ); i.e. downgrade conditional
on the manager receiving no information and so impounding the ex-post cost
of capital; this balances what must be interpreted as some form of �expected
upgrade�, conditional on the manager discovering information. Indeed some
integration by parts shows why qHX() is the essential term in the expected
upgrade given by the upper partial �rst moment above :6

Given that the Dye cuto¤ is about an optimal downgrade-threshold, it is
not surprising that there is a direct link between the cuto¤ calculus and the
portfolio-theory of target-returns thresholds (in respect of shortfalls below
the mean). A key construct there is the Omega ratio de�ned by:


(t; �) =

R
x�t(1� F (x; �))dxR

x�t F (x; �)dx
;

introduced by W. Shadwick and C. Keating (2002) as a performance mea-
sure for a family of assets parametrized by � on the threshold-variance pairs
(t; �); as a re�nement of the usual mean-variance pairs of the standard the
Markowitz analysis; they view it as an aid to selecting � and �the level of
return7 against which a given outcome will be viewed as a gain or loss�. In
view of the reciprocal identity linking 
 with the hemi-mean function:

mX � 
HX()

= 
X()� 1; (5)

5See Ostaszewski and Gietzmann (2008). Proposition. Let H(t) be any twice dif-
ferentiable, strictly convex function on [X;X] satisfying H(X) = 0; H 0(X) = 0 and
H 0(X) = m: Then H(t) is the hemi-mean function of a continuous distribution with mean
given by

m = X �H(X):

This need reinterpretation when either limit of the support interval is in�nite. For
instance, when X = +1;

m = lim
t!1

(t�H(t)) :

6
R
u�(u�mX)dF (u) =

R
u�(mX � u)dF (u) = (mX � )F () +

R
u� F (u)du

7Level of equity, in our case.
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when FX(x) = F (x; �X) and 
X(x) = 
(x; �X); the Dye equation may be
reformulated as

(1� q)
() = 1; or (6)


� 1 =
q

1� q

We return to this in Section 3.2.
A feature of the Dye equation, critical to later analysis, is its positive

homogeneity8, in the sense that

H�X(�t) = �HX(t) for � > 0: (7)

This simpli�es intra-�rm comparisons based on the Dye calculus; with m a
given �rm�s mean E[X] and writing �j for j=mj; one may cancel by m on
both sides of the Jung and Kwon equation, and so replace �rms with di¤erent
means by equivalent �re-normalized��rms with equal means.

The framework above can embrace an alternative interpretation: X may
validly be replaced by a noisy signal of the true valueX, say by T = T (X; Y );
where Y models noise. Then one may deduce (see Appendix 1) the existence
of a cuto¤ T above which the noisy signal T would in equilibrium be volun-
tarily disclosed. Given a disclosure, investors would then form expectations
conditioning on the reported noisy signal, and the market values the �rm
at E[XjT ] rather than at T: That is, referring to the regression function
�X(t) := E[XjT = t]; the value is �X(T ): If, however, no disclosure occurs,
then the market valuation is �X(T ): The Dye disclosure calculus remains
valid in a noisy setting, provided the X in Dye�s model is interpreted, not as
the true �rm value, but as E[XjT ]; the estimated �rm value given T . This is
valid subject to �X(t) being an increasing function. All that needs doing in
the Jung and Kwon equation is to replaceHX by another, related, hemi-mean
function; the cuto¤ E[XjT ] de�ned implicitly in an amended Jung and Kwon
equation then is �X(T ): (Here T is, as above, the disclosure cuto¤ for the

8E[�Xj�X < �] = �E[XjX < ] for � > 0; or note that

H�X(�) =

Z
�x��

Pr(�X � �x)d(�x) = �
Z
x�

Pr(X � x)dx = �HX(t):
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actual signal T:) For details see Appendix 1 (Isotonic transformations)9.
A particular example we pursue is T = XY with X; Y log-normal, in

accord with the �nancial benchmark model. It is clear from this example
that what may be termed the sector variability, as captured by variance in
X and the managerial variability ,as captured by variance in Y; will both
of them independently in�uence the cuto¤, and so also the disclosure policy.
We shall see at the end of Section 3.2 that they have opposite e¤ects and
we discuss the implications of these di¤ering e¤ects for empirical research
design.

To clarify the no-arbitrage underpinnings of Dye�s calculus, the market
itself is modeled as arbitrage-free so equipped with a probability distribution
function FX which models events corresponding to the three times � = 0
and � = 1 and � = 2 in such a way that the distribution fully re�ects the
market price of risk at any of these points in time. That is, any contingent
contract traded on the market is priced by computing an expectation of the
claim under this distribution. This presumes the so-called complete market
hypothesis and asserts that the distribution itself is an observable, i.e. there
is a su¢ cient range of traded instruments to select a distribution from a
proposed parametrized family, and so to identify the density of the risk-
neutral measure and its distribution F . Thus at � = 0 the variance of X is
known, and so too is mX := E�=0[X], the market share price of the �rm at
time � = 0: This is implicitly part of the Dye framework.
Dye assumes that q is known, and so any investor can compute the mar-

ket value of the �rm, denoted V (t); when the manager is known to use
an (arbitrary) cuto¤ t: That is, V (t) = E�=1[XjND(t)]; where ND(t) is
the non-disclosure event at time � = 1 when the cuto¤ is t: Thus mX =
E�=0[X �1D(t)+V (t)�1ND(t)]: There is, however, a unique value t =  for which
V (t) assumes a minimum, and that value is characterized by the (unique)
solution of the equation t = V (t): That solution yields the minimum valua-
tion consistent with the information available at � = 1, and coincides with
the value at which the manager is indi¤erent between disclosing and not dis-
closing. It is this indi¤erence-pricing approach that characterizes Dye�s own
justi�cation for equilibrium. So this is also the unique value of t for which
mX = E�=0[X �1D(t)+t�1ND(t)]: That is, the time � = 0 valuation of the �rm�s

9Another way of extending the original framework: interpret X parsimoniously as in-
corporating real e¤ects, e.g. observation of an input price in a managed production process
with certain (short time-scale) implementation leading to a sure realizable (indirect) pro�t.
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stock impounds the strategic disclosure option available to the manager.
It is well-known (see e.g. Jung and Kwon (1988)) that  as a function of

q is strictly monotone. So the equity-market model approach implies that, in
the event that there is no disclosure at � = 1; the new market value, whatever
it is, reveals the value of q through the equation revealed = (q): That is, there
is a �market implied q�in the non-disclosure scenario. Dye assumes that the
market has a belief about q; but is mute in regard to how the market has
discovered q:We provide a mechanism, whereby the market rationally infers
q from its assumed knowledge of observable sector and managerial variability
parameters. In the log-normal model above, for instance, the observables are
the variances of X and Y:

2.2 Endogenizing the information endowment in the
Dye model

The original Dye theory aimed to prove existence of an �equilibrium non-
disclosure�result and was not designed to explain di¤erences in disclosure
cuto¤ between �rms. To apply the Dye paradigm within an empirical set-
ting in which �rm cuto¤s vary, one needs to develop a rational equilibrium
model10, in which di¤erent managers choose di¤erent Dye cuto¤s leading
to di¤erent observable disclosure practices. To address this, here managers
of �rms are represented by a one-parameter family of distributions, rather
than two parameters, since the ex-ante �rm expected value may be omit-
ted from consideration (via renormalization to unity), on the basis of the
positive homogeneity (in respect to this parameter) of the Jung and Kwon
equation, as discussed above in Section 2.1. Thus manager types are repre-
sented by a single parameter called �; in the case of log-normal models, �2

is interpreted as the variance of the underlying normal variable responsible
for adding noise to the true �rm-value X in the received signal T . Thus,
given di¤erences between managers, there may exist incentives for them to
act (disclose) di¤erently in equilibrium.
Recalling the Jung and Kwon equation (2), and referring to:

z = z() := mX � ; and y = y() := HX(): (8)

10Our approach starts with the risk-neutral (pricing) distribution of equity value; for an
alternative approach to equilibrium pricing in which investor demand arises from mean-
variance utility see Suijs (2011).
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equation (2) becomes:
1� q
q
z() = y();

which relate to the shielded-downgrade loss z and value-enhancement poten-
tial y: We interpret these two constructs as generalized measures of risk in
the sense of Fishburn �see Appendix 2 for a discussion. So, following Fish-
burn, we model managerial preferences in terms of a utility function U(z; y)
(with domain the positive quadrant) over the two constructs z and y. The
choice of q is now reduced to determining the solution of the optimization
problem11:

max
q
U(mX � (q); HX((q))) = max

q
U(z((q)); y((q))):

Equivalently, the optimal q = q̂ may be determined via ẑ = mX�(q̂); where
(ŷ; ẑ) := argmaxfU(z; y) : y = HX(mX � z)g:

This uses the fact that: (i) (q) is strictly monotone in q; for which see Jung
and Kwon (1988), and (ii) the function HX(t) is strictly convex for a positive
density fX ; so the opportunity set f(y; z) : y = HX(mX � z)g is strictly
convex (compare footnote 5 in Section 2.1).
In Appendix 3, we show that: for U(y; z) concave and homothetic, there

will be a unique pair (ŷ; ẑ) solving the maximization problem.
When U(y; z) is homothetic, or homogeneous of degree 0, that unique

pair is characterized by the two optimality conditions12:

u(�̂) = F (̂) and �̂ = ŷ=ẑ; (9)

where u(�) := Uz(�; 1)=Uy(�; 1) will be referred to as the marginal rate of
substitution function13. The second of these two equations is just the Dye
equation in the variables y; z:
11So the optimization should be read as maximizing a ranking U(�(F; q); �(F; q)) over

the parameters �(F; q) = mX � (q); i.e. an adjusted mean, and �(F; q) = HX((q)); a
lower partial moment, as in the Fishburn analysis of Appendix 2. It is thus capable of
being interpreted as an expected utility (rather than a utility of the two quantities �; �
which are expectations under the model (F; q)):

12The equilibrium condition places constraints on the size of �, since 0 < F () �
F (m) < 1: Note that � < 1 i¤ q > 1=2:
13The marginal rate of substitution of a utility function is homogeneous of degree zero

i¤ the utility function is homothetic or itself homogeneous of degree zero �see Forsund
(1975).
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For U any one of the text-book homothetic utility functions, the marginal
rate of substitution function u(�) is increasing in the odds �: As the cumula-
tive distribution function F (t) is also an increasing function, the utility e¤ect
of selecting higher odds in equilibrium is to increase the disclosure cuto¤:
thus decreasing the endowment parameter q leads to increasing the chances
of non-disclosure occurring (when the manager is informed). This parallels
and preserves a Dye version of the gain-to-loss e¤ect : since here the gain-to-
loss ratio, as represented by �() := H()=(m � ); is increasing in ; the
Dye equation � = �() implies that increasing the odds � (exogenously, as is
the case in Dye�s model), or equivalently decreasing q; leads to an increased
cuto¤.
The combined e¤ect of the two equilibrium conditions in (9) can best

understood in the special case of a Cobb-Douglas utility UC-D(y; z) = y�z�

for which one has u(�) = ��=� and so

�

�
=

H()

(m� )F () : (10)

Since H 0() = F (); the right-hand side represents the �growth rate�of H()
(for background see Bingham et al. (1987), especially p. 44), which balances
the substitution coe¢ cient �=�: (For the general situation see Appendix 5).
These considerations are applicable to a range of explicit trading mech-

anisms in which it is possible to derive the implied preferences in the form
of a utility function; we call such a derived function the manager�s implied
equivalent utility. In this sense the choice-model is reasonably robust.

2.3 Endogenous optimal disclosure intensity

Having established in the previous section that managers can be viewed as
optimizing q; we return now to the fundamental question of what this means
about the observed disclosure strategy. It turns out that this is now relatively
easy to answer if attention is focused upon the disclosure intensity of such a
strategy, shortly to be de�ned in (11).
Disclosure occurs when management are informed (which occurs with

probability q) and furthermore the discovered value, be it the value X or
T (X; Y ), is above the (respective) cuto¤ ; which occurs with probability
1� F (): Here F denotes the probability distribution function FX with  =
X if X is observed above X ; or FS with  = S for S = E[XjT ] if T is
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observed above T (cf. Appendix 1). Thus it is natural to de�ne a �rm�s
disclosure intensity � as:

� = q(1� F ()): (11)

So at issue next is whether the �rm�s disclosure intensities � varies in a
systematic way (e.g. monotonically) with the underlying uncertainty (noise)
faced by management, represented by the relevant model parameter �; be it
measured by sectorial or managerial variance (�X when X is observed, or by
�Y when T = T (X; Y ) is observed with �X �xed). We note that Penno (1997)
produced an existence result which suggested that one should not assume that
the relationship between � and � may be a simple monotonic function, and
hence that inference of the relative underlying uncertainty faced by di¤erent
management from disclosure intensity would be problematic14. Actually, this
suggestion turns out to have been over-pessimistic, as the following example
shows.

The structurally minimal model. We illustrate in a tractable way
the theory developed so far, by concentrating on details of the pay-o¤s that
may arise, rather than on abstract utilities as above. We concentrate on the
expression (1� q)z; i.e. (1� q)(mX � (q)); which arises in (4), the notation
here stressing the dependence of  on q:With probability 1�q; a payo¤mX�
(q) may arise to the manager in the following circumstance: the manager
knows that no new information is available on the company�s future value,
but investors have nevertheless downgraded the value of the �rm (because of
non-disclosure). Here (q) may be interpreted as X (corresponding to the
case whenX is observed), or as �X(T ) (when T is observed). Conditional on
this absence of information, the manager could, if permitted, buy the stock
at the interim market price ; and then liquidate the stock at the terminal
time. The expected terminal value is mX given the absence of information.
Thus ex-ante the manager holds an option with expected value (under the
measure FX ; which is here the risk-neutral valuation measure, or, in a noisy
context, its �noisy replacement�FS �see Appendix 1) equal to

(1� q)(mX � ): (12)

14The work by Penno is a timely reminder of the care that needs to be taken when
trying to extend theory to model real world practice. However, the following section
shows that in fact the Penno result on non-consistency (monotonicity) arises because of
the somewhat restrictive functional form he used. We generalize his result and show what
class of probability functions admit consistency.
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More generally, if the manager can receive an incentive share � of this
value (with 0 < � < 1) in remuneration, then the expression above may
be regarded as the manager�s objective function. For instance, this does
not necessarily have to involve explicit trading, instead simply assume the
manager�s share options are set �at the money�immediately after investors,
not seeing a disclosure, downgrade the �rm, when the manager knows there is
no new company information15. The expression (1� q)(mX � (q)) is known
to be strictly concave in q with a unique maximum, whose location we denote
by q̂; for this see Ostaszewski and Gietzmann (2008) and for an explanation
that this expected value here (under FX) is also a risk-neutral valuation, i.e.
realizable through a trading strategy. The trading mechanism does assume
that the manager�s trade remains unobserved by the investors, as would be
the case in the traditional Kyle (1985) one-shot market model. We refer to
this as the unobserved trading mechanism. However, it is possible to relax
this assumption (without changing the qualitative features of the results)
in a setting with a sequence of observed trades16, but at the price of less
tractability.
The expression (12) above is easiest to interpret when the manager�s

choice of q becomes known through some mechanism (e.g. inferentially from
earlier observations of disclosure intensity) to the market participants, so
that  takes the value (q); then it becomes clear that the manager chooses
q̂. A di¢ culty arises if q is not known in this way, since  in this expres-
sion is selected by the investor, and q by the manager. If  < m; then the
manager maximizes his objective by taking q = 0; i.e. selecting to be always
uninformed. We view this di¢ culty as demanding some co-ordination mech-
anism for a �co-operative game� approach, in which a ��rst-best� outcome

15See Yermack (1997) , Aboody and Kaznik (2000), and Gao and Shrieves (2002) for a
discussion of strategic granting of options.
16In such a sequential market model (allowing trades at dates in between the interim and

terminal dates), the manager�s trading, having become observable, is subject to inferential
analysis. The revised managerial opportunity set necessitates that the optimal managerial
behaviour (given the manager�s incentive) employs a mixed strategy of buying and selling �
to preserve optimally the manager�s informational advantage. On game-theoretic grounds,
one expects that the revised valuation of the manager�s �option to trade� is a convex
function of q; say of the form V (q)z((q)); with V (q) taking zero value at the endpoints
q = 0 and q = 1: (In this respect that is similar to the case with (1 � q)(mX � (q))):
See De Meyer and Moussa Saley (2002) for a sequential auction model yielding just such
a result. Our theory applies also to such general valuations �subject to permitting trades
for then (non-veri�able) observations below (q):
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(1 � q̂)(m � (q̂)) is sought but is not achieveable. In fact, by o¤ering an
appropriate incentive scheme, the investor may achieve an outcome arbitrar-
ily close to this ��rst-best�, setting the incentive share � small enough but
positive.
We continue, parsimoniously, with this structurally minimalist assump-

tion where a manger�s trades or option grants are not observed in a timely
fashion (before the �nal date) and with the manager�s objective set at (1�
q)(mX � (q)): This turns out to be a very tractable model. Indeed, we �nd
that under these current assumptions the manager behaves as though he was
making a utility maximization in trading-o¤ the shielded-downgrade loss z
against the value enhancement potential y (that is, acting out the role de�ned
in Section 2.3) and employing a uniquely determined CES utility function,
namely U(y; z) = (y�1 + z�1)�1. Recall that we refer to this as an implied
equivalent utility (end of last section) in order to stress that the utility func-
tion is not imposed, but derived from the managerial payo¤ structure (12).
See Appendix 4 for details.

The principal feature of the structurally minimal model is summarized in
the following

Theorem 1. (Optimal Intensity in the structurally minimal model).
In the structurally minimal model the odds � = (1� q)=q and the intensity
of disclosure � sum to unity, i.e.

� + � = 1;

i¤ the value of q is selected optimally as in Section 2.3 above, i.e. q = q̂,
or, equivalently � = �̂ : In this case the corresponding Dye cuto¤, denoted ̂;
and the odds �̂ are related according to the rule

�̂
2
= F (̂(�); �): (13)

The result here is driven by the condition (13) which corresponds to the
utility function U(z; y) = (y�1+z�1)�1 derived in Appendix 4. The de�nition
of � and some simple arithmetic yields17:

� = 1� � i¤ F (; �) = �2;

from which the sum-to-unity formula follows.

171� F () = 1� �2 = (1� �)(1 + �) i¤ � = q(1� F ()) = 1� �; as q = 1=(1 + �):
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According to this simple rule, the intensity of a �rm selecting its optimal
odds at � is negatively linear in �: As the optimal choice of q increases (across
di¤erent �rms) the intensity rises.
We stress that the simplicity of this formula is evidence of the tractability

of the valuation (12).
The more general situation is given by the following result (see Appendix

5 for proof), which includes the structurally minimal case given by u(�) = �2;
where u(�) is the marginal rate of substitution of the utility function U(z; y),
as de�ned in Section 2.2 above.

Theorem 2 (First Monotonicity Theorem: Disclosure response
to optimal odds). The intensity of disclosure as a function of the optimal
odds is decreasing in the following three circumstances:
(i) if u(�) is increasing,
(ii) if u(�) is convex and � 0(0) < 0; and
(iii) if u(�) is concave and � 0(�̂) < 0; then � 0(�) < 0 for all 0 < � < ��.

2.4 Disclosure e¤ects on the ex-ante cost-of-capital for-
mula

Up to this point the distribution FX modelled the risk-neutral, or pricing,
probability in describing the future equityX; which allowed us to identify X ;
the no-arbitrage non-disclosure valuation. To avoid misunderstandings, we
recall that we work with present-values (so that for our context the riskless
rate is zero). We consider next the so-called �physical�distribution, corre-
sponding to a model of X on the basis of observed past prices, which we
denote by F PX . For clarity (but only in this Section), we will write F

Q
X for

the risk-neutral distribution, whenever we want to draw attention to its na-
ture. Thus under the latter we have mX = EQ[X]; i.e. the expected value of
equity coincides with its market price; however, the same is not true under
the physical expectation, where

EQ[X] = (1� �)EP[X]; with 0 < � < 1; (14)

as the physical-expectation of equity-value needs to be adjusted by a discount
� which we term the cost of capital.
The two measures are connected, just as in the Black-Scholes model,

where the Girsanov transformation (�change of measure�) shifts the antici-
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pated instantaneous return to the riskless rate (without altering the volatil-
ity), thus applying an appropriate �risk-premium�(or discount) �see Appen-
dix 6.
However, here in the richer disclosure setting, when managerial informa-

tion endowment is modelled by true (noiseless) equity-value discovery, there
is an additional connection beyond the Girsanov transformation resulting
from the presence of the interim date. As any disclosed value is the true
equity-value, the disclosure-indi¤erence cuto¤ level is also at �true value�(or
a risk-neutral expectation). In particular, given this information structure,
the two measures now agree on the no-disclosure valuation of equity:

XmX = EQ[XjND] = EP[XjND]:

Hence, we may compute � by reference to the risk-neutral measure as
follows. Again for clarity, we continue with the case of the noiseless signal;
however, in the noisy signal context, X may be replaced throughout by S =
EQ[XjT ] and X by S. Noting that disclosure occurs with probability � =
q(1� FQX()); one has:

EP[XjND] = �
Z
x�

xdF PX(xjDisclosure) + (1� �):

Using (14) and renormalizing equity-value to unity as usual, one has

1� � = q(1� F ())
Z
x�

xdF PX(xjDisclosure) + ((1� q) + qF ())

= q(1� F ())
Z
x�

xdF (x) + ((1� q) + qF ()); (15)

since disclosed values are true, and F = FQX here is the distribution of true
equity values. As before  = X(q) for any q (that is, as always, investors be-
lieve at the interim date that the asset�s expected value given non-disclosure
is at the minimum possible, given knowledge of q). We check that � > 0;
so that this does indeed represent a discount over the expected value (under
the physical measure).
Substituting into (15) the identity

1 =

Z
x�

xdF (x) +

Z
x�

xdF (x) = F ()�H() +
Z
x�

xdF (x);
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yields, after some re-arrangement,

1� � = 1 + F ()(1� q) + qF ()2 � F ():

Hence, adding and subtracting two terms, one has

� = F ()(1� q � (1� q) + qF ()� qF ()) + qF ()� qF ()2

which leads to
� = �(q) = F ()[(1� �)(1� ) + � ];

which is non-negative, and in fact positive, for 0 < q < 1. In a noisy signal
context this formula for X remains valid with X replaced by S and X by
S.
In particular, in the structurally minimal model of Section 2.3, for the

optimized choice of q = q̂ (see Theorem 1), one has

�̂ = �(q̂) = �̂F (̂)(1� ̂) + �̂F (̂): (16)

Rewriting this formula as

�̂ = �̂F (̂)(1� ̂) + q̂ � F (̂) (1� F (̂)) = H(̂)F (̂) + �̂F (̂); (17)

we see on the right-hand side two terms that are easily interpreted.
First, there is the ex-post cost-of-capital weighted by the odds against

information discovery and the probability of a below-cuto¤discovery. Equiv-
alently, via the Dye equation, this balances the lost �upward potential�in any
discovery (refer to Section 2.1), a matter we return to below.
Secondly, q̂ �F (̂) (1�F (̂)) is the expected conditional variance of non-

disclosure, conditioning on the early discovery of information, i.e. E[var(1NDj1E)]:
This measures the informativeness of non-disclosure (ND) about low value
discovery. We term this the ND-informativeness to distinguish it from other
de�nitions of informativeness.
In Statistics this term is the unexplained variance or more completely the

�unexplained component of total variance��variance in 1ND not accounted
for by the knowledge of 1E; see Bingham & Fry (2010), Th. 4.20, (see also
Cox et al. (2003), Searle et al. (1992)).
In summary, in the structurally minimal model:

�̂ = lost upward potential + ND-informativeness.
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More generally, using the identity from footnote 6 of Section 2.1, one ob-
tains the decomposition of the equity value (1 � )(1 � �); lost through
non-disclosure, as

(1� �̂)(1� ̂)� �̂ = �H(̂) + (1� ̂) � q̂F (̂)(1� F (̂)); (18)

i.e. with E signifying market-valuation (risk-neutral expectation):

E[cost-of-capitalex-postjND]� cost-of-capitalex-ante

= E[upward potentialjD].
+ ND-informativeness� cost-of-capitalex-post:

It is no surprise that the Dye cuto¤ determines the cost of capital; the
surprise is how transparently it does so. On the left-hand side is:
the incremental cost of capital arising through non-disclosure.

This balances on the right-hand side:
the inevitable loss of any valuation up-grade associated with a disclo-

sure (above cuto¤) together with a further penalty for low-value discovery,
moderated by the informativeness of non-disclosure,

Numeric investigation of �(q) in the structurally minimal case for the
log-normal models of Section 4 �nds it to be increasing in q: We consider in
Section 3 the monotonic dependence of q̂ on sources of uncertainty about the
�rm (sector/managerial variability) and report on numerical investigation of
the corresponding dependence of �̂ on these uncertainties.

3 Monotonic linking of disclosure intensity �
to signal variance

In Theorem 2 we have just traced the dependence of � on �̂: In the noisy
signal model T = T (X; Y ) there are two sources of uncertainty:
(i) in X; i.e. in the sector return variability, as captured by the variance �2X ;
and
(ii) in Y; i.e. in the variability of the noise which models the managerial
�vision�, as captured by the variance �2Y (or the precision 1=�

2
Y ):

Equivalently, in the case of the log-normal model T = XY of Section 2.1
and Section 4 these variabilities are captured respectively by �2u and �

2
v; the

variances of the corresponding underlying normals.
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This formalization focusses on managerial variability as a way to model
di¤erences between the �rms of a single sector regarded as having a single
parameter of riskiness. Since we do not wish to preclude cross-sector com-
parisons, we will work with a general family of distributions parametrized
by � = �agg; (to signify a general aggregation of sectorial and managerial
variances); from there we trace dependencies on the two separate sources.
Thus, we identify henceforth the corresponding Dye cuto¤ as (�; �):
We continue to use hatted notation to refer to situations where the un-

certainty parameter q; or �; takes its optimal value, thus we write �̂(�) and
̂(�) := (�̂(�); �): That is, as in (9), �̂ and ̂ solve the two equations:

� = HX(; �)=(mX � ) and u(�) = FX(; �);

or the amended version for a noisy observation T (cf. Section 2.1 or Appendix
1).
We now consider the dependence of �̂ on the aggregate variability �2agg.

For this work we will need to exploit stochastic dominance (and a re�nement
of the �rst-order notion � see Appendix 7). This naturally complements
the Dye model (in which risk preferences were embodied in the one risk-
neutral distribution FX); as now investor risk-preferences as between di¤erent
distributions, i.e. as between di¤erent �2agg, need to be introduced. This
should comes as no surprise in view of the seminal work by Vijay Bawa (1975)
on lower partial moments, where he mapped out the relationship between
lower partial moment and stochastic dominance. Indeed Bawa (1975) was the
�rst to consider the lower partial moment (LPM) as creating a general family
of below-target risk measures, among them the below-target semivariance,
and studied them in regard to risk tolerance. See Levy (1992) for a survey,
or Nawrocki (1999) for a more recent review of the issues.
We will see �rst that ̂ decreases with � (subject to dominance assump-

tions). We then formulate an assumption about the preferences of investors
facing increased risk; from this and the comparative statics of ̂ follows the
sensitivity to changes in � of �̂, or equivalently of q̂. This may be reduced
to a modeling condition on the distribution FX to be used in relation to the
log-normal models in the next section (Section 4). This section ends with
the corollary that under the circumstances �̂ ; the equilibrium value of the
disclosure intensity, decreases with �agg:
The entire analysis of these comparative statics is necessitated by the

fact that the statics conducted by Jung and Kwon (1988) are inappropriate
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here, because theirs is a �partial statics analysis�with one parameter held
�xed namely q; we need to relax their assumption and allow variation in q as
well as in the distributions (which in our case are parameterized by �). As
commented before, in Section 2.1, we hold the expected �rm value mX �xed.

3.1 Stochastic dominance

Recall that F1 dominates F2 in the sense of �rst degree stochastic dominance
(FDSD) if F1 6= F2 and F1(t) � F2(t) for all t; i.e. �F1(t) � �F2(t) for all t; so
that the event X1 � t (of interest in regard to disclosure) is more likely than
X2 � t; so that the former is preferred over the latter.
Thus a family of distributions F (t; �) parametrized by variance � exhibits

FDSD if for all t

F (t; �1) � F (t; �2) provided 0 < �1 < �2:

Likewise F1 dominates F2 in the sense of second degree stochastic domi-
nance (SDSD) if F1 6= F2 and H1(t) � H2(t) for all t:
Recall two relevant results from Jung and Kwon (1988). By their Prop.

2 one has18 for �xed �

(�1; �) < (�2; �) provided 0 < �1 < �2: (JK1)

Also their Prop. 3, for �xed q; implies19

(�; �2) � (�; �1) provided 0 < �1 < �2; (JK2)

when the family F (t; �) parametrized by variance � exhibits FDSD or SDSD.
We prove the complementary result for ̂ below in Theorem 2 that, subject

to stochastic dominance assumptions,

̂(�2) := (�̂(�2); �2) < (�̂(�1); �1) := ̂(�1): (19)

This does not follow from their results, because here in fact �̂(�2) > �̂(�1);
or equivalently, q̂(�2) < q̂(�1): For the latter result see the Section 3.2. Our
�rst statics result is as follows: for a proof and technical terms here, see
Appendix 7.

18In their notation this result would read (q1; �) < (q2; �) provided 0 < q2 < q1; since
� is decreasing in q:
19As before, in their notation, one has (q; �2) � (q; �1) provided 0 < �1 < �2:
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Theorem 3 (Cuto¤ statics). Given two distributions with log-concave
hemi-means, with F1 = F (:; �1) increasingly dominating F2 = F (:; �2) for
�1 < �2, the corresponding optimized Dye cuto¤s satisfy

̂(�2) < ̂(�1); i.e.,(�̂(�2); �2) < (�̂(�1); �1) provided 0 < �1 < �2:

Thus the cuto¤ falls if the aggregate variability �2agg increases.

3.2 Monotonicity and Investor Preferences

Here we argue that in modelling a �rm by a family of distributions F (x; �)
corresponding either to a perfectly observed value X or its estimate �X(T );
i.e. S := E[XjT ] (based on the observed signal T = T (X; Y )), the family
should re�ect the fact that investors require to be rewarded for accepting
increased risk, when appropriately measured. Our approach is axiomatic
� rather than introduce a further modelling micro-structure involving the
investors selecting which manager to employ by some formal mechanism. We
take the view that investors employ an overall risk-measure of below-target-
shortfall relative to a threshold t and variance � given by the gain-to-loss
ratio Omega, introduced in Section 2.1 and recalled here as


(t; �) =

R
x�t(1� F (x; �))dxR

x�t F (x; �)dx
:

There is further support in the literature for the view taken by Shadwick
and Keating (2002) on this performance ratio �see C. S. Pedersen and S.
E. Satchell, (2002), and A. E. Bernardo and O. Ledoit (2000): the Omega
ratio, which is intimately connected to the Sortino ratio, should be regarded
as an adjusted type of Sharpe ratio. Our interest focusses on the fact that
it is usual in the Omega approach to assume that investors�risk-preference
is to rank one pair (t; �) as preferred over another, when 
(t; �) is larger.
Indeed 
(t; �) is decreasing in t and in � (see Cascon, Keating and Shadwick
(2003)). We make the following monotonicity assumption.

Assumption MIEP (Monotonic Investor Equilibrium Preferences).
We assume that, following an increase in �; the equilibrium �market-demand
for 
�, by way of compensation, is strictly positive, i.e. as a function of �
the equilibrium 
-value decreases.
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The axiom thus captures the e¤ect that, even when the disclosure cut-o¤
is lowered to share more information with investors, the riskiness of the �rm
is only partially o¤set; the 
 value can only be compensated by reducing
the �: Our attention on the Omega function is motivated by its natural
connection to the Dye equation (see 6) and the very simple form that it gives
that equation.
In view of the reciprocal identity (compare (5)) linking
(t; �) withH(t; �);

the hemi-mean function corresponding to the distribution F (t; �); we will
usually expect that the hemi-mean function H(t; �) (i.e HX or HS; as the
case may be) is increasing in �; so that decreases in  are counter-balanced
by increases in �: This is the case for the log-normal hemi-mean function
HLN(; �); i.e. it is increasing in �; as its �vega�is D�HLN(; �) = '(d1) =
'((log  � 1

2
�2)=�) �for which see J.C. Hull (2011) (3rd ed. or later), and

so is positive. (Likewise, D�HN(; �) = '(=�):)
In order to study changes in �̂ in response to �; we �rst rewrite the

equilibrium condition of Section 2.3 for utility optimization, namely

u(�) = F (; �);

in the format � = �(; �) similar to

� =
H(; �)

1� 
(working as usual with a re-normalized risk-neutral mean, i.e. mX = 1) by
referring to the inverse function of u(�) and taking

�(; �) := u�1(F (; �)):

Given this, rather than eliminate  between the two equations � = H(; �)=(1�
) and � = �(; �), we relate the MIEP to the Jacobian of the bi-variate
system of equations.

Theorem 4 (Jacobian condition). Suppose H(; �) is log-concave as
a function of ; that F (x; �) exhibits �rst order stochastic dominance with
respect to (increasing) � = �agg and that the transformation (; �) ! (�; �)
given by:

� =
H(; �)

1�  =
1


(; �)� 1 ;

� = u�1(F (; �));
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is invertible. The Assumption MIEP is equivalent to the Jacobian (determi-
nant) @(�; �)=@(; �) being positive for 0 <  < 1 and � > 0, i.e. to the
condition

@(�; �)

@(; �)
=

1

u0(�̂)(1� ) (
� 1)2

���� �
 �
�
F F�

���� > 0;
or in terms of distributional data:

@(�; �)

@(; �)
=

1

u0(�̂)(1� )

���� F (; �) +H(; �)=(1� ) H�(; �)
F(; �) F�(; �)

���� > 0:
This is just the two-variable analogue of the well-known positive slope

condition used to characterize monotonic increasing functions of one variable.
The condition asserts that the transformation (; �) ! (�; �) from [0; 1) �
[0; 1) to [0; 1) � [0; 1) de�ned above preserves orientation, a feature that is
equivalent to the Assumption MIEP.
For any of the standard text-book homothetic utility functions, as re-

marked in Section 2.2, one has u0(�) > 0 and so since  < 1 the Theorem
identi�es the simple condition

J(; �) :=

���� F +H=(1� ) H�
F F�

���� > 0;
which condition holds for F the log-normal distribution, but fails for the
normal (as there the determinant is zero).
As an immediate corollary, we obtain the following monotonicity result.

For technical terms here see Appendix 7.

Theorem 5 (SecondMonotonicity Theorem: Disclosure response
to Aggregate variability). Assume MIEP and that H is log-concave. For
u(�) strictly and regularly increasing, �̂ is decreasing in � = �agg:

Proof. ByMIEP
(̂(�); �) is decreasing in �: Since 1 = (1�q̂(�))
(̂(�); �);
the endowment parameter is decreasing and so �̂(�) is increasing in �: Hence,
�̂(�) is decreasing (by Theorem 2), as required.

It is signi�cant that Theorem 5 and the condition of Theorem 4 depend on
the choice of u(�) only in regard to the sign of u0, that is �the monotonicity
is robust as to the details of the utility expressing managerial preferences
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(or the implied equivalent utility of a trading mechanism under which the
manager may act) �see Section 2.2.
Our �nal aim is to apply Theorem 5 to the log-normal model of a man-

ager receiving a noisy signal of �rm value to show that �̂ increases as the
managerial vision deteriorates.

4 Log-normal models

In this section we note the details of the log-normal model. The explicit for-
mulas quoted below show its tractability, all the way down to an application
of Theorem 4 which yields the desired monotonicity result.
Recall that we are concerned with the possibility that at time � = 2 the

manager observes either true value X; or a transform T = T (X; Y ) of the
random variable X with Y a source of noise. Here we take T = XY with
X = mXe

u� 1
2
�2u and Y = ev�

1
2
�2v with u; v the underlying independent, normal

zero-mean random variables (in the sense of the risk-neutral probability) with
variances �2u and �

2
v. Thus X is log-normally distributed, in accord with the

�nancial benchmark model, as is the signal T: Here T = mXe
w� 1

2
�2w with

w = u+ v a mean-zero normal with variance

�2w = �
2
u + �

2
v: (20)

In this context FLN; the cumulative distribution and HLN the hemi-mean
function for the log-normal model, are given by

FLN(; �) = �N

�
log() + 1

2
�2

�

�
;

HLN(; �) =  � �N
�
log() + 1

2
�2

�

�
� �N

�
log()� 1

2
�2

�

�
;

where �N denotes the standard normal probability distribution function. By
(3) this is just the Black-Scholes put-formula for zero riskless rate, unit time
to expiry, unit initial asset value, and strike : Hence one readily deduces
that the relevant Jacobian for Theorem 4 is (up to a positive factor of pro-
portionality) given by:

J(; �) = d1(�N (d1)� �N (d2))� (1� )'N (d1) ; where

d1 = (log 1=) +
1

2
�2)=�; and d2 = (log 1=)�

1

2
�2)=�:
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We have veri�ed numerically that for 0 <  < 1 and a range of ��s this is
positive, hence ful�lling the conditions of Theorem 4.
We denote by LN(�; �) the unique solution of the Jung and Kwon equa-

tion for a log-normal random variable with unit mean and volatility �

�(1� ) = HLN(; �): (21)

Then the clean (Dye) signal cuto¤ for an observation of true value X is given
by

x = mX � ̂; (22)

where ̂ = LN(�; �u):
Since T is log-normal, it is straightforward20 from the put-formula above

to compute the regression function �X(t); which is

�X(t) = E[XjT = t] = mXe
1
2
�(1��)�2w (t=mX)

� ;

with � the usual (normal) regression coe¢ cient, and this is strictly increasing
in t (as required by the Isotonic Theorem of Appendix 1); the conditional
expectation estimator of Section 2.1 is then given via substitution using T =
mXe

w� 1
2
�2w ; so that in terms of w = u+ v one has:

Xest = E[XjT ] = mX exp

�
�w � 1

2
�2�2w

�
= mX exp

�
�w � 1

2
��2u

�
:

Here, the regression coe¢ cient is

� :=
�2u

�2u + �
2
v

=
pv

pu + pv
=

pv=pu
1 + pv=pu

; employing the precision pu = 1=�2u; etc.

(23)
The aggregate variability is thus given by:

�2�2w :=
�4u

(�2u + �
2
v)
2
(�2u + �

2
v) =

�4u
�2u + �

2
v

= ��2u:

As a result the cuto¤ for the estimator Xest is given by

x̂est = mX � ̂est; where ̂est = LN(�̂(��w); ��w): (24)

From here one readily deduces the following:

20Details available from the authors
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Theorem 6 (Log-normal disclosure intensity). With the notation
of ( 20), ( 23) and (24), the disclosure intensity in the noisy log-normal model
is given by

�̂ = q̂(��w)
�
1� FLN(̂est; ��w)

�
;

and ̂est = LN(�̂(��w); ��w).

The above formulation in general needs u(�) to be given in order to
determine q̂ (or �̂). The next result completes our analysis and in the case
of �v justi�es the title of the paper.

Theorem 7 (Counter-e¤ects of sector and managerial variabil-
ity). For the log-normal model with u(�) strictly increasing, the optimal
disclosure intensity �̂ is decreasing in �2u (for �

2
v constant) and increasing in

�2v (for �
2
u constant).

Proof. Noting that the Jacobian condition depends on u0(�) only in
relation to its sign, we may take u(�) = �2 and check that the Jacobian
condition is ful�lled. So �̂ is increasing in �2agg (by Theorem 3). Now �̂

is decreasing as a function of �̂ (Theorem 1). The conclusion is now clear,
because

�2agg =
�4u

�2u + �
2
v

=
�

1 + �
�2u; with � = �

2
u=�

2
v; (25)

as we have seen above, so �agg is increasing in �2u (for �
2
v constant) and

decreasing in �2v (for �
2
u constant) �equivalently, increasing in the �relative

precision��.

Returning to the cost of capital formula of Section 2.4, numerical in-
vestigation of the above log-normal models implemented in the structurally
minimal model, �nds �̂(�); to be increasing in � = �agg: From equation (25),
we see that the cost of capital is increasing in the sectorial variance (when
the managerial variance is held �xed), but is decreasing in the managerial
forecast variance �v (when the sectorial variance is held �xed). Larger man-
agerial precision (smaller managerial forecast variance �v) leads to a higher
probability of discovery, a larger likelihood of undisclosed bad news, and a
larger cost of capital.
The seemingly opposing e¤ects above are easy to understand: the prob-

abilistic discovery of new information by the manager reduces the aggregate
variability �agg of the future equity value.
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By Theorem 3, quite generally, ̂(�) is decreasing in � = �agg, whilst
�̂(�) is increasing in � = �agg: Consequently the relationship between cost-
of-capital and disclosure is found to be positive in the sense that as the cuto¤
decreases, the range of values disclosed increases. By monotonicity, the cost
of capital increases with the range of values that �rms endogenoeusly choose
to disclose.

5 Empirical evidence for disclosure intensity
e¤ects

A recent paper in this area is Cousin and de Launois (2006). In their work
they consider traditional competing models of conditional volatility: the
GARCH speci�cation and a Markov two-state volatility switching model.
They argue that changes in the rate of information arrival may cause a switch
between high or low (stock return) volatility. In their GARCH framework
the speci�cation of conditional variance is given by

�2i;t = !i + �i"
2
i;t�1 + �i�

2
i;t�1 + �iNi;t; (26)

where the new term Ni;t is a proxy21 for the number of news events speci�c to
company i announced to the stock market per interval t: Their main objective
is to compare and contrast the performance of this adjusted GARCH model
to a two-state Markov Switching Regression (MSR) model, where now the
disclosure intensity determines the probability that a company under consid-
eration is either22 in a low or high volatility regime.
What is of particular interest for us is that, on the basis of an empirical

analysis, they conclude that disclosure intensity is an important explanatory
variable for conditional volatility. In the GARCH framework their empirical
�ndings are consistent with our theoretical predictions in that the conditional
volatility is increasing in disclosure intensity, and in the MSR framework the
probability of being in the high volatility state is increasing in disclosure
intensity. Thus their empirical tests appear to be broadly in line with our

21They measure the variable by identifying the frequency of a subset of �rm news releases
on Factiva.
22To be more precise, the disclosure intensity in part determines whether the state

regime dummy variable Di;t is above or below a threshold, qualifying whether the �rm is
in the high volatility regime.
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theoretical predictions. However, before coming to this conclusion we believe
it is important to raise a note of caution. What is critical is how Cousin and
de Launois measure disclosure intensity. As their Table 1 makes clear, they
simply record the frequencies of Factiva disclosures by category. However,
if one just records all the raw empirical disclosure intensities for companies,
this does not capture the essential features of our generalized Dye model,
for the following reason. The theoretical model is of voluntary disclosures,
that is the Dye model concerns itself only with those news-wires which cor-
respond to management discovering information about future events that
a¤ect their voluntary ability to issue the news-wires, and thus may indicate
value above the Dye cuto¤. In addition companies are required under reg-
ulatory provisions to make mandatory disclosures. Thus the raw data on
disclosure intensities is a mix of disclosure �types�, whereas the theory only
speaks to voluntary disclosures. Thus, when working with raw disclosure-
intensity data, an essential step is to implement an estimation procedure for
separating out the voluntary Dye-type disclosures.
With this empirical issue in mind, one procedure could be to exploit the

distributional assumptions of the model. The Dye cuto¤ can be shown to be
close to the mean (just below), and one can use this to validate an empirical
approach which measures dimensionless relative intensity, i.e. excess relative
to the mean in proportion to standard deviation. Looking at disclosure in-
tensities above the mean rate (�high rates�) abstracts away from mandatory
good news disclosures that occur on a regular basis. Restricting attention
only to high-intensity disclosure periods, one needs to distinguish between
those that approximately correspond to good news (voluntary disclosures)
and those that approximately correspond to bad news (mandatory disclo-
sures); the latter are typically driven by regulations put in place to protect
investors from delay of bad news disclosure. In order to identify which are
good news and which are bad news disclosures, when there is no established
standard �message space�for voluntary disclosures, it is suggested here that
one could identify good news disclosures as those that give rise to an in-
crease in analysts�consensus forecasts (and so exclude those that give rise to
a decline in analysts�consensus forecasts for the company).
In contrast recent research by Rogers, Schrand and Verrecchia (2008)

(RSV) use an EGARCH model which allows them to estimate the condi-
tional variance when modeled as being given by one of two functions, the
choice depending on the sign of the return shock. The intuition behind this
asymmetric modeling assumption is that �bad news�seems to have a more
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pronounced e¤ect on conditional volatility than has �good news�. For many
companies there is a strong negative correlation between the current stock re-
turns and future volatility. The tendency for conditional volatility to decline
when returns rise (following good news) and rise when returns fall (following
bad news) is typically referred to in behavioural �nance as the leverage e¤ect.
RSV propose that, when companies follow a strategy of reporting good news
and withholding bad news, this can be described as �strategic disclosure�. In
a setting where good news is taken at face value, bad news below the cuto¤
threshold has to be inferred by investors; it is this di¤erence (i.e. observed
versus inferred) in the formation of expectations that leads to the asymmet-
ric responses in the market. To see this in the limiting case of full disclosure,
remove the leverage (asymmetric) e¤ect, whereupon current changes in val-
uation (impounded in returns) would always be associated with recent news
arrival rather than the need for investors to make inferences following non-
disclosure. Rather than look at actual disclosures, RSV instead develop two
hypotheses about the leverage e¤ect. The �rst is that the leverage e¤ect is
stronger for companies about which there is less private information; that
feature is assumed to increase the threshold level of disclosure (implying
a lower disclosure intensity). The second is that the leverage e¤ect will be
weaker when increased litigation risk a¤ects a company�s propensity to adopt
a �strategic disclosure�strategy. RSV report interesting results; however, our
research on disclosure intensity suggests an alternative empirical implemen-
tation. Speci�cally, they use the variable PUBINFO as a measure of private
information. That measure captures the extent to which information is likely
not to be private, because in their analysis, if company returns move together
then, ceteris paribus, homogeneity subsists in that sector of industry; so there
is less private information when results of company operations are similar.
Thus, they do not actually measure disclosure intensities. Accordingly, on
the view that our model may have wider empirical applicability than the
special two-case scenario investigated by RSV, we suggest that an EGARCH
model variant of the standard GARCH model, redesigned so as to refer to
disclosure intensities in (26), bears investigation.

6 Conclusion

By adapting the Dye (1985) model, this paper addresses Shin�s (2006) chal-
lenge to understand corporate disclosure by studying a model of asset pricing
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that endogenously includes disclosure. Our model sheds light on three issues
raised in the literature: (i) Larcker and Rusticus (2010) suggested that the
relation between disclosure and cost of capital could perhaps be positive de-
spite earlier claims to the contrary; (ii) van Buskirk�s (2011) counter-intuitive
empirical �ndings that higher disclosure is associated with reduced informa-
tion asymmetry; (iii) Penno (1997) suggests that there might not be any
monotonicity at all on the relation between informational endowment and
disclosure intensity.
The Dye (1985) model of partial disclosure contains a latent variable:

the chance discovery of new information; if the chance of discovery is turned
into a choice variable and disclosure is voluntary, then it is possible to price
the �option to disclose�and hence to establish a cost-of-capital formula in-
volving explicit disclosure components derived from the disclosure cuto¤ for
discovered information.
In our model the cuto¤ is determined by the managerial variability and

the sector variability; it is increasing in the managerial variance (when the
sectorial variance is held �xed), and decreasing in the sectorial variance (when
the managerial variance is held �xed) �i.e. implementing a larger range of
disclosures.
Likewise, the disclosure intensity is decreasing in the sectorial variance

(when the managerial variance is held �xed), but is increasing in the manage-
rial variance (when the sectorial variance is held �xed) �that is, in a market
with arbitrage-free pricing, managers with relatively low forecast precision
(of the equity value of their �rm) select a relatively high disclosure intensity
in order to reduce the �uncertainty gap�.
Contrarily, the cost of capital is increasing in the sectorial variance (when

the managerial variance is held �xed), but is decreasing in the managerial
variance (when the sectorial variance is held �xed). A reduction in managerial
forecast variance leads to smaller probability of discovery and so smaller
likelihood of undisclosed news; for the same reason, larger forecast variance
leads to larger cuto¤ (larger range of undisclosed news).
Consequently the relationship between cost-of-capital and disclosure is

found to be positive, in the sense that the cuto¤ decreases, i.e. the range of
values disclosed increases, as does the cost-of-capital.
Shin warned that in an asset pricing model with endogenized disclosure

relations between quantities of interest could turn out to be counter-intuitive.
Here, the seemingly opposing e¤ects noted above arise, because the proba-
bilistic discovery of new information by the manager reduces the aggregate
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variability �agg of the future equity value.
The theory developed here suggests new empirical testing procedures and

also, critically, a need to control for di¤erent directions in hypothesized cau-
sation. The theory shows why one should not base empirical hypotheses on
an a priori assumption that �better� companies make more voluntary dis-
closures. In fact, as we have shown, it is companies with the most poorly
informed management (facing highest noise) that will �in equilibrium �dis-
close with the greatest intensity, albeit this may be o¤set by a cross-sector
variability e¤ect.
Furthermore, our strong monotonicity results provide an empirical proxy

for the hitherto latent variable of information discovery namely the disclosure
intensity which is statistically inferrable.
Whilst we focus on log-normal models of equity (following Black and Sc-

holes), the framework is robust to a range of changes in its its microstructure,
for which the �ndings remain unchanged, as the various theorems testify (in
particular this justi�es the above mentioned empirical proxy). The research
is subject to a number of caveats. We abide by the assumptions of the Dye
model in that, when disclosing, the manager does so truthfully and, when
uniformed, the manager is unable credibly to announce the absence of in-
formation. Furthermore, the manager�s interests and those of the investors
are aligned. The model is essentially a single-period project model, in which
success in one period does not in�uence successes in later periods. That
is, multi-period project dependence (and related disclosure) is not modeled.
This is clearly a topic for future research.
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8 Appendix 1: Isotonic transformations

We are concerned here with a general noisy observation T of the signal X in
the form T = T (X; Y ); where X and Y are independent random variables.
Our interest below focuses on the regression function �X(t) = E[XjT = t]
and on the random variable, which we call the estimator of X

Xest = E[XjT ] = �X(T );

which it is occasionally more convenient to abbreviate to S:
We now re-derive the Dye equation basing the analysis on the estimated

value of X (given T ) in place of X itself23. We �nd that the Dye equation
holds for the estimatorXest of the true value. Let L(x) be the inverse function
of �X(t): The entire analysis rests on the following simple observation:

Pr[Xest � x] = Pr[�X(T ) � x] = Pr[T � L(x)] = FT (L(x));

where FT is the probability distribution function of T: The argument identi-
�es that FS(x) := FT (L(x)) is the probability distribution function of Xest:

Theorem 8. (Isotonic Reduction Theorem)
Let �X(t) be the conditional expected value of of a random variable X

given an observation t of T (X; Y ). Suppose that �X(t) is strictly increasing
in t. Then the noisy signal cuto¤ t̂ (cuto¤ for the disclosure of a noisy signal)
reduces to the clean cuto¤ for the estimator distribution FS with S := E[XjT ];
where ŝ = �X(t̂) solves the Dye equation

1� q
q
(mX � s) = HS(s):

23This general argument includes the Penno (1997) analysis for the cuto¤ level of a
normally distributed noisy signal as a special case.
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and where E[S] = E[X] = mX is also the mean of the estimator distribution
FS .

Comment. The Theorem assumes a minimum speci�cation regarding
how the random variable T is related to X; namely that �X(t) is increasing
in t: It may thus be applied both to an additive noise structure X + Y like
that of Penno, as well as our preferred multiplicative structure XY:

Proof. We begin by observing that the mean of the FS distribution is
mX ; this is immediate from the �conditional mean formula�that

E[S] = E[E[XjT ]] = E[X] = mX ;

so that the estimator S = E[XjT ] is unbiased. To set this in context, start
from the distribution FT and put L(s) := ��1X (s) so, since Pr[S � s] =
Pr[T � L(s)]; one has thatZ 1

0

sdFS(s) =

Z 1

0

sdFT (L(s)) =

Z 1

0

�X(t)dFT (t)

= E[E[XjT = t]] = E[X];

and this may, but need not in general, agree with E[T ]: For the noisy signal
T the indi¤erence equation for its non-disclosure cuto¤  := T triggering
reads:

�X() = V () := E[XjND()] =
(1� q)mX + q

R 
0
�X(t)dFT (t)

(1� q) + qFT ()
; (27)

i.e. the signal disclosure  yields the valuation �X() whereas non-disclosure
leads to V (): The substitution

z = �X(t)

gives
t = L(z):
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From (27), integrating by parts, the indi¤erence equation is equivalent to

1� q
q
(�X()�mX) =

Z
t�
�X(t)dFT (t)� �X()FT ()

= [�X(t)FT (t)]
 �

Z
t�
FT (t)d�X(t)� �X()FT ()

= �
Z
s��X()

FT (L(s))ds

= �
Z
s��X()

FS(s)ds

= �HS(�X());

that is, the transformed trigger s = �X() now solves the equilibrium indif-
ference equation but using the hemi-mean of the FS-distribution namely:

1� q
q
(mX � s) = HS(s): (28)

We will refer to this as the Dye equation adjusted for noise. We regard
FS and its hemi-mean as a replacement for FX resulting from noise in the
observed signal.

Appendix 2: Fishburn preferences

Explicit modeling assumptions need to be made concerning management
preferences; in contrast to standard utility theory concerned with expected
utility of outcomes, we need to consider preferences expressed by utility func-
tions over pairs of parameters associated with distributions, rather like but
more general than the Markowitz mean-variance pair.
Our concern with the hemi-mean functions may be connected to ear-

lier literature in which modeling preferences re�ecting di¤erential concern
with lower (versus upper) tail events also recognized the need to steer away
from the simple mean-variance paradigm. This was indeed acknowledged by
Markowitz (1952) explicitly in his seminal work, as he also proposed that
semivariance be used to measure the risk of a portfolio, but did not exploit
this24. Subsequently, a more general risk-measure (for below-target t risk)

24Possibly the reason he did not develop this is that the analysis of semivariances was
not known to be tractable at that time.
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was studied by Fishburn (1977), which he called the (�; t)-model, namely

F�(t) :=

Z
x�t
(t� x)�dF (x); (� > 0):

(with t an exogenous target), and showed it to be tractable. One sees imme-
diately that the hemi-mean function, HX(t); appearing in the Dye equation
is just F1 for F = FX ; i.e. a lower partial moment of order � = 1; cf.
McNeil-Frey-Embrechts (2005); indeed, an integration by parts yields

HX(t) =

Z
x�t
(t� x)dFX(x):

For arbitrary distributions F; Fishburn studies preferences over F repre-
sentable by a utility U(�(F ); �(F )) over two parameters associated with F :
the mean �(F ) and a risk-measure �(F ) of the general form

R
�t '(t�x)dF (x)

for ' non-negative, non-decreasing with '(0) = 0: The latter captures notions
of �riskiness�for outcomes x below the target t:
As both parameters are expectations under F , Fishburn�s preference is a

�utility of expectations�rather than an expected utility in the von Neumann-
Morgenstern sense.
In this connection we recall Fishburn�s result, when specialized to the case

'(t�x) = t�x; that for such a dominance to be consistent with an expected
utility, speci�cally taking the form EF [v(X; t)] for some v(x; t) increasing in
y; with v(t; t) = t and v(t+1; t) = t+1; it is necessary and su¢ cient for the
existence of a constant k = k(t) > 0 such that

v(x; t; k) :=

�
x; x � t;

x� [k(t)(t� x)]; x � t:

Moreover,
EF [v(X; t)] = �(F )� k(t)�(F ):

Call the utility v here the Fishburn kinked utility, to distinguish it from the
utility U(�(F ); �(F )) above. The kinked utility has left-sided slope25 at t

25Since v(t� 1; t) = t� 1� k; one has

k(t) + 1 :=
v(t; t)� v(t� 1; t)
v(t+ 1; t)� v(t; t) ;

and so k(t) is independent of any scaling or shifting in the utility space.
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greater than the right-sided slope, which recognizes the greater aversion to
performance below target.
To summarize: in general, one can still analyze preferences with tradi-

tional expected utility analysis when risk is measured by a more general
Fishburn risk measure �(F ); rather than �symmetric�variance �2, provided
one identi�es the appropriate kink location t in the utility function.

Appendix 3: Optimized odds

To begin with we let a general concave utility function U(y; z) describe man-
agerial preference over the risk-shielding loss, assessed as in (8) by z = m�
when setting the cuto¤ at ; and value enhancement, assessed by y = H().
The context includes, as one interpretation, the case m = mX and H = HX ;
where the random variable X models the terminal value of the �rm, and, as
another, the case m = mS and H = HS; where S is a �ltered signal, i.e. a
random variable which is some well-de�ned transform of a noisy observation
of X (for which see Section 2.1). Eventually we consider speci�c examples
of U which include the utility of Constant Elasticity of Substitution (CES
utility) and also its limiting version the Cobb-Douglas utility.
We continue the general analysis by supposing that the manager chooses

among the points in the opportunity set de�ned by:


 := f(y; z) : 0 � z � m; y = H(m� z)g;
employing a general di¤erentiable concave utility function U(y; z); that is
one with smooth convex contours. The set 
 is in general a convex curve,
since H 00() = f() > 0.
For our general discussion we assume there is a unique point (ŷ; ẑ) of 


which corresponds to utility optimization under U: Subject to di¤erentiability
assumptions on U , the optimal utility contour U(y; z) = U(ŷ; ẑ) is tangential
to 
 at (ŷ; ẑ): We analyze the signi�cance of this observation.
In (y; z) co-ordinates the Dye cuto¤condition (4) for expected indi¤erence

between non-disclosure and disclosure is:

(1� q)z = qy:
Corresponding to the optimal pair (ŷ; ẑ); from the preceding equation we
de�ne ̂ and q̂ (or �̂) by

�̂ =
1� q̂
q̂

:=
ŷ

ẑ
; and ̂ := m� ẑ:
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Thus we �nd that the common tangency of the optimal utility contour and
the opportunity set (illustrated in Figure 2) implies a corresponding choice
�̂ of optimal odds.

0.20.40.60.810.10.20.30.40.50.60.7

Figure 1. The arbitrage line (blue), the
opportunity curve (red), and the
tangential utility contour (green).

Our next aim is to characterize the optimal odds. We derive a condition,
which we shall describe henceforth as the optimal odds equation, as follows.
Note that the tangent slope at (ŷ; ẑ) along the optimal utility curve is given
by the marginal rate of substitution �Uz=Uy: Put

MU(y; z) :=
Uz(y; z)

Uy(y; z)
:

But, since y = H(m � z); the slope of the opportunity curve is given by
dy=dz; i.e. by y0 = �F (m� z): Common tangency thus requires that

d

dz
H(m� z)

����
z=ẑ

= �Uz(ŷ; ẑ)
Uy(ŷ; ẑ)

:

Since F (̂) = F (m� ẑ); we obtain F (̂) =M(�̂(m� ̂);m� ̂): In summary,
the model is fully endogenized by the choice of q via the pair of equations

�̂(m� ̂) = H(̂);

MU(�̂(m� ̂);m� ̂) = F (̂):
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Illustrative Examples. In the Cobb-Douglas case UC-D(y; z) = y�z�

and, setting � = �=�; the marginal rate of substitution of the utility is

MC-D(ŷ; ẑ) :=
�

�

ŷ

ẑ
= ��̂:

Similarly in theConstant Elasticity of Substitution case (CES case) UCES(y; z) =
(�y�� + �z��)�1=�; but now with � = (�=�)1=(1+�); we have

MCES(ŷ; ẑ) =

�
�
ŷ

ẑ

�1+�
=
�
��̂
�1+�

:

Thus � = 0 corresponds to the Cobb-Douglas case. In all these cases the
optimal odds equation takes the elegant form:

F () = (��)1+�;

which in particular implies that

0 < ��̂ < 1; i.e. 0 < �̂ < �� := 1=�:

Consider the case when � = � (where equal weights are given to the two
values being traded-o¤); then we have 0 < �̂ < 1; i.e. 1 � q̂ < q̂ and the
manager prefers to be more informed than uninformed (i.e., q̂ > 1=2).

We now specialize our discussion to utilities U(y; z) for which, as in the ex-
amples above, the marginal rate of substitution is homogeneous of degree 0 in
y; z and so is a function of the ratio y=z; i.e. whereMU(y; z) =MU(y=z; 1):
The class of such utilities is natural to use and quite wide as it comprises the
homothetic utilities and those that are themselves homogeneous of degree
zero �see Forsund (1975), and for further examples Appendix 5.
We thus write

u(�) :=MU(�; 1): (29)

If the U -contours are strictly concave functions of the form y = y(z);
then u(�) is increasing in �: Similarly if the U -contours are strictly convex
functions, then u(�) is decreasing in �: If u is strictly increasing/decreasing
(as in the illustrative examples), then the fully endogenized model permits a
separation of the variables and leads to the simpli�ed equations:

�̂ = H(̂)=(m� ̂);
�̂ = u�1(F (̂));
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since, the common tangency condition now reads u(�̂) = F (̂):
In Section 3 we consider a family of distributions FX(:;�) dependent on a

parameter �. Under such circumstances one writes  = (�) or  = (�; �)
in place of (q) for the Dye cut-o¤ de�ned (implicitly) by (4). For given
� the optimal odds in equilibrium, as above, are now de�ned implicitly as
� = �̂(�) via

u(�) = F ((�; �); �): (30)

We have in mind that the manager�s type is summarized by �; and so one
studies how the intensity of disclosure varies with the type. One may do so
by �rst studying the dependence of the intensity of disclosure as a function
of exogenously given odds �.
By de�nition, the intensity of disclosure is given by

�(�) := q(1� F ((�))):

Since q = 1=(1 + �); at equilibrium, one has

�(�) =
1� u(�)
1 + �

: (31)

It is evident that if u(�) is an increasing function, then �(�) is decreasing (as
a product of decreasing functions).
As a simple illustration, note the special case of the CES with � = � = 1

above and u(�) = �2; when we have � = 1��; so that � is linearly decreasing
in �:
The monotonicity here is in fact a quite general phenomenon, as was

identi�ed in Theorem 2 (Section 2.3 and Appendix 5 below).

Appendix 4: The structurally minimal model

We show that the implied utility of Section 2.3 for the structurally minimal
model is U(z; y) = (z�1 + y�1)�1:
To prove this, suppose as in Appendix 3 that the manager chooses among

the points in the opportunity set de�ned by:

f(y; z) : 0 � z � m; y = H(m� z)g;

employing a general di¤erentiable utility function U(y; z): In reduced form
the Dye cuto¤ condition (4) for expected indi¤erence between non-disclosure
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and disclosure is, as before:

(1� q)z = qy or (1� q)(y + z) = y; (32)

which yields
q = q(y; z) =

z

y + z
: (33)

Note that q(y; z) is homogeneous of degree zero. So the manager�s maximiza-
tion objective is now (1� q) � z; hence eliminating q via (32)

U(y; z) = (1� q) � z = yz

y + z
= (y�1 + z�1)�1:

Compare Caplin and Nalebu¤(1991), who consider generalized averages such
as this harmonic one. Note also that the contour U = c is a pair of rectangular
hyperbolae with centre of symmetry at y = z = c; and is expressible as

(y � c)(z � c) = c2:

Appendix 5: First Monotonicity Theorem

In this section we prove the Theorem 2 (First Monotonicity Theorem) of
Section 2.3.
Assertion (i) is immediate from equation (31). (Compare the closing text

of Appendix 3.)
As to assertion (ii), we note from equation (31) that

� 0 =
�u0(�)(1 + �)� (1� u(�))

(1 + �)2

=
[u(�)� �u0(�)]� u0(�)� 1

(1 + �)2
=

'(�)

(1 + �)2
; say.

By assumption '(0) < 0: Now

'0(�) = �(�+ 1)u00(�) < 0 for u(�) convex.

So '0(�) < 0 i.e. '(�) is decreasing for � > 0: So '(�) � '(0) < 0 and hence
� 0(�) < 0 for all � > 0.
(iii) Here '(��) < 0 and this time '(�) is increasing so '(�) � '(��) < 0

for all 0 < � < ��. Here again � 0(�) < 0 for all 0 < � < ��.

43



Examples. (1) In the Cobb-Douglas case u(�) = �� (with � = �=�)
and we have from (31) explicitly that

� =
1� ��
1 + �

= ��+ �+ 1
1 + �

;

and so � here is again decreasing with �. (In fact '(�) = �(1 + �):)
2) In the CES case, taken in the form U(y; z) := (�y�� + �z��)�1=� with

� 6= 0; write u(��) in place of u(�) and '(��) in place of '(�) above. Then
�(�) = (1� u(��))=(1 + �) and so here from (31) we have

� 0 =
��u0(��)(1 + �)� (1� u(��))

(1 + �)2

=
[u(��)� ��u0(�)]� �u0(��)� 1

(1 + �)2
=

'(��)

(1 + �)2
:

We have

'(��) = ��(��)1+� � (1 + �)�(��)� � 1
= �1+�[���1+� � (1 + �)��]� 1:

Case a: with � > 0: (Here u = �1+� which is convex.) We have '(0) < 0:
Furthermore, since � > 0 we have

'0(��)=�� = ��(1 + �)�� � �(1 + �)���1

= ��(1 + �)���1(1 + �) < 0;

thus '(��) is decreasing for � > 0 and so '(��) < 0 for � > 0: Hence � 0 < 0;
and so � is decreasing in �.

Case b: with � < �1: This is again the convex case. The argument above
continues to hold.

Case c: �1 < � < 0: Here '(��) is instead increasing for � > 0; however, we
also have '(1) < 0, so '(��) < 0 in the range 0 < �� < 1: Thus � 0(�) < 0 for
0 < �� < 1: But the equilibrium condition F () = u(��) = (��)1+� implies
that 0 < �� < 1 at equilibrium. Here again we have � decreasing in �:
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9 Appendix 6: Physical vs. risk-neutral

Standardly, in the Black-Scholes model under the physical measure

St = S0e
�te�w

P
t� 1

2
�2t,

with � the anticipated instantaneous return, � the volatility and wPt the un-
derlying P-Wiener process, whereas under the equivalent risk-neutral mea-
sure Q with r the riskless rate

St = S0e
rte�w

Q
t �

1
2
�2t with wQt = t+ w

P
t and  = (�� r)=�:

Here  is the (Girsanov) risk-premium26 and wQt is aWiener process under the
risk-neutral measure Q. Specializing to our context, setting t = 1; r = 0 (we
use present-values in our analysis) and S0 = 1 (in view of our renormalization
of the initial equity to unity), given the ex-ante information one has under
the physical measure that

X = S1 = e
�e�w

P
1�

1
2
�2,

whereas under the risk-neutral measure that

X = S1 = e
�wQ1�

1
2
�2 with wQ1 = t+ w

P
1 and  = (�� r)=�:

So the cost-of-capital discount is e��; since

EQ[S1] = 1 and EP[S1] = e�:

Appendix 7: Technicalities on stochastic dom-
inance

Recall from Appendices 3 and 4 (cf. equation (29)) that u(�) :=MU(�; 1) =
Uz(�; 1)=Uy(�; 1) is the marginal rate of substitution for the utility U(z; y);
assumed to be either homothetic or homogeneous of degree 0 in (y; z): We

26This is often derived by writing:

dS

S
= �dt+ �dwt = rdt+ �dw

0
t; where w

0
t = t(�� r)=� + �wt:
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assume that u(�) is increasing in � and so has an inverse. Throughout we
regard u as �xed. We will need to assume below that u(�) varies regularly
enough.

De�nition. Put

Gu(t); or G(t) :=
u�1(F (t))

H(t)
(34)

and say that the distribution F1 increasingly dominates F2 if m2 � m1 and

G1(t) � G2(t); for all t with 0 < t � m2;

and also H1(m2) < H2(m2): Thus we demand that

u�1(F1(t))

H1(t)
� u�1(F2(t))

H2(t)
:

Note the example u(�) = �2; for which u�1(t) = t1=2; yields

G(t)2 =
F (t)

H(t)2
= � d

dt
(H(t))�1:

Here G is decreasing i¤G2 is decreasing i¤H(t)�1 is convex and so �H(t)�1
is concave.
It will be helpful to recall the de�nition of �-concavity of a function g;

due to Caplin and Nalebu¤ (1991), which includes log-concavity when � = 0
(i.e. log g is concave), and signi�es that for � > 0 the function g� is concave,
whereas for � < 0 the function (�g�) is concave. We note that if g is �-concave
then it is also �0-concave for all �0 < �: In general if H is log-concave, then it
is (�1)-concave.
Note that increasing dominance is a restricted form of dominance. Taking

now u(t) = t; the mean-zero normal family directed by � exhibits �rst order
dominance to the left of the mean, as �1 < �2 implies that for x < 0

x

�1
<
x

�2
and so FN(x; 0; �1) = FN(

x

�1
; 0; 1) < FN(

x

�2
; 0; 1) = FN(x; 0; �2);

where FN(t;�; �) denotes the normal distribution function (with mean and
standard deviation �; �). We recall that a twice di¤erentiable function g(t)
is log-concave if

g00g � (g0)2 < 0: (35)
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(See e.g. Bergstrom and Bagnoli (2005), An (1998), or Caplin and Nalebu¤
(1991).)

Our �rst result shows that in cases of interest G(t) = Gu(t); as de�ned
above, is a decreasing function of t. The regularity condition quoted below
is connected to the theory of regular variation, for which see Bingham et al.
(1987), Section 1.8.

Proposition 1. For H(t) log-concave, u(�) strictly increasing and sat-
isfying the regularity condition

u(�)

�u0(�)
� 1; (36)

in particular for u(�) = �� with � � 1; the function Gu is decreasing.

Proof. For t = u(�) with u strictly increasing put v = u�1 so that
� = v(t) and u0(�) = 1=v0(t) and note that

v(t)

tv0(t)
=
�u0(�)

u(�)
� 1: (37)

But

d

dt

�
v(F (t))

H(t)

�
=
v0(F )fH � v(F )F

H2
=
v0(F )

H2

�
Hf � F 2 v(F )

Fv0(F )

�
;

so in view of (35) and the growth condition (36) via (37)

d

dt
(Gu(t)) � v0(F )

H2

�
Hf � F 2

�
< 0:

Remark. When u(�) = �2 the above condition reduces to the convexity
of H(t)�1 �i.e. the �reciprocal convexity�of H(t):

We have just seen that on (0;m) if H(t) is log-concave, then Gu(t) is
decreasing, so the condition that Gu(t) be decreasing is a weakening of log-
concavity.

Our next result shows that the assumption of a decreasing Gu(t) rep-
resents only a mild form of regularity and does not need even as much as
log-concavity.
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Proposition 2. Suppose the density function is such that the limit
f(0+) := limt&0 f(t) exists, then assuming the following limit exists we have:

lim
t&0

f=F

F=H
� 1:

If further f 0(0+) exists, then we have in fact

lim
t&0

f=F

F=H
= 1:

Consequently, under the regularity condition (36), the function

G(t) =
u�1(F (t))

H(t)

is decreasing in an interval to the right of the origin.

We recall and prove Theorem 3 from Section 3.2.

Theorem 3. Given two distributions, with log-concave hemi-means, with
F1 increasingly dominating F2, the corresponding optimized Dye triggers sat-
isfy

̂1 > ̂2:

Proof. The optimality condition requires F = (q̂) to satisfy

Fi() = u(�̂) = u

�
Hi()

mi � 

�
;

or, with v = u�1;
1

mi � 
= v(Fi())=Hi():

or simply

Gvi () =
1

mi � 
:

Recalling that m2 < m1; we conclude, for 0 < t < m1; that

1

m2 � t
>

1

m1 � t
:
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The function 1=(m1 � t) is strictly increasing, so intersects the graph of
G2(t) earlier than it intersects the graph of G1(t): The intersection of G1
with 1=(m1 � t) is in turn later than its intersection with 1=(m2 � t). The
result is now clear. See the illustration below.

Figure 2. The blue and green
curves exhibit the strict
dominance. The red curve

represents (m� t)2 with m = 1:
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