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Abstract
We verify a conjecture of Manin about the distribution of rational

points of bounded height for certain equivariant compactifications of
anisotropic inner forms of semi-simple groups.
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1 Introduction

Let x ∈ Pn(Q) be a Q-rational point in the projective space of dimension n
with coordinates x = (x0 : x1 : · · · : xn), such that

(x0, x1, . . . , xn) ∈ Zn+1
prim,

that is, the set of primitive (n+1)-tuples of integers. Define a height function

H(x) := max
j

(|xj|).

Of course, we could replace this norm by any other norm on Rn+1, for example√
x2

0 + · · ·+ x2
n. Generally, for any number field F and x ∈ Pn(F ) we can

define

H(x) :=
∏

v∈Val(F )

max
j

(|xj|v),
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where the product is over all valuations of F . By the product formula, this
does not depend on a particular choice of homogeneous coordinates for x.
Clearly, the number

N(Pn, B) := #{x ∈ Pn(F ) | H(x) ≤ B}

is finite, for any B > 0. In 1964 Schanuel computed its asymptotic behavior,
as B →∞,

N(Pn, B) = c(n, F,H) ·Bn+1(1 + o(1)),

where c(n, F,H) is an explicit constant (see [34]).

Let X be an algebraic variety over a F and µ : X −→ P
n a projective

embedding. Then H ◦ µ defines a height function on the set of F -rational
points X(F ) (more conceptually, the height is defined by means of an adelic
metrization L = (L, ‖ · ‖A) of the line bundle L := µ∗(O(1))). We obtain an
induced counting function

N(X,L, B) := #{x ∈ X(F ) | H ◦ µ(x) ≤ B}.

One of the main themes of modern arithmetic geometry and number
theory is the study of distribution properties of rational points on algebraic
varieties. In particular, one is interested in understanding the asymptotic
distribution of rational points of bounded height.

All theoretical and numerical evidence available so far indicates that one
should expect an asymptotic expression of the form

N(X,L, B) = c ·Ba log(B)b−1(1 + o(1)),

for some a ∈ Q, b ∈ 1
2
Z and a positive real c. In 1987 Manin had initiated a

program aimed at interpreting the constants a, b and c in terms of intrinsic
algebro-geometric and arithmetic invariants of X. The main observation was
that a and b should depend only on the class of the embedding line bundle L
in the Picard group Pic(X) of the variety X, more precisely its position with
respect to the anticanonical class [−KX ] and the cone of effective divisors
Λeff(X) ⊂ Pic(X)R. The constant c, on the other hand, should reflect the
dependence of the asymptotic expression on finer structures (like the choice
of a norm in the definition of the height and p-adic densities).
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Of course, it may happen that X has no rational points at all, or that
X(F ) is entirely contained in a proper Zariski closed subset. In these cases,
it is hopeless to try to read off the geometry of X from the asymptotics of
rational points. We will therefore assume that X(F ) is Zariski dense. In
general, it is not so easy to produce examples of interesting varieties with a
Zariski dense set of rational points (unless, of course, X admits an action of
an algebraic group with a Zariski dense orbit). For example, X could be a
flag variety or an abelian variety. It is expected that the density of points (at
least after a finite extension of the groundfield) holds for Fano varieties (that
is, varieties with ample anticanonical class [−KX ]). This question is still
open even in dimension 3 (see [20]). Here is a version of Manin’s conjecture:

Conjecture 1.1 Let X be an algebraic variety over a number field F such
that its anticanonical class [−KX ] is ample and X(F ) is Zariski dense. Then
there exists a Zariski open subset U ⊂ X such that

N(U,−KX , B) = c(KX) ·B(logB)b(X)−1(1 + o(1))

for B → ∞, where −KX is a (metrized) anticanonical line bundle, b(X) is
the rank of the Picard group Pic(X) and c(KX) a non-zero constant.

Remark 1.2 The restriction to Zariski open subsets is necessary since X
may contain accumulating subvarieties (the asymptotics of rational points on
these subvarieties will dominate the asymptotics of the complement). The
constant c(KX) has an interpretation as a Tamagawa number (defined by
Peyre in [32]). Finally, there is a similar description for arbitrary ample line
bundles, proposed in [3], resp. [8]).

Conjecture 1.1 and its refinements have been proved for the following
classes of varieties:

• smooth complete intersections of small degree in Pn (circle method);

• generalized flag varieties [17];

• toric varieties [5], [6];

• horospherical varieties [38];

• equivariant compactifications of Gn
a [11];
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• bi-equivariant compactifications of unipotent groups [37].

We expect that Manin’s conjecture (and its refinements) should hold for
equivariant compactifications of all linear algebraic groups G and their ho-
mogeneous spaces G/H. We provide further evidence for this expectation by
proving it for certain smooth equivariant compactifications of Q-anisotropic
semi-simple Q-groups of adjoint type. Equivariant compactifications of the
Heisenberg group are treated in [37]. The present paper, while elementary in
outline, constitutes at least the beginning of the tortuous path towards the
above goal.

This work focuses on the interplay between arithmetic geometry and auto-
morphic forms. Though the main problem is inspired by Manin’s conjecture
in arithmetic geometry, our tools and techniques, which are naturally suited
to the current context, are from the theory of automorphic forms and repre-
sentations of p-adic groups. Our approach is inspired by the work of Batyrev
and Tschinkel on compactifications of anisotropic tori [4] and the work of
Godement and Jacquet on central simple algebras [19]. We are currently
working on a generalization of our results to higher rank, where the presence
of the Eisenstein series makes the problem even more interesting from the
analytic point of view.

Finally, we would like to mention related work of Duke, Rudnick and
Sarnak [14], Eskin, McMullen [15], Eskin, Mozes and Shah [16] on asymp-
totics of integral points of bounded height on homogeneous varieties. Their
theorems neither imply our results nor follow from them.

Acknowledgements. We have greatly benefitted from conversations
with Arthur and Sarnak. The second author wishes to thank the Clay Math-
ematics Institute for partial support of this project. The third author was
partially supported by the NSA, NSF and the Clay Mathematics Institute.

2 Methods and results

Let F be a number field and D a central simple algebra of rank m over F .
Let Λ be an arbitrary lattice in D. Denote by Val(F ) the set of all valuations
and by S∞ the subset of archimedean valuations of F . For each v ∈ Val(F ),
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we put Dv = D⊗F Fv and, for v /∈ S∞, Λv = Λ⊗OF Ov. For almost all v, Λv

is a maximal order in Dv. We proceed to define a family of norms ‖ · ‖Λv on
Dv, one for each place v of F .

• nonarchimedean v: Choose a basis {ξv1 , . . . , ξvk} for Λv. For g ∈ Dv,
write g =

∑
i ci(g)ξvi and set

‖g‖v = ‖g‖Λv := max
i=1,...,k

{|ci(g)|v}.

It is easy to see that this norm is independent of the choice of basis.

• archimedean v: Fix a Banach space norm ‖ · ‖v = ‖ · ‖Dv on the finite-
dimensional real (or complex) vector space Dv = D⊗F Fv.

Clearly, for c ∈ Fv and g ∈ Dv, we have

‖cg‖v = |c|v · ‖g‖v.

Consequently, for c ∈ F× and g ∈ D, we have

∏
v∈Val(F )

‖cg‖v =
∏

v∈Val(F )

‖g‖v, (1)

by the product formula. For an adelic point g = (gv)v ∈ D(A) define the
global height function:

H(g) :=
∏

v∈Val(F )

Hv(g) =
∏

v∈Val(F )

‖gv‖v.

By the product formula, H is well-defined on the projective group D(F )×/F×.
Moreover, H is invariant under the right and left action of a compact open
subgroup

K0 =
∏
v/∈S∞

K0,v ⊂ G(Afin)

(if we fix an integral model for G then K0,v = G(Ov), for almost all v). It will
be convenient to assume that the Haar measure dg is such that vol(K0) = 1.

5



From now on, we let G be an F -anisotropic inner form of a split semi-
simple group G̃ of adjoint type over a number field F . Let

%F : G −→ D×

be an F -group morphism from G to the multiplicative group of a central sim-
ple algebra over F of rank m. Extending scalars to a finite Galois extension
E/F over which both G and D are split, we obtain a homomorphism

%E : G̃(E) −→ GLm(E).

This homomorphism is obtained from an algebraic representation

% : G̃ −→ GLm,

defined over F .

Remark 2.1 Conversely, from any algebraic representation % : G̃ −→ GLm
over F we obtain a group homomorphism

%E : G̃(E) −→ GLm(E),

which induces a map

%∗E : Z1(Gal(E/F ), G̃(E)) −→ Z1(Gal(E/F ),PGLm(E)).

Let c ∈ Z1(Gal(E/F ), G̃(E)) be the cocycle that defines the inner form G.
Then %∗E(c) defines a central simple algebra D ⊂ Matm(E). It is easy to
verify that %E descends to a morphism of F -groups

%F : G→ D×.

Thus we can use %F to pull back the height function from D× to G. We
are interested in the asymptotics of

N(%,B) := #{γ ∈ G(F ) | H(%F (γ)) ≤ B},

as B →∞. To put this in geometric perspective, the pair (G, %F ) defines an
equivariant compactification X of G and a G-linearized ample line bundle
on X (and vice versa). Thus we are counting rational points on a Zariski

6



open subset G ⊂ X, with respect to some adelically metrized line bundle
(depending on %). Below we will verify that when % arises from the an-
ticanonical embedding of X, the asymptotic formula for N(%,B) matches
precisely Manin’s prediction.

Our main technical assumption is the following:

Assumption 2.2 The representation %F is absolutely irreducible.

Remark 2.3 In this case, the resulting equivariant compactification X of
G is the so called wonderful compactification of De Concini and Procesi (see
[13]).

In order to state our theorem we need to introduce some notation. Fix
a Borel subgroup B with maximal split torus T in G̃ and denote by X∗(T)
the character group of T. Let Φ be the root system of (G̃,T), and ∆ =
{α1, . . . , αr} the set of simple roots. Also let 2ρG =

∑
α∈Φ+ α. Since G̃

is of adjoint type it is immediate that there are one-parameter subgroups
{α̂1, . . . , α̂r} of T such that

< α̂j, αi >= −δij.

Let % = %λ be the irreducible algebraic representation of G̃ associated with
a dominant weight λ. Let χλ be the character of T associated with λ. Since
λ is dominant and G̃ is of adjoint type, there exist non-negative integers
k1(%), . . . , kr(%) such that

χλ(t) =
r∏
i=1

αi(t)
ki(%).

The numbers ki(%), 1 ≤ i ≤ r, are all non-zero if the representation % is
non-trivial. Set then

a% := max
j=1,...,r

1− < α̂j, 2ρG >

kj(%)
, and b% := #{j | 1− < α̂j, 2ρG >

kj(%)
= a%}.

Also set

c% := lim
s→a%

(s− a%)
b%

∫
G(A)

H(%F (g))−s dg,
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(where dg is a suitably normalized Haar measure on G(A)). The anticanon-
ical embedding (of the wonderful compactification of G) is associated with
the weight κ = 2ρG +

∑r
i=1 αi (see [9]). It is not hard to see that if % = %κ,

then a% = 1 and b% = r. Our main theorem is the following:

Theorem 2.4 For % = %κ we have

N(%,B) =
c%

(r − 1)!
·B(logB)r−1(1 + o(1)),

as B →∞.

We note that this theorem implies Manin’s conjecture for the wonderful
compactification of G as above. We have also proved analogous results for
arbitrary irreducible representations % (in other words, for height functions
associated with arbitrary ample line bundles on the wonderful compactifica-
tion of G).

We will now sketch the proof (in the case % = %κ). Using Tauberian
theorems one deduces the asymptotic properties of N(%,B) from the analytic
properties of the height zeta function

Z(s, %) =
∑

γ∈G(F )

H(%F (γ))−s.

Actually, we will use the function

Z(s, %, g) =
∑

γ∈G(F )

H(%F (γg))−s.

For <(s) � 0, the right hand side converges (uniformly on compacts) to a
function which is holomorphic in s and continuous in g on C×G(A). Since
G is F -anisotropic, G(F )\G(A) is compact, and

Z ∈ L2(G(F )\G(A))K0

(recall that H is bi-invariant under K0). Again since G is anisotropic, we
have

L2(G(F )\G(A)) = (
⊕̂
π

Hπ)
⊕

(
⊕
χ

Cχ), (2)
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as a direct sum of irreducible subspaces. Here the first direct sum is over
infinite-dimensional representations of G(A) and the second direct sum is a
sum over all automorphic characters of G(A). Consequently,

L2(G(F )\G(A))K0 = (
⊕̂
π

HK0
π )
⊕

(
⊕
χ

Cχ), (3)

a sum over representations containing a K0-fixed vector (in particular, the
sum over characters is finite). For each infinite-dimensional π occurring in
(3) we choose an orthonormal basis Bπ = {φπα}α for HK0

π . We have next the
“Poisson formula”:

Z(s, %, g) =
∑
π

∑
φ∈Bπ

〈Z(s, %, g), φ(g)〉φ(g) +
∑
χ

〈Z(s, %, g), χ(g)〉χ(g). (4)

Here the series on the right is seen to converge normally to Z(%, g) for <(s)�
0. We will establish a meromorphic continuation of the right hand side of
(4), leading to a proof of the main theorem.

A key result is the computation of the individual inner products 〈Z, φ〉.
After the usual unfolding it turns out that each of these is an Euler product
with an explicit regularization. In particular, the pole of highest order of
Z(s, %, g) (or the main term in the asymptotic expression of N(%,B)) is
contributed by the trivial representation:∫

G(A)

H(%F (g))−sdg =
∏

v∈Val(F )

∫
G(Fv)

Hv(%F (gv))
−sdgv.

Local integrals of such type can be computed explicitly at almost all places
(see [11]). They are reminiscent of Igusa’s local zeta functions and their mod-
ern generalizations: “motivic” integrals of Batyrev, Kontsevich and Denef-
Loeser (see [2], [12]). In our case, we have∫

G(A)

H(%F (g))−sdg =
r∏
j=1

ζF (kjs+ < α̂j, 2ρG >) · h(s, %),

(where h(s, %) is a holomorphic function for <(s) > 1− ε and some ε > 0).
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Next we prove that each remaining term is holomorphic around <(s) = 1.
In general, we have

〈Z, φ〉 =

∫
G(F )\G(A)

Z(s, %, g)φ(g) dg

=

∫
G(A)

H(%F (g))−sφ(g) dg

=

∫
G(A)

H(%F (g))−s
∫

K0

φ(kg) dk dg

Next we follow an argument by Godement and Jacquet in [19]. Without loss
of generality we can assume that

K0 =
∏
v/∈S

Kv ×KS
0 ,

for a finite set of places S. Here for v /∈ S, Kv is a maximal special open
compact subgroup in G(Fv). After enlarging S to contain all the places where
G is not split, we can assume that Kv = G(Ov). In particular, for v /∈ S
the local representations πv are spherical. Thus we have a normalized local
spherical function ϕv associated to πv. We have assumed that each φ is right
K0-invariant. In conclusion,

〈Z, φ〉 =
∏
v/∈S

∫
G(Fv)

ϕv(gv)Hv(%F (gv))
−s dgv

×
∫

G(AS)

H(%F (η(gS)))−s
∫

KS0

φ(kη(gS)) dk dgS.

(Here η : G(AS)→ G(A) is the natural inclusion map.) The second factor is
relatively easy to deal with. Our main concern here is with the first factor.
To proceed we need to invoke some fairly deep results from the representation
theory of reductive groups to find non-trivial bounds on spherical functions.
Depending on the semi-simple rank of G, there are two cases to consider:

Case 1: semi-simple rank 1. In this situation, G is an inner form of PGL2

- that is, the projective group of a quaternion algebra. By the Jacquet-
Langlands correspondence [21], there is an irreducible cuspidal automorphic
representation π′ = ⊗vπ′v of PGL2 such that for v /∈ S, we have πv = π′v.
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In particular, in order to obtain non-trivial bounds on spherical functions of
infinite dimensional representations, we need to examine local components
of cuspidal representations of GL2 with trivial central character. Here the
estimate we need follows from a classical result of Gelbart and Jacquet who
established the symmetric square lifting from GL2 to GL3 [18], combined
with a result of Jacquet and Shalika (see [22]). We also note the recent beau-
tiful results of Kim and Shahidi towards sharper bounds in the Ramanujan-
Petersson conjecture [23].

Remark 2.5 When we deal with arbitrary groups we will also need to con-
sider the group U(3). Here we will need to use Rogawski’s lifting U(3)→ GL3

(see [33] and [26]). Then we will need the bounds on Langlands classes of
cuspidal automorphic representations due to Luo, Rudnick and Sarnak [27],
in addition to those mentioned in Case 1 above.

Case 2: semi-simple rank > 1. First we use a strong approximation argument
to show that for v /∈ S, the representation πv is not one-dimensional, unless
π itself is one-dimensional (a similar argument appears in the work of Clozel
and Ullmo [10]). Then we apply a recent result of Oh [31] which says that
in the local situation, the one-dimensional representations are isolated in the
the unitary dual of any semi-simple group of semi-simple rank greater than
two, giving non-trivial bounds for spherical functions.

Putting everything together, we obtain that, for non-trivial representa-
tions, the inner product 〈Z, φ〉 is holomorphic for <(s) > 1 − ε, (for some
ε > 0).

Finally, to prove the convergence of the right hand side (for appropriate s),
we integrate by parts (with respect to the Laplacian ∆ on the compact Rie-
mannian manifold associated with G(A) and K0), and combine L∞-estimates
for ∆-eigenfunctions with standard facts about spectral zeta functions of
compact manifolds.

Remark 2.6 Similar arguments lead to a proof of equidistribution of ratio-
nal points of bounded anticanonical height with respect to the Tamagawa
measure associated with the metrization of −KX .
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