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Abstract: 

A precise description of the timing and route traveled by axons traversing the telencephalic midline through the 

ventral hippocampal commissure (HC) is essential for understanding the role it plays in the formation of the 

corpus callosum (CC). A normal baseline of HC development was described in B6D2F2 hybrid mice and then 

compared with two inbred strains of mice displaying callosal agenesis, BALB/cWah1 (50% CC defect) and 

129/J (70% CC defect), their F2 hybrid (C129F2— 33% CC defect), and a recombinant inbred strain (RI-1— 

100% CC defect) derived from pairs of C129F2 mice. Embryos weighing from 0.25 gto0.70 g(E14.5–E17) were 

collected and fixed by perfusion. Axon tracts were labeled using crystals of the lipophilic dyes DiI and DiA 

inserted into the hippocampal fimbria and cerebral cortex. HC axons in B6D2F2 mice first cross the midline at 

about 0.350 g body weight (E14.8) by traveling over the dorsal septum and along the pia membrane lining the 

longitudinal fissure. Earlier crossing was prevented by the presence of a deep cleft formed by the longitudinal 

fissure extending down into the septal region. Subsequent axons fasciculated along existing axons, gradually 

building the dorsoventral height of the HC to about 200 μm by 0.600 g. The earliest callosal axons from frontal 

cortex crossed the midline at 0.620 g and were clearly seen fasciculating along and between existing 

hippocampal axons at the dorsal surface of the HC as they crossed. In the acallosal strains, HC formation was 

delayed by the continued presence of the cleft deep in the septal region. This delay in time of crossing was 

correlated with later CC defect expression. Initial HC crossing occurred at about 0.470 g (E1 6.25) in BALB 

mice and about 0.520 g (E1 6.5) in 129 mice. In the RI-1 embryos, first HC crossing was estimated at about 

0.750 g (E1 7.5), although several older embryos showed no crossing. These results show the importance of the 

HC for successful CC formation and suggest that absent CC arises as a consequence of a developmental defect 

which affects the formation of the hippocampal commissure prior to arrival of CC axons at midplane.  
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Article: 

INTRODUCTION 

An accurate description of the route traveled by commissural axons is important for understanding the structural 

defects that arise during commissure formation. The mouse forebrain provides an excellent model for studying 

the traverse of the telencephalic midline by developing commissural axons. Inherent defects in the structure of 

the ventral hippocampal commissure (HC) and corpus callosum (CC) have been described in several strains of 

mice (Livy and Wahlsten, 1991; Ozaki and Wahlsten, 1992; Wahlsten and Bulman-Fleming, 1994), but the 

route taken by axons traveling through the hippocampal commissure has received little attention. These axons 

can first cross the midline by passing through the medial septum, over the top of the medial septum at the base 

of the longitudinal fissure, and have also been suggested to travel extracerebrally through the pia membrane 

lining the base of the longitudinal fissure (Glas, 1975). Axons of the corpus callosum cross the midline between 

the HC and the pia membrane at about E16 in normal hybrid mice (Wahlsten, 1981; Ozaki and Wahlsten, 

1992), which is about 1 day after the hippocampal axons across (Glas, 1975; Wahlsten, 1981). Despite intensive 

study, the precise route traveled by callosal axons remains elusive. This is due in part to the difficulty in 
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differentiating between callosal and hippocampal axons at the time of crossing. In some cases the two structures 

have been considered as one owing to the indistinct border between CC and HC (Glas, 1975; Wahlsten and 

Smith, 1989). Silver et al. (1982) suggested that CC axons cross the midline using the ‘sling,‖ a layer of 

subventricular cells which forms a bridge between the lateral ventricles just anterior to the HC, but it is not yet 

clear whether these cells guide the first callosal axons to cross midline. The close apposition between CC and 

HC axons has led to the suggestion that the HC plays a role in guiding early CC axons across the midplane in 

rodents (Valentino and Jones, 1982). HC formation is retarded in some mice with callosal agenesis, suggesting 

a causal relation-ship between HC formation and CC agenesis (Wahlsten, 1987; Livy and Wahlsten, 1991). 

 

Imprecise staining methods may not reveal axon routing. Staining axons with silver and/or hematoxylin/ eosin 

(Glas, 1975; Silver et al., 1982; Wahlsten, 1987), or neurofilament antibody (Silver et al., 1993), does not 

distinguish between axons of differing origins, nor does this indicate positions of individual axons relative to 

cellular structure. Lipophilic dyes (Honig and Hume, 1989) diffuse within the membrane of the axons, 

providing a precise labeling of axon position, allowing the route traveled by the axons to be seen. The use of 

two dyes with different spectral properties permits differential labeling between sides of the brain or different 

structures within the brain. The fine labeling provided by lipophilic dyes permits a detailed view of growth cone 

morphology (Godement et al., 1987; Ghosh and Shatz, 1992) and the change in complexity of hippocampal 

axon growth cones as they approach and cross the midline. A similar description of growth cone morphology in 

developing callosal axons has revealed a decrease in structural complexity soon after the growth cones cross the 

midline region (Ozaki and Wahlsten, 1992). 

 

In this work, we examine the formation of the hippocampal commissure in normal hybrid mice to provide a 

more precise description of the timing and location of first crossing of the HC axons and to show the 

relationship between the HC and CC during early development. This description is then used as a baseline for 

comparison with HC development in strains of acallosal mice. We show that early HC axons cross the midline 

in close association with the pia membrane and that early callosal axons cross the midline while contacting 

existing hippocampal axons. In the acallosal strains, hippocampal axons are unable to cross owing to the 

presence of a cleft extending deep between the hemispheres. Preliminary results of this work have been 

published previously in abstract form (Livy, 1992, 1994). 

 

MATERIALS AND METHODS 

Animals 

Normal development was described using the F2 offspring (B6D2F2) from hybrid B6D2F1/J parents (C57BL/6J 

females × DBA/2J males) obtained from the Jackson Laboratories, Bar Harbor, Maine, at 7–8 weeks of age, 

then raised and bred at the University of Alberta. Acallosal development was described in two inbred strains, 

BALB/cWah1 (BALB), bred and maintained at the University of Alberta, and 129/J (129), obtained from the 

Jackson Laboratories, Bar Harbor, Maine, at 7 –8 weeks of age, then raised and bred at the University of 

Alberta. Although the expression of CC deficiency is high in these two strains, the incidence of total CC 

absence is relatively low (see Table 1). The F1 offspring from a BALB × 129 (C129F1) cross show no CC 

defect, which supports a two-locus recessive model of inheritance (Livy and Wahlsten, 199 1). Among the F2 

offspring from crossing two C129F1 mice, there is about a 25% incidence of total CC absence (Wahlsten and 

Schalomon, 1994, plus unpublished data). Recombinant inbred strains are now being formed from pairs of 129 

× BALB F2 mice (Wahlsten and Sparks, 1995), and in one of the RI lines (#1) every adult animal in recent 

litters has had complete absence of the CC and greatly reduced HC, as is often seen in the strain I/LnJ (Lipp and 

Waanders, 1990; Livy and Wahlsten, 1991). This study used both the C 129F2 offspring and one line (RI-1) of 

recombinant inbred animals at the sixth generation of full-sib mating. 

 

All mice were housed in 29 × 18 × 13-cm opaque plastic mouse cages with Aspen-Chip bedding (Northeastern 

Products Corp., Warrensburg, NY) with a few sheets of toilet tissue added. Pregnant females were provided 

with a Nestlet for improved nest building and free access to food (non-autoclaved Wayne Rodent Blox 8604) 

and tap water. Room temperature was maintained at approximately 23ºC with a 12/12-hour light cycle (lights on 

at 6 am). 



        
Embryo Collection 

One male and one to three females between 80 and 150 days old were placed together in a cage for 4 hours or 

overnight, after which the females were checked for vaginal plugs. Plugged females were weighed and housed 

individually for the duration of gestation. Conception (0.0 days) was considered to be the midpoint between 

plug detection and the previous plug check. B6D2F2 embryos were extracted between gestational days 14 and 

16.5 (E14–E16.5) to obtain body weights ranging between 0.250 g and 0.700 g to encompass initial midline 

crossing by both hippocampal and callosal axons. As proposed by Kaufman (1992), we refer to all mice studied 

prenatally as embryos, even though some have completed organogenesis and might be regarded as fetuses. 

Development is generally slower in inbred strains than in healthy hybrids (Wahlsten and Wainwright, 1977; 

Wahlsten, 1987), and therefore to observe early midline crossing by hippocampal axons in acallosal strains, 

embryos were removed between E15 and E17 to obtain body weights ranging between 0.300 g and 0.600 g. The 

numbers of litters and embryos collected from each of the strains and providing usable data are shown in Table 

2. 

 

To extract the embryos, pregnant females were euthanized with sodium pentobarbital (120 mg/kg IP), and their 

uteri were removed and rinsed in a solution of 0.9% saline in ice. The uteri were cut open, and each embryo was 

separated from its placenta by cauterizing the umbilical artery. Embryos were then rinsed in ice-cold 0.9% 

saline, carefully blotted to remove excess fluid, and weighed to the nearest mg (see Fig. 1). Immediately after 

weighing, each embryo was perfused intracardially with 3–5 mL of 10 mM phosphate-buffered saline (pH 7.6) 

followed by 10–15 mL of 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (pH 7.6) using a peristaltic 

perfusion pump, stereomicroscope, and micropipettes. After removing the scalp, the embryo head was placed in 

fresh fixative overnight. The following day the occipital bone was removed, and the head was placed in fresh 

fixative and stored until the dye crystals were inserted. 

 

Dye Insertion 

Labeling of axonal membranes was achieved using crystals of the fluorescent carbocyanine dye DiI (1,1'-

dioctadecyl-3,3,3',3'- tetramethylindocarbocyanine perchlorate) and the aminostyryl probe DiA (4-(4-

dihexadecylaminostryryl)-N-methylpyridinium iodide) (Molecular Probes, Eugene, Oregon). The brain was 

extracted from the skull, and the caudal parts of the occipital and entorhinal cortices were removed to expose 

the hippocampal fimbria. A crystal of either DiI or DiA, between 30 and 50 mm in diameter, was placed in the 

area of the hippocampal fimbria using the tip of a fine dissecting pin. Most brains were double-labeled; either 

the right and left fimbria were labeled with contrasting dyes, or both fimbria were labeled with one dye, and the 

frontal cortex (if applicable) was labeled with several crystals of the contrasting dye (see Fig. 2) in slightly 

different locations to maximize the number of CC axons visualized. In a few cases these dye applications also 

involved the cingulate cortex. After insertion of dye crystals, the brains were placed in fresh fixative and stored 



in the dark at room temperature for at least 4 weeks, although some brains were stored up to 2 years with no 

apparent loss of labeling quality. Some brains were stored at 37ºC to increase the rate of dye diffusion (Senft, 

1990). 

 

Sectioning and Photography 

Sections were cut using a microslicer (DSK–DTK 1500E) and a sapphire knife (Pelco). Preliminary results 

indicated that tissue at these young ages suffered extensive damage because of shear stress during cutting, 

particularly at ages where midline fusion was limited and only one or two axons were crossing the midplane. 

Gelatin infiltration was found to be successful in providing the necessary structural support. The brains were 

first rinsed in 0. 1 M phosphate buffer for 2 h at 37ºC. They were then infiltrated with 2% gelatin at 37ºC for 6 

h, and then with 5% gelatin at 37ºC for 12–24 h, after which the gelatin was fixed using 4% PFA for 48 h at 

4ºC. The brain was removed from the fixative and glued caudal surface down to the microslicer stage using a 

cyanoacrylate glue. Coronal sections cut at 30–60 μm were submerged in a 1:1 mixture of 8% PFA in 0.2 M 

phosphate buffer (pH 10.0) and glycerin at 4ºC overnight and then mounted on glass slides using the same 

solution and coverslipped. To provide staining of cell nuclei, 0.02% bis-benzimide was added to the overnight 

solution of certain sections (Senft, 1990). 

 

Most sections were immediately viewed and photographed with a Leitz epifluorescence microscope equipped 

with a rhodamine filter for DiI (N2) and a band-pass filter for DiA (L3). In some cases a fluorescein filter set 

was used (I2/3) to view DiA. Best results for photography were obtained using Kodak P800/1600 Ektachrome 

film at 1600 ASA, primarily due to the low intensity of the DiA viewed using the L3 filter. Sections not able to 

be immediately photographed were stored at 4ºC until viewing was possible. Certain brains were viewed using a 

Leitz Confocal Laser Scanning Microscope (provided by the Dept. of Anatomy, Univ. of Alberta) and a 

Molecular Dynamics CLSM, to provide a more enhanced view of axon movement and location. 

 

Results 

In all brains, clear and complete growth cones could be observed, indicating complete anterograde transmission 

of the dyes. In older embryos retrograde labeling also provided information about commissural axon origins, 

although this labeling was not as consistent. Gelatin infiltration did not appear to interfere with the observation 

of either dye, nor did it appear to facilitate further diffusion of either dye. The bis-benzimide gave a clear view 

of the nuclei of the pia membrane and other cells which were present in the midline region. In most cases, 

labeled axons were present throughout the cross-sectional profile of the hippocampal commissure, although 

there were cases in which the dye did not include all HC fibers in older embryos. These unlabeled areas were 

quite apparent due to the absence of any uorescence from the lipophilic dyes and low density of cells stained 

with bis-benzimide. 

 

Body Weight vs. Chronological Age 

Chronological age is not the best indicator of mouse embryo development (Wahlsten and Wainwright, 1977). A 

more accurate assessment of developmental stage in the brain is provided by the body weight of the embryo 

(Ozaki and Wahlsten, 1992; Wahlsten and Bulman-Fleming, 1994). Figure 1 shows the approximately linear 

relationship between body weight and chronological age of gestation between E1 4.5 and E1 6.5 in B6D2F2 

embryos, which is similar to previous results (Ozaki and Wahlsten, 1992; Wahlsten and Bulman-Fleming, 

1994). No significant difference was found in development rate between the B6D2F2, C129F2, and BALB 

embryos, although the C129F2 embryos appeared to lag about half a day and the BALB embryos lagged about 1 

day behind the B6D2F2 embryos. The 129 embryos demonstrated a higher rate of development than all other 

strains but also displayed a more pronounced lag of about 1.5 days in their development. 

 

HC Development in B6D2F2 Embryos 

The columns of fornix were present in the septal midline region of the youngest embryo at 0.259 g (Fig. 3a). 

From the dye insertion site, the hippocampal axons moved rostrally and medially through the brain and then 

turned sharply ventromedially toward the midline, just rostral to the lamina terminalis, which is defined here as 

the most anterior border of the third ventricle. Upon reaching the midline area, the fornix columns turned 



ventrally toward the anterior commissure. The columns of fornix were initially far apart, largely due to the 

presence of the longitudinal cerebral fissure extending deep between the hemispheres with its floor located just 

above the anterior commissure (Fig. 3b). As growth continued, fusion of the telencephalic vesicles progressed 

dorsally and rostrally, and the fornix columns rapidly thickened and moved closer to midplane. Axons appeared 

to grow along the dorsal surface of existing fornix fibers toward the midplane with extensive branching 

apparent. These axons were identified by their large and complex growth cones. Axons migrating within the 

fornix column could not be differentiated because of the uorescence of the surrounding fibers. 

 
 

As the columns of fornix made their ventromedial turn, some axons emerged and moved toward the midline, 

even in the youngest embryo (see Fig. 3a). These axons moved through the cells forming the medial border of 

the septal area and contacted the pia membrane lining the longitudinal fissure. In younger embryos, contact at 

the pia did not appear to be directed to any particular location along the depth of the fissure. Shortly before the 

first midplane crossing of the HC axons, most of the contact with the pia was very close to, but not necessarily 

directly at, the bottom of the fissure. After contacting the pia, many of the growth cones turned ventrally and 

migrated along the pia (Fig. 4). No growth cones were seen to turn dorsally. Axons emerging from the fornix 

fibers were seen all along the length of the ventromedial progression of the fornix column (Fig. 4). With 

increasing maturity, newly arriving axons continued to travel along the dorsomedial surface of existing fibers, 

providing increased contact between these fibers and the pia membrane. However, these axons were prevented 

from crossing by the continued presence of the pia-lined cleft at midline (Fig. 3b). Prior to the first crossing, 

these axons turned away from the midline and re-entered the fornix column, becoming indistinguishable from 

the surrounding fornix fibers. 

 



 
As development proceeded, the floor of the longitudinal fissure continued to move dorsally as the midline 

fused. The first HC axons to cross the midline remained in contact with the pia membrane and followed the 

ventral contour of the fissure floor (Fig. 3c). The first few axons did not appear to precede a large bundle of 

axons in waiting. Instead, an increasing number of fibers gradually emerged from the fornix column to cross. 

Later-crossing axons were dorsal to those crossing previously but still followed along the fissure floor. The first 

two or three axons to cross did not necessarily fasciculate along each other. Some axons were separated by as 

much as 60 μm along the rostrocaudal axis and 40 μm along the dorsoventral axis. However, a small cylindrical 

bundle of axons was very quick to form at the very base of the fissure (Fig. 3d), and subsequent axons were 

seen to fasciculate along these existing axons. 

 

The initial crossing of midline was made earlier by axons from the right hemisphere in six of eight brains 

labeled and viewed appropriately, whereas one brain showed a similar development between sides and one 

clearly had initial crossing from the left side. The earliest HC axon crossing was seen in the brain of a 0.328-g 

embryo which was surprisingly well formed and was the only one to appear in this manner. In most embryos of 

this age, axons had not yet crossed or were just about to cross. Most of the early crossings occurred between 

0.340 g and 0.360 g body weight, but several larger embryos were found with no crossing. The largest embryo 

with no crossing was 0.391 g; the fornix columns were well formed, but an unusually deep fissure continued to 

separate the hemispheres. 

 

New axons approaching midline were seen along the dorsal surface of the ipsilateral fornix and then across the 

midline on top of existing HC fibers. They continued up the dorsomedial surface of the contralateral fornix and 

fimbria up to their target areas in the hippocampal formation (Fig. 3e). Soon after initial crossing, individual 

axons were still apparent; however, by 0.400 g a larger bridge-like structure spanned midline (Fig. 3f). 



Continued growth dorsally and rostrally resulted in a bridge that was roughly cylindrical in shape at midline 

with a dorsal-ventral height of about 200 μm at 0. 620 g body weight. Figure 5 shows the rate of dorsal growth 

of the HC during this time of gestation. The initial formation of the HC bridge occurred at the bottom of the 

longitudinal cerebral fissure, and by 0.600 g the gradual accumulation of axons in the HC eventually reached or 

surpassed the dorsal limit of the primordium of the subfornical organ just caudal to the HC (Wahlsten and 

Bulman-Fleming, 1994). Fusion of the hemispheres in the regions ventral and posterior to the HC appeared to 

be complete, but the zone directly anterior to the HC was initially filled by a loose plexus of fibers in a region 

that later occupied the ventral portion of the cavum septi pellucidum (Hankin et al., 1988). 

 
FIGURE 3. Development of the hippocampal commissure in mouse embryos. a: Well-formed columns of 

fornix can be seen in the midline region about 800 mm from the frontal pole at 0.25 9 g body weight in 



normal B6D2F2 embryos. One DiA-labeled axon can be seen extending out of the column toward the 

midline. This particular axon has contacted the pia membrane lining the longitudinal fissure (arrows). b: 

The cleft formed by the longitudinal fissure (shown by arrows) extends deep between the hemispheres and 

prevents hippo-campal axons from crossing the midline early in development as shown in this 0.345-g BALB 

embryo. c: A complex growth cone contacting the pia membrane in a 0.490-g BALB embryo. The lower 

process from this cone (arrow) is extending ventrally to cross the midline. Other growth cones may make 

contact farther up the fissure, but they typically proceed in a similar way. d: A typical early axon crossing 

shown here in a 0.595-g 129 embryo but which appears similar in all other strains. Note that the small 

bundle of crossing axons is at the immediate base of the longitudinal fissure (arrow). e: DiI-labeled axon 

(indicated with arrows) extending across midline and continuing up the dorsomedial surface of the 

contralateral fornix in a 0.413-g B6D2F2 embryo. Although some axons were present in the middle of the 

fornix column, newly arriving and migrating axons were only seen on the dorsal surfaces of existing axons. 

f: The bridge-like structure formed by the crossing HC fibers is shown in this 0.41 0-g B6D2F2 embryo. 

Some of the dye has diffused into the surrounding tissue, which in this section provides a descriptive view of 

the entire midline region including the future floor of the longitudinal fissure (solid arrows), and the cleft 

extending deep between the hemispheres to the point of fusion (open arrow). g: Midsagittal section of the 

same 0.620-g B6D2F2 embryo shown in Figure 6. Several early DiA-labeled (green) callosal axons (arrows) 

which have just crossed the midplane can be seen sitting directly on top of the HC (red). h: Confocal view of 

a midsagittal section during early callosal axon crossing in 0.692-g B6D2F2 embryo. Note that callosal 

axons appear as a bundle just rostral to the HC, but that individual callosal axons (arrows) have already 

extended across the midline along hippocampal axons at the dorsal edge of the HC. Scale bar 5 50 mm in a–

f, 20 mm in g and h. 

    
The visibility of individual HC fibers crossing midline was limited to those on the dorsal surface. These axons 

did not tightly fasciculate along other fibers but rather formed a loose association. By about 0.450 g, some 

axons had traveled far enough into the contralateral hemisphere to be labeled by the dye inserted into the 



fimbria. In cases in which the dye was transported retrogradely, cell bodies that were labeled appeared primarily 

in the CA3 region of the hippocampus (Swanson and Cowan, 1977). 

 

Interaction Between HC and CC Fibers 

Callosal axons were seen crossing the midline in association with hippocampal axons as early as 0.485 g, but 

these callosal axons originated from the cingulate cortex and not the frontal cortex. Axons have previously been 

shown to emerge from the cingulate cortex and cross the midline this early in the development of rats (Koester 

and O’Leary, 1994). The first definitive crossing of CC axons from frontal cortex occurred in an embryo of 

0.620 g. Figure 6 is a parasagittal view of this brain in which all of the labeled callosal fibers are emerging from 

the cortex and growing directly toward the HC. Figure 3g is a midsagittal view from this same embryo. A few 

callosal axons can be seen directly on top of the HC, while a few other fibers appear at the rostral edge. 

Confocal reconstruction showed that these axons reached midway through the adjacent section, after which 

there was a gap of about 30 μm before axons from the contralateral hemisphere could be seen. This is the first 

time the early crossing of callosal fibers from frontal cortex has been seen with such clarity and precision. The 

callosal axons did not follow a straight path but rather appeared to weave between and fasciculate along the 

loose association of hippocampal axons at the dorsal HC edge. 

 

Figure 3h is a confocal image of the midsagittal plane from a 0.692-g embryo which shows several callosal 

axons intermixed among the hippocampal axons at the dorsal edge of the HC. Callosal fibers rapidly form a 

small bundle on top of the HC, and by 0.700 g the CC appeared relatively large, just dorsal and rostral to the 

HC in most brains. A layer of cells immediately ventral to the callosal fibers was quite thick in the area rostral 

to the HC, but this structure was almost nonexistent at the interface between the HC and CC. These cells were 

likely the sling cells described by Silver et al. (1993). Cell bodies were seen as a wedge-shaped mass along the 

medial edge of the lateral ventricle at the level of the floor of the longitudinal fissure as early as 0.586 g, but no 

cell bodies of this structure were seen close to the midsagittal plane until 0.682 g, when they were located 

rostral to the HC and ventral to a well-formed CC. 

         



HC Development in Acallosal Mice 

The pattern of development in the acallosal strains was remarkably similar to that in the B6D2F2 embryos up 

until the time of first crossing. Fornix columns were present early, and axons emerged from the columns to 

extend to midline, but the cleft formed by the longitudinal fissure remained deep, long past the time of first 

crossing in B6D2F2 mice (Fig. 7). As indicated in Figure 8, HC axons first crossed the midline at about 0.470 g 

in BALB embryos and at about 0. 520 g in 129 embryos. The time of first crossing for the C129F2 embryos was 

at 0.440 g, earlier than either of the parent strains, but in the RI-1 embryos it was necessary to extend the body 

weight range of collected embryos in order to see any evidence of hippocampal axon crossing, which eventually 

occurred much later than any of the other strains, at about 0.750 g. Despite the obvious delay in crossing, the 

first HC axons in RI- 1 embryos crossed the midline at the ventral tip of the longitudinal fissure and appeared to 

remain in contact with the pia membrane as they crossed, similar to the B6D2F2 embryos. In the RI-1 embryos, 

callosal axons were seen in the midline region after about 0.600 g and had begun to form Probst bundles in the 

larger embryos. The differences in crossing times between the acallosal strains are correlated with their adult 

expression of the CC defect (see Table 1). 

 
 

Growth Cone Structure 

Growth cone size and complexity changed during the growth of the hippocampal axons through the midline 

region in mice from the B6D2F2 and acallosal strains. Prior to the first crossing, almost all axons emerging from 

or along the dorsomedial surface of the fornix columns were large and complex with extensive branching, 

particularly in those axons closest to the base of the longitudinal fissure (see Fig. 3b). Growth cones which had 

contacted and were migrating ventrally along the pia remained larger but no longer displayed the same degree 

of extensive branching (see Fig. 4). An abrupt change in structure was usually noted in axons which had just 

crossed the midline. A complex structure was maintained right up to the midline, from which a single fiber 

emerged and continued up into the contralateral hemisphere (Fig. 9a). Growth cones of those axons which had 

crossed the midline were all smaller with a very simple, at morphology. Early after the initial crossing, 

individual growth cones could still be seen as axons approached and crossed the midline. However, once the 

commissure had formed into a small bundle, only those axons immediately on the dorsal surface could be seen. 

Of these, most were small and simple in structure. 

 

The variability in the sizes and shapes of growth cones prior to midline crossing is shown in Figure 9b and is 

contrasted with growth cones of axons after crossing midline. This structural variability has also been found in 

the first callosal axons to approach midline (Ozaki and Wahlsten, 1993). Growth cones continually change their 



shape during axonal growth (Godement et al., 1994; Halloran and Kalil, 1994), and the variability seen must 

result at least partly from the snapshot view of growth cone structure at the time of fixation. 

 

 
 

 

DISCUSSION 

The results clearly indicate that the first hippocampal axons to cross the midline travel over the dorsal septum 

and along the pia membrane lining the longitudinal fissure. These axons appear to remain in contact with the pia 

membrane as they cross, but no axons penetrated the membrane. These axons did not appear to precede a larger 

―main bundle’’ of axons as is seen in callosal axon outgrowth (Ozaki and Wahlsten, 1992); instead axon 

emergence was continual and gradual from the fornix columns. Earlier axons emerging from the fornix columns 

migrated toward midline but were unable to cross owing to the presence of a deep cleft formed by the 

longitudinal fissure. Dorsal fusion of the fissure eventually enabled the crossing of these axons at about 0.350 g 

or E14.8 in B6D2F2 embryos. Axons arriving earlier migrated ventrally along the pia to the approximate 

location of crossing and then re-entered the fornix columns. 

 

This is in contrast to callosal axons which will wait a few hours for midline development to support their 

crossing (Ozaki and Wahlsten, 1993). Delayed development results in callosal axons forming a large Probst 

bundle (Probst, 1901) from which axons will either cross the midline if development allows (Ozaki and 

Wahlsten, 1993) or will emerge to make ipsilateral connections (Ozaki and Shimada, 1988). Axons within 

Probst bundles formed by surgical transection of the midline region during the time of callosal development, 

retain their electrical function, and in the neonate are able to emerge from the bundle and cross the midline after 

the insertion of a nitrocellulose bridge (Lefkowitz et al., 1991; Silver and Ogawa, 1983). On the other hand, 

hippocampal axons that fail to pass through the HC in the most severely affected acallosal embryos rejoin the 

columns of the fornix rather than form a local whorl, although their eventual fates are unknown. 

 



The results also provide clear support for the use of the HC by some early callosal axons to cross midline. These 

CC axons fasciculated along and between the hippocampal axons at the dorsal edge of the HC. This is the first 

time that CC axons have been clearly seen to associate directly with hippocampal axons during their traverse of 

the midline this early in the development of a normal mouse. Wahlsten (1987) has observed CC axons crossing 

on the dorsal surface of the HC in an acallosal mouse strain, but this was much later in development and the 

resulting CC was often abnormal in size and shape. The role of these early callosal axons remains unclear. 

Although they may provide structural support for subsequent callosal axons during midline crossing, early dye-

labeled ―main bundles’’ of callosal axons were usually seen at the dorsal-rostral edge of the HC. A more 

comprehensive distribution of cortical dye placements would demonstrate whether a main bundle of callosal 

axons was also present immediately dorsal to the HC. The early callosal axons may conceivably act as pioneers 

for the main bundles, establishing the existence of an intact substrate for crossing and perhaps effecting a signal 

change for main bundle crossing. On the other hand, there may be several possible locations of crossing for the 

very first CC axons, and it may not be absolutely necessary that the pioneering CC axons contact the HC bridge. 

A large sample of embryos clustered in a very narrow range of sizes would be needed to assess this. We 

examined dozens of normal hybrid embryos and detected only one in which the most advanced CC axons from 

frontal cortex were precisely at midplane. 

 

The earliest callosal axons seen here to interact with the HC axons originated from the cingulate cortex. Koester 

and O’Leary (1994) reported an early emergence of callosal axons from the ventromedial cingulate cortex in the 

rat and have suggested that these axons act as pioneers, defined as the first axons to cross the midline, for the 

corpus callosum. Although these cingulate axons may be the first to cross the midline, their role in the guidance 

of subsequent callosal axons is not clear. Axons that use an existing axon pathway for directional guidance 

often display a simplified growth cone morphology (Dodd and Jessell, 1988; Harrelson and Goodman, 1988), 

yet growth cone morphology is complex in early cortical callosal axons first approaching the midline and then 

less complex after crossing (Ozaki and Wahlsten, 1992). 

 

Growth cone complexity is thought to be related to environmental assessment occurring within the cone 

(Bovolenta and Mason, 1987; Norris and Kalil, 1991; Tessier-Lavigne and Placzek, 1991); however, it may also 

be a characteristic of neuronal origin (Nordlander, 1987). Callosal axons continue to display some degree of 

complexity during their growth through the contralateral hemisphere until they migrate up into their cortical 

target sites (Norris and Kalil, 1990; Halloran and Kalil, 1994). Growth cone complexity was also demonstrated 

by the hippocampal axons approaching the midline, although less so in those migrating along the pia, and for a 

short distance into the contralateral hemisphere as these axons made critical decisions about direction of travel. 

Once crossing was complete, growth cone complexity appeared to simplify markedly, corresponding to the 

appearance of axons fasciculating along existing axons. 

 

The cell bodies which formed a wedge extending from the lateral ventricles toward the midline were likely the 

sling cells. In our tissue, nuclei of these cells did not reach the vicinity of the midline until after early callosal 

axon crossing, when these cells were clearly seen in a position rostral to the HC. It is possible that fine 

processes emanating from these cells did reach the midline earlier and play an important role in guiding CC 

axons to the opposite hemisphere. The presence of the sling lateral to the midline at the time of callosal axon 

crossing may provide a barrier to prevent callosal axon entry into the septal region (Hankin and Silver, 1986, 

1988) and may guide the CC fibers in the direction of midplane (Wahlsten, 1987). A similar sling structure has 

been identified in the cat (Silver et al., 19 8 5) and rat (Katz et al., 19 8 3). Cells covering the surface of the 

sling have been identified as primitive astrocytes and radial glial cells (Hankin and Silver, 1986). Silver et al. 

(1993) identified primitive astroglial and radial glial cells at the midline prior to the arrival of callosal fibers. 

 

The importance of mechanisms involved in HC formation is clearly demonstrated in the acallosal strains. HC 

development in these strains was disrupted by the continued presence of the longitudinal fissure extending deep 

between the hemispheres. The eventual time of initial crossing by the HC axons was later in strains with a more 

severe incidence of adult CC defect. Initial crossing occurred at about 0.470 g or E1 6.25 in BALB embryos and 

about 0.520 g or E1 6.5 in 129 embryos. Because most adults of these strains have a normal HC structure (Livy 



and Wahlsten, 1991), it is likely that HC development continues normally once the axons do cross the midline 

(see Wahlsten, 1987, Fig. 12). However in the strains I/LnJ and RI-1 with 100% total CC absence, adult HC 

structure is often abnormal (Livy and Wahlsten, 1991). Initial crossing by hippocampalaxons maybe too late to 

permit the normal growth of the HC. In the RI-1 embryos, first crossing was estimated as about 0.750 g or E1 

7.5, but there were several older embryos which had not displayed crossing. Total HC absence in adult mice has 

never been reported, and therefore it can be presumed that the HC axons do eventually cross in all animals. This 

suggests that there is a relatively long period of time when these axons can cross midline. Callosal axons in RI-1 

mice arrive at midline prior to first crossing by the HC axons and must wait for these axons to cross and then for 

the HC to grow to the proper position to support callosal axon crossing. The callosal axons eventually grow 

back into the ipsilateral hemisphere to form Probst bundles before this can occur. Therefore, the time of initial 

crossing by the hippocampal axons would appear to be an important factor for the traverse of the 

interhemispheric fissure by callosal axons. It is significant that in every case in which the HC is markedly 

reduced in size in the adult mouse, there is no CC at all (Wahlsten and Sparks, 1995), whereas the presence of 

any amount of CC axons crossing midplane is always accompanied by a normal adult HC. 

 

The substrate used by commissural axons crossing midline is often specific for that event. Commissural axons 

display an affinity for specific glial cells in the grasshopper (Bastiani and Goodman, 1986) and in Drosophila 

(Jacobs and Goodman, 1989). In the mammalian forebrain, neurons and radial glia have been identified at the 

site of the prospective optic chiasm and are thought to be required for the successful formation of the chiasm by 

retinal ganglion cell axons (Marcus and Mason, 1995; Marcus et al., 1995; Sretavan et al., 1995). Axons of the 

anterior commissure cross the midline through the medial septum dorsal to the preoptic recess using a tunnel-

shaped formation of glial cell processes (Silver et al., 1982). In vertebrates, floor plate cells have been identified 

in the ventral midline of the spinal cord and brainstem which release a diffusible chemoattractant that orients 

spinal commissural axon growth in vitro (Tessier-Lavigne et al., 1988; Placzek et al., 1990) and may provide a 

physical substrate for these axons to cross the midline (Bovolenta and Dodd, 1990; Kuwada et al., 1990; 

Yaginuma et al., 1991). The lack of these cells disrupts the normal pattern of axon crossing (Bovolenta and 

Dodd, 1991). It is possible that similar events occur during hippocampal axon crossing; early axons that emerge 

from the fornix columns and grow toward midline may be orienting in response to a chemoattractant. Such 

chemical signals may emanate from the pial cells lining the longitudinal fissure, which would explain the early 

axon emergence toward the pia from the fornix column, but the greater growth cone complexity and extensive 

branching seen in axons approaching the area immediately ventral to the fissure suggests that chemical signals 

are released from the area of hemispheric fusion, perhaps owing to the degradation of the trapped pia 

membrane. Once these axons contact the pia membrane, they grow along the pia across midline. In some 

embryos, axons reached the midline but did not cross despite the lack of an obvious obstruction. This may 

indicate the necessity of a second event to complete the crossing event, which is likely to be specific for the 

substrate that provides physical guidance to the crossing axons. The proximity between axon and pia suggests 

that the pia provides this contact guidance, although it is known that later in development the pia does not act as 

a substrate for callosal axons, even when their usual midline substrate is missing in BALB mice (Wahlsten, 

1987). 

 

Differential staining with lipophilic dyes has demonstrated the relative locations of callosal and hippocampal 

axons when early callosal axons cross midline. Combining carbocyanine dye labeling with 

immunohistochemical techniques (Elberger and Honig, 1990) should enable the observation of axon interaction 

with specific substrate antigens. Similarly, the use of photo-oxidized DiI with regular and/or immuno-electron 

microscopy (von Bartheld et al., 1990) should provide a very detailed view of hippocampal axons as they first 

cross midline to determine if they remain in contact with the pia or whether there is another substrate present. 

Increased precision in dye labeling should determine whether later axons also travel within the columns of 

fornix and the HC as well as on their dorsal surface. It should also permit the identification of developing 

projection patterns of the hippocampal axons. In adult rat HC, axons from more septal regions in the 

hippocampal formation are found in the more caudal areas of the HC, whereas those axons from the more 

temporal areas are found in the more rostral area; fibers arising from areas near the ependyma of the lateral 

ventricles cross in more dorsal regions of the HC, whereas those arising along the pial border cross through the 



ventral region (Wyss et al., 1980). Of particular interest is whether any particular axon can indeed cross within 

the commissure or whether only certain axons from particular origins cross the midline first. 
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