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The stability of a kind of cooperative model incorporating harvesting is revisited in this paper. By using an iterative method,
the global attractivity of the interior equilibrium point of the system is investigated. We show that the condition which ensures
the existence of a unique positive equilibrium is enough to ensure the global attractivity of the positive equilibrium. Our results
significantly improve the corresponding results of Wei and Li (2013).

1. Introduction

In [1], Wei and Li proposed and studied the following
cooperative system incorporating harvesting:

�̇� = 𝑥 (𝑟

1
− 𝑏

1
𝑥 −

𝑎

1
𝑥

𝑦 + 𝑘

1
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2
− 𝑏

2
𝑦 −

𝑎

2
𝑦

𝑥 + 𝑘

2

) ,

(1)

where 𝑥 and 𝑦 denote the densities of two populations at time
𝑡.The parameters 𝑟

1
, 𝑟

2
, 𝑎

1
, 𝑎

2
, 𝑏

1
, 𝑏

2
, 𝑘

1
, 𝑘

2
, 𝐸, 𝑞 are all positive

constants. Assume that 𝑟
1
> 𝐸𝑞; then, the equilibria of (1) are

𝐻
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(0,
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2
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2
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1
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1
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(𝑥

∗
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∗
) ,

(2)

where

𝑥

∗
=

− (𝑘

2
𝑃 − 𝐹) +

√

(𝑘

2
𝑃 − 𝐹)

2

+ 4𝑃𝑄𝑀

2𝑃
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𝑦
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𝑟

2
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+ 𝑘

2
)

𝑏

2
𝑥
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2
+ 𝑘
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𝑏
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, 𝑃 = 𝑟

2
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1
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1
𝑏

1
𝑏

2
+ 𝑎

1
𝑏

2
,

𝑄 = 𝑟

1
− 𝐸𝑞, 𝐹 = 𝑟

2
𝑄 + 𝑏

2
𝑘

1
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𝑎
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(3)
Wei and Li had showed that 𝐻

0
, 𝐻

1
, 𝐻

2
are unstable and

concerned with the persistence and stability property of the
system; by applying the comparison theorem of differential
equations and constructing a suitable Lyapunov function,
they obtained the following results.

Theorem A. If 𝑟
1
> 𝐸𝑞, 𝑘

1
𝑏

1
> 𝑎

1
, 𝑘
2
𝑏

2
> 𝑎

2
, then the system

(1) is persistent. More precisely,
𝐶 ≤ lim inf
𝑡→+∞

𝑥 (𝑡) ≤ lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝐴,

𝐷 ≤ lim inf
𝑡→+∞

𝑥 (𝑡) ≤ lim sup
𝑡→+∞

𝑦 (𝑡) ≤ 𝐵,

(4)
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Figure 1: Dynamics behaviors of system (7). Here, we take the initial conditions (𝑥

1
(0), 𝑥

2
(0)) = (0.5, 1.2), (1.5, 1), (0.2, 0.5) and (1, 0.6),

respectively.

where
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𝑏
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(5)

Theorem B. If 𝑟
1
> 𝐸𝑞, 𝑘
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2
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)
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2 (𝐶 + 𝑘
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)
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(6)

where 𝐴, 𝐵, 𝐶,𝐷 are defined by Theorem A, then the positive
equilibrium point 𝐻

3
of system (1) is globally asymptotically

stable.

Now let us consider the following example.

Example 1. We have

�̇� = 𝑥 (2 − 𝑥 −

2𝑥

𝑦 + 1

) − 𝑥,

̇𝑦 = 𝑦 (2 − 𝑦 −

2𝑦

𝑥 + 1

) .

(7)

Here we choose 𝑟

1
= 𝑟

2
= 2, 𝑏

1
= 𝑏

2
= 1, 𝑘

1
=

𝑘

2
= 1, 𝑎

1
= 𝑎

2
= 2, 𝐸 = 𝑞 = 1, and the parameters

𝑟

1
, 𝑟

2
, 𝑎

1
, 𝑎

2
, 𝑏

1
, 𝑏

2
, 𝑘

1
, 𝑘

2
, 𝐸, 𝑞 are all positive constants. Obvi-

ously, 𝑟
1

= 2 > 1 = 𝐸𝑞, 𝑘
1
𝑏

1
= 1 < 2 = 𝑎

1
, 𝑘
2
𝑏

2
=

1 < 2 = 𝑎

2
. Hence, the conditions of Theorems A and B

are not all satisfied; however, numeric simulations (Figure 1)
show that the unique positive equilibrium (0.4806248475,
0.8507810594) is globally attractive.

The above example shows that it is possible to obtain some
weaker conditions than those ofTheorems A and B to ensure
the persistent and stability of the system.The aimof this paper
is to prove the following result.

Theorem 2. Assume that 𝑟

1
> 𝐸𝑞 holds; then, the unique

positive equilibrium 𝐸

∗
(𝑥

∗
, 𝑦

∗
) is globally attractive; that is,

lim
𝑡→+∞

𝑥 (𝑡) = 𝑥

∗
, lim

𝑡→+∞

𝑦 (𝑡) = 𝑦

∗
. (8)

Concerned with the persistent property of the system, as
a direct corollary of Theorem 2, we have the following.

Corollary 3. Assume that 𝑟
1

> 𝐸𝑞 holds; then, system (1) is
permanent.

Remark 4. A comparison of Theorems A, B, and 2 and
Corollary 3 shows that 𝑘

1
𝑏

1
> 𝑎

1
, 𝑘

2
𝑎

2
> 𝑏

2
, and inequalities

(6) are redundant.Therefore, our results significantly improve
the corresponding main results of Wei and Li [1].

We will prove Theorem 2 in the next section. For more
works on mutualism system, one could refer to [2–10] and
the references cited therein.

2. Proof of the Main Results

As a direct corollary of Lemma 2.2 of Chen [11], we have the
following.

Lemma 5. If 𝑎 > 0, 𝑏 > 0 and �̇� ≥ 𝑥(𝑏 − 𝑎𝑥), when 𝑡 ≥ 0 and
𝑥(0) > 0, we have

lim inf
𝑡→+∞

𝑥 (𝑡) ≥

𝑏

𝑎

.
(9)
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If 𝑎 > 0, 𝑏 > 0 and �̇� ≤ 𝑥(𝑏 − 𝑎𝑥), when 𝑡 ≥ 0 and 𝑥(0) > 0,
we have

lim sup
𝑡→+∞

𝑥 (𝑡) ≤

𝑏

𝑎

. (10)

Proof of Theorem 2. By the first equation of system (1), we
have

�̇� (𝑡) ≤ 𝑥 (𝑡) (𝑟

1
− 𝐸𝑞 − 𝑏

1
𝑥 (𝑡)) . (11)

From Lemma 5, it follows that

lim sup
𝑡→+∞

𝑥 (𝑡) ≤

𝑟

1
− 𝐸𝑞

𝑏

1

. (12)

Hence, for enough small 𝜀 > 0 (𝜀 < min{(𝑟
1
− 𝐸𝑞)𝑘

1
/(𝑘

1
𝑏

1
+

𝑎

1
), 𝑟

2
𝑘

2
/(𝑘

2
𝑏

2
+ 𝑎

2
)}) , it follows from (12) that there exists a

𝑇



1
> 0 such that

𝑥 (𝑡) <

𝑟

1
− 𝐸𝑞

𝑏

1

+ 𝜀

def
= 𝑀

(1)

1
∀𝑡 > 𝑇



1
. (13)

Similarly, for the above 𝜀 > 0, it follows from the second
equation of system (1) that there exists a 𝑇

1
> 𝑇



1
such that

𝑦 (𝑡) <

𝑟

2

𝑏

2

+ 𝜀

def
= 𝑀

(1)

2
∀𝑡 > 𝑇

1
. (14)

(14) together with the first equation of system (1) implies that

�̇� = 𝑥(𝑟

1
− 𝑏

1
𝑥 −

𝑎

1
𝑥

𝑦 + 𝑘

1

) − 𝐸𝑞𝑥

≤ 𝑥(𝑟

1
− 𝐸𝑞 − 𝑏

1
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𝑎

1
𝑥

𝑀

(1)

2
+ 𝑘

1

) ∀𝑡 > 𝑇

1
.

(15)

Therefore, by Lemma 5, we have

lim sup
𝑡→+∞

𝑥

1
(𝑡) ≤

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑀

(1)

2
+ 𝑘

1
))

. (16)

That is, for 𝜀 > 0 to be defined by (12) and (13), there exists a
𝑇



2
> 𝑇

1
such that

𝑥 (𝑡) <

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑀

(1)

2
+ 𝑘

1
))

+

𝜀

2
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= 𝑀

(2)

1
> 0 ∀𝑡 > 𝑇



2
.

(17)

It follows from (13) and the second equation of system (1) that

̇𝑦 = 𝑦(𝑟

2
− 𝑏

2
𝑦 −

𝑎

2
𝑦

𝑥 + 𝑘

2

)

≤ 𝑦(𝑟

2
− 𝑏

2
𝑦 −

𝑎

2
𝑦

𝑀

(1)

1
+ 𝑘

2

) .

(18)

Therefore, by Lemma 5, we have

lim sup
𝑡→+∞

𝑦 (𝑡) ≤

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑀

(1)

1
+ 𝑘

2
))

. (19)

That is, for 𝜀 > 0 to be defined by (13) and (14), there exists a
𝑇

2
> 𝑇



2
such that

𝑦 (𝑡) <

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑀

(1)

1
+ 𝑘

2
))

+

𝜀

2

def
= 𝑀

(2)

2
> 0 ∀𝑡 > 𝑇

2
.

(20)

From the first equation of system (1) and the positivity of𝑦(𝑡),
we have

�̇� = 𝑥 (𝑟

1
− 𝑏

1
𝑥 −

𝑎

1
𝑥

𝑦 + 𝑘

1

) − 𝐸𝑞𝑥

≥ 𝑥(𝑟

1
− 𝐸𝑞 − 𝑏

1
𝑥 −

𝑎

1
𝑥

𝑘

1

) ∀𝑡 > 𝑇

2
.

(21)

Therefore, by Lemma 5, we have

lim inf
𝑡→+∞

𝑥 (𝑡) ≥

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/𝑘

1
)

. (22)

Hence, for 𝜀 > 0 to be defined by (12) and (13), there exists a
𝑇



3
> 𝑇

2
such that

𝑥 (𝑡) >

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/𝑘

1
)

− 𝜀

def
= 𝑚

(1)

1
, ∀𝑡 > 𝑇



3
. (23)

Similarly, it follows from the second equation of system (1)
that there exists a 𝑇

3
> 𝑇



3
such that

𝑦 (𝑡) >

𝑟

2

𝑏

2
+ (𝑎

2
/𝑘

2
)

− 𝜀

def
= 𝑚

(1)

2
, ∀𝑡 > 𝑇

3
. (24)

(24) together with the first equation of system (1) implies that

�̇� = 𝑥(𝑟

1
− 𝑏

1
𝑥 −

𝑎

1
𝑥

𝑦 + 𝑘

1

) − 𝐸𝑞𝑥

≥ 𝑥(𝑟

1
− 𝐸𝑞 − 𝑏

1
𝑥 −

𝑎

1
𝑥

𝑚

(1)

2
+ 𝑘

1

) ∀𝑡 > 𝑇

3
.

(25)

Therefore, by Lemma 5, we have

lim inf
𝑡→+∞

𝑥 (𝑡) ≥

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑚

(1)

2
+ 𝑘

1
))

. (26)

That is, for 𝜀 > 0 to be defined by (12) and (13), there exists a
𝑇



4
> 𝑇

3
such that

𝑥 (𝑡) >

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑚

(1)

2
+ 𝑘

1
))

−

𝜀

2

def
= 𝑚

(2)

1
> 0, ∀𝑡 > 𝑇



4
.

(27)

Similarly, by (23) and the second equation of system (1), for
𝜀 > 0 to be defined by (12) and (13), there exists a 𝑇

4
> 𝑇



4

such that

𝑦 (𝑡) >

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑚

(1)

1
+ 𝑘

2
))

−

𝜀

2

def
= 𝑚

(2)

2
> 0, ∀𝑡 > 𝑇

4
.

(28)
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Noting that 𝑎

1
/(𝑀

(1)

2
+ 𝑘

1
) > 0, 𝑎

2
/(𝑀

(1)

1
+ 𝑘

2
) > 0, it

immediately follows that

𝑀

(2)

1
=

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑀

(1)

2
+ 𝑘

1
))

+

𝜀

2

<

𝑟

1
− 𝐸𝑞

𝑏

1

+ 𝜀 = 𝑀

(1)

1
;

𝑀

(2)

2
=

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑀

(1)

1
+ 𝑘

2
))

+

𝜀

2

<

𝑟

2

𝑏

2

+ 𝜀 = 𝑀

(1)

2
.

(29)

Also, since𝑚

(1)

1
> 0,𝑚(1)

2
> 0, it follows that 𝑎

1
/(𝑚

(1)

2
+ 𝑘

1
) <

𝑎

1
/𝑘

1
, 𝑎
2
/(𝑚

(1)

1
+ 𝑘

2
) < 𝑎

2
/𝑘

2
, and so

𝑚

(2)

1
=

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑚

(1)

2
+ 𝑘

1
))

−

𝜀

2

>

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/𝑘

1
)

− 𝜀 = 𝑚

(1)

1
;

𝑚

(2)

2
=

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑚

(1)

1
+ 𝑘

2
))

−

𝜀

2

>

𝑟

2

𝑏

2
+ (𝑎

2
/𝑘

2
)

− 𝜀 = 𝑚

(1)

2
.

(30)

Repeating the above procedure, we get four sequences 𝑀(𝑛)
𝑖
,

𝑚

(𝑛)

𝑖
, 𝑖 = 1, 2, 𝑛 = 1, 2, . . ., such that for 𝑛 ≥ 2

𝑀

(𝑛)

1
=

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑀

(𝑛−1)

2
+ 𝑘

1
))

+

𝜀

𝑛

;

𝑀

(𝑛)

2
=

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑀

(𝑛−1)

1
+ 𝑘

2
))

+

𝜀

𝑛

;

𝑚

(𝑛)

1
=

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑚

(𝑛−1)

2
+ 𝑘

1
))

−

𝜀

𝑛

;

𝑚

(𝑛)

2
=

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑚

(𝑛−1)

1
+ 𝑘

2
))

−

𝜀

𝑛

.

(31)

Obviously,

𝑚

(𝑛)

𝑖
< 𝑥

𝑖
(𝑡) < 𝑀

(𝑛)

𝑖
∀𝑡 ≥ 𝑇

2𝑛
, 𝑖 = 1, 2.

(32)

We claim that sequences𝑀(𝑛)
𝑖
, 𝑖 = 1, 2 are strictly decreasing,

and sequences 𝑚(𝑛)
𝑖
, 𝑖 = 1, 2 are strictly increasing. To proof

this claim, we will carry them out by induction. Firstly, from
(29) and (30) we have

𝑀

(2)

𝑖
< 𝑀

(1)

𝑖
, 𝑚

(2)

𝑖
> 𝑚

(1)

𝑖
, 𝑖 = 1, 2.

(33)

Let us assume now that our claim is true for 𝑛; that is,

𝑀

(𝑛)

𝑖
< 𝑀

(𝑛−1)

𝑖
, 𝑚

(𝑛)

𝑖
> 𝑚

(𝑛−1)

𝑖
, 𝑖 = 1, 2.

(34)

Then,

𝑎

1

𝑀

(𝑛)

2
+ 𝑘

1

>

𝑎

1

𝑀

(𝑛−1)

2
+ 𝑘

1

,

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑀

(𝑛)

1
+ 𝑘

2
))

>

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑀

(𝑛−1)

1
+ 𝑘

2
))

.

(35)

From (34) and the expression of𝑀(𝑛)
𝑖
, it immediately follows

that

𝑀

(𝑛+1)

1
=

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑀

(𝑛)

2
+ 𝑘

1
))

+

𝜀

𝑛 + 1

<

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑀

(𝑛−1)

2
+ 𝑘

1
))

+

𝜀

𝑛

= 𝑀

(𝑛)

1
,

𝑀

(𝑛+1)

2
=

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑀

(𝑛)

1
+ 𝑘

2
))

+

𝜀

𝑛 + 1

<

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑀

(𝑛−1)

1
+ 𝑘

2
))

+

𝜀

𝑛

= 𝑀

(𝑛)

2
.

(36)

Also, it follows from (34) that𝑚(𝑛)
𝑖

≥ 𝑚

(𝑛−1)

𝑖
, 𝑖 = 1, 2. Then,

𝑎

1

𝑚

(𝑛)

2
+ 𝑘

1

<

𝑎

1

𝑚

(𝑛−1)

2
+ 𝑘

1

,

𝑎

2

𝑚

(𝑛)

1
+ 𝑘

2

<

𝑎

2

𝑚

(𝑛−1)

1
+ 𝑘

2

.

(37)

From (37) and the expression of 𝑚(𝑛)
𝑖
, it immediately follows

that

𝑚

(𝑛+1)

1
=

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑚

(𝑛)

2
+ 𝑘

1
))

−

𝜀

𝑛 + 1

>

𝑟

1
− 𝐸𝑞

𝑏

1
+ (𝑎

1
/ (𝑚

(𝑛−1)

2
+ 𝑘

1
))

−

𝜀

𝑛

= 𝑚

(𝑛)

1
,

𝑚

(𝑛+1)

2
=

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑚

(𝑛)

1
+ 𝑘

2
))

−

𝜀

𝑛 + 1

>

𝑟

2

𝑏

2
+ (𝑎

2
/ (𝑚

(𝑛−1)

1
+ 𝑘

2
))

−

𝜀

𝑛

= 𝑚

(𝑛)

2
.

(38)

Therefore,

lim
𝑡→+∞

𝑀

(𝑛)

1
= 𝑥, lim

𝑡→+∞

𝑀

(𝑛)

2
= 𝑦,

lim
𝑡→+∞

𝑚

(𝑛)

1
= 𝑥, lim

𝑡→+∞

𝑚

(𝑛)

2
= 𝑦.

(39)

Letting 𝑛 → +∞ in (31), we obtain

𝑏

1
𝑥 +

𝑎

1
𝑥

𝑦 + 𝑘

1

= 𝑟

1
− 𝐸𝑞,

𝑏

2
𝑦 +

𝑎

2
𝑦

𝑥 + 𝑘

2

= 𝑟

2
;

𝑏

1
𝑥 +

𝑎

1
𝑥

𝑦 + 𝑘

1

= 𝑟

1
− 𝐸𝑞,

𝑏

2
𝑦 +

𝑎

2
𝑦

𝑥 + 𝑘

2

= 𝑟

2
.

(40)

(40) shows that (𝑥, 𝑦) and (𝑥, 𝑦) are positive solutions of the
equations

𝑏

1
𝑥 +

𝑎

1
𝑥

𝑦 + 𝑘

1

= 𝑟

1
− 𝐸𝑞,

𝑏

2
𝑦 +

𝑎

2
𝑦

𝑥 + 𝑘

2

= 𝑟

2
.

(41)
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Wei and Li [1] had already showed that, under the assumption
that 𝑟

1
> 𝐸𝑞 holds, (41) has a unique positive solution

𝐸

∗
(𝑥

∗
, 𝑦

∗
). Hence, we conclude that

𝑥 = 𝑥 = 𝑥

∗
, 𝑦 = 𝑦 = 𝑦

∗
; (42)

that is,

lim
𝑡→+∞

𝑥 (𝑡) = 𝑥

∗
, lim

𝑡→+∞

𝑦 (𝑡) = 𝑦

∗
. (43)

Thus, the unique interior equilibrium 𝐸

∗
(𝑥

∗
, 𝑦

∗
) is globally

attractive. This completes the proof of Theorem 2.

Proof of Corollary 3. Noting that 𝑀

(1)

1
, 𝑀(1)
2
, 𝑚(1)
1
, 𝑚(1)
2

are
only dependent on the coefficients of the system (1) and
independent of the solution of system (1), hence, (13), (14),
(23), and (24) show that the system is permanent. This ends
the proof of Corollary 3.

3. Discussion

In this paper, we revisited the stability property of a coop-
erative system incorporating harvesting which was proposed
byWei and Li [1]; by using the iterative method, we show that
the conditionwhich ensures the existence of a unique positive
equilibrium is enough to ensure the global attractivity of the
positive equilibrium. The numeric simulation of Example 1
shows the feasibility of our results. It seems interesting
to investigate the stability property of the corresponding
discrete type model of system (1); we leave this for future
study.
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