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A new method of load identification in time
domain
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Abstract. The main idea of the paper is to identify the load in time domain through inversely analyzing the Duhamel integral
process, a time domain algorithm is developed without tedious theoretical derivation, the simulated results show thatthe
proposed method is effective and of high accuracy.

1. Introduction

Some engineering structures inevitably suffered from dangerous dynamic loads, usually these dynamic
loads are difficult to be measured. In contrast, the structure response generated by these load can easily
be measured. Load identification is a task of identifying these dynamic loads according to the measured
response signal data. Generally, load identification contains frequency domain method and time domain
method [1,2]. Some time domain methods [3–5] need tedious theoretical derivation. This paper proposed
a new load identification method in time domain. Its main ideaoriginates from the analysis of Duhamel
integral to calculate structure response, and the load could be inversely deduced from this discrete process
with a compact form. Simulation results show that this new method is smart and effective.

2. Identification theory

2.1. Identification theory of single-degree-of-freedom system

As is known for all, the kinetic equation of an one-degree-of-freedom system suffering loadf(t) could
be described as below

mẍ(t) + cẋ(t) + kx(t) = f(t) (1)

Its displacement responsex(t) in time domain could be calculated with Duhamel integral

x(t) =

∫ t

0
p(τ)hd(t − τ)dτ (2)
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In which

hd(t) =
1

ωd

e−ξωnt sin(ωdt) (3)

ωn =
√

k
m

ξ = c

2
√

km
ωd = ωn

√

1 − ξ2 (4)

In discretization of time, Eq. (2) could be rewritten, for each time step, and because of

hd(1) = 0 (5)

x(t) can be expressed as











































x(2) = p(1)hd(2)
x(3) = p(1)hd(3) + p(2)hd(2)
x(4) = p(1)hd(4) + p(2)hd(3) + p(3)hd(2)

...
x(i) = p(1)hd(i) + p(2)hd(i − 1) + . . . + p(i − 1)hd(2)

...
x(l − 1) = p(1)hd(l − 1) + p(2)hd(l − 2) + . . . + p(l − 1)hd(1) + p(l − 2)hd(2)

(6)

In Eq. (5),l refers to the length of time,i corresponding to time step(i− 1)dt, dt refers to time interval,
and

p(i) = f(i)dt (7)

The matrix form of Eq. (6) is

x(t) = H(t)p(t) (8)

In which

H(t) =











hd(2)
hd(3) hd(2)
...

. . .
hd(l − 1) hd(l − 2) · · · hd(2)











p(t) =











p(1)
p(2)
...
p(l − 1)











x(t) =











x(2)
x(3)
...
x(l − 1)











(9)

For load identification problem, the load could be calculated from the inversion of Eq. (8)

p(t) = H−1(t)x(t) (10)

H(t)is a lower triangular matrix and all its diagonal elements are the same, it has a good behaviour for
its inversion calculation.

If the length of time data is not long, the size ofH(t) is not large, Eq. (10) is fast and effective, if the
length of time data is rather long, the size ofH(t) is large, it may cause the inversion calculation lots of
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time, because of the characteristic of lower triangular matrix of H(t), each time step ofp(t) could be
obtained as below:

x(i) = p(1)hd(i) + p(2)hd(i − 1) + ... + p(i − 1)hd(2)
(11)

=

i−1
∑

j=0

p(j)hd(i + 1 − j)(i = 2, . . . , l − 1)

In fact, the essence of Eq. (11) is gauss elimination method.From Eq. (11), the load of each time step
could be got as

p(i − 1) =

x(i) −
i−2
∑

j=1
p(j)hd(i + 1 − j)

hd(2)
(i = 2, . . . , t − 1) (12)

In most condition, the measured data is acceleration signal, in order to identificate the load from
acceleration signal, an undamped single-degree-of-freedom system is assumed as

ẍ(t) + x(t) = f1(t) (13)

In Eq. (13)

p1(i) = f1(i)dt (14)

With the same treatment of Eq. (10)

p1(t) = H−1
1 (t)x(t) (15)

H1(t) =











h1(2)
h1(3) h1(2)

...
.. .

h1(l − 1) h1(l − 2) · · · h1(2)











(16)

With the same analysis of Eq. (3),h1(t) could be simplified as

h1(t) = sin(t) (17)

From Eq. (13),̈x(t) could be expressed as

ẍ(t) = f1(t) − x(t) (18)

Substitute Eqs (8) and (14) into Eq. (18)

ẍ

(

t) = (
H−1

1 (t)

dt
− I

)

H(t)p(t) (19)

DenotedT as

T =

(

H−1
1 (t)

dt
− I

)

H(t) (20)

The load identification equation from acceleration data could be written as

f(t) =
T−1ẍ(t)

dt
(21)
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2.2. Identification theory of multi-degree-of-freedom system

The kinetic equation of an multi-degree-of-freedom systemsuffering load P(t) could be described as
below:

MẌ(t) + CẊ(t) + KX(t) = P (t) (22)

M, C, K corresponding to the mass matrix, dumping matrix and stiffness matrix, assumption of the size
of the system isn, and the acceleration response ofv degree-of-freedom are measured.

Transferring Eq. (22) into canonical coordinate as below:

ΨT MΨη̈(t) + ΨTCΨη̇(t) + ΨTKΨη(t) = ΨT P (t) (23)

The size ofΨ is v × r, andr 6 v [6] its column elements are chosen from the first r order truncated
canonical vibration modes, its row elements are chosen fromthese r modes corresponding to the degree-
of-freedoms at which the acceleration response measured. In most condition, only obtaining first few
order canonical mode is possible, in fact, the first few ordercanonical modes have the most significant
effect of the responseη is the canonical coordinate, after decoupling, Eq. (23) become

η̈(t) + Cz η̇(t) + Kzη(t) = Pz(t) (24)

And

Cz = ΨT CΨ =







2ξ(1)ω(1)
. . .

2ξ(r)ω(r)







Kz = ΨT KΨ =







ω2(1)
. . .

ω2(r)







Pz(t) = ΨT P (t)

(25)

So Eq. (22) decoupled into r one-degree-of-freedom systems, ξ is the first r order modal damping ratios,
ω is the first r order nature frequencies, for each system, its canonical load Pz(t) could be calculated by
Eqs (10) or (11). BecauseΨ is not square matrix, with the method of left multiplication, the practical
load P(t) could be calculated as below:

P (t) = (ΨΨT )−1ΨPz(t) (26)

Because of it is the acceleration signals are measured in most case, so this paper only studied the case of
acceleration response.

3. Numerical simulation

3.1. Finite element model

Figure 1 shows the cantilever beam finite element model, it has 5 nodes and 4 beam elements, each
element is 2 m long, and its section size is 100 mm× 100 mm, its density is 7800 kg/m3 and the elastic
modulus is 210e9 and poisson ratio is 0.3. The location of actual load P1(t) and P2(t) are shown in Fig. 1.
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Fig. 1. The finite elements model of beam.
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Fig. 2. Identification of sinusoidal load.

3.2. Identification of sinusoidal load

The assumption of actual sinusoidal load is expressed as:

P1(t) = 100 sin(10πt) P2(t) = 200 sin(10πt) (t = [0, 0.005, ..., 1]s)

The theoretical calculation vertical acceleration response results of node 2, 3, 4, 5 are used as measured
signal data. The comparison of identified load and practicalload are shown in Fig. 2, the solid line refers
to the actual load, the ‘+’ marked line refers to the identified result.

In Fig. 2, the recognized result matched very well with practical load, it confirmed the effectiveness
of the proposed method.

3.3. Identification of random load without noise

The time history of actual load is shown in Fig. 3a and Fig. 3b,the time interval is 0.005s, the node
number of measured signal are the same as Section 3.2.

The identification result are shown in Fig. 4a and Fig. 4b, thesolid line refers to the actual load, the
‘+’ marked line refers to the identified result.

In Fig. 4, the recognized result matched perfect with the practical load.
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Fig. 3. Actual random load time history.
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Fig. 4. Comparison of random load identification.

3.4. Identification of random excitation with white noise

In fact, the measured signal is inevitably contaminated with noise, Fig. 5 and Fig. 5 are the identification
result based on the assumption of that the measured signal contains white noise of 1% level and 2% level.

Defined identification error as

mse =

n
∑

i=1

std(Pri − Psi)

Pr refers to practical load and Ps refers to identified load, ‘std’ is the standard deviation function, andn
is the number of identified load.

The error is listed in Table 1.
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Table 1
Error comparison

Noise level 1% 2%
mse 65.83 130.97
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Fig. 5. Comparison of random load identification with 1% noise level.

0 0.1 0.2 0.3 0.4 0.5
-300

-200

-100

0

100

200

300

time(s)

Lo
ad

(N
)

Practical Load
Identified Load

0 0.1 0.2 0.3 0.4 0.5
-200

-150

-100

-50

0

50

100

150

time(s)

Lo
ad

(N
)

Practical Load
Identified Load

(a) Time history of P1(t) (b) Time history of P2(t)

Fig. 6. Comparison of random load identification with 2% noise level.

From Table 1, it shows that with the contamination of noise, there is error generated between the
practical load and identified load, with the increase of noise level, the error also become larger, some
further study to improve the anti-noise ability of this algorithm are needed.

4. Conclusion

The process of time domain load identification method proposed in this paper is brief, and easy to be
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programmed. It avoids the problem caused by matrix inversion calculation. The simulation result of
beam confirmed the effectiveness of this new method.
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