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Abstract: Using a Riccati transformation technique, the authors establish some
new oscillation criteria for the second-order functional dynamic equation
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on a time scale T, where γ > 0 is a constant. The cases
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= ∞ and
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∆t

r1/γ(t)
< ∞

are both considered. Examples are provided to illustrate the relevance of the results.
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1. Introduction

In this paper, we are concerned with the oscillatory behavior of solutions of the
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18 J.R. Graef, E. Tunç

second-order functional dynamic equation
(

r(t)
∣

∣x∆(t)
∣

∣

γ−1
x∆(t)

)∆
+ F (t, x(t), x(τ(t)), x∆(t), x∆(τ(t))) = 0, (1)

on an arbitrary time scale T, where γ > 0 is a constant, r is a positive real-valued
rd-continuous function defined on T, τ : T → T is a positive rd-continuous function
such that τ(t) → ∞ as t → ∞, and F : T × R

4 → R is a continuous function. We
shall consider the two cases

∞
∫

t0

∆t

r1/γ(t)
= ∞ (2)

and
∞
∫

t0

∆t

r1/γ(t)
< ∞. (3)

Since we are interested in the oscillatory and asymptotic behavior of solu-
tions near infinity, we assume that supT = ∞, and define the time scale interval
[t0,∞)T by [t0,∞)T := [t0,∞) ∩ T. By a solution of (1) we mean that there ex-
ists a tx ≥ t0 and a non-trivial real-valued function x(t) ∈ C1

rd[tx,∞)T such that

r(t)
∣

∣x∆(t)
∣

∣

γ−1
x∆(t) ∈ C1

rd[tx,∞)T and satisfies equation (1) on [tx,∞)T. Our at-
tention is restricted to the those solutions of (1) which exist on the half-line [tx,∞)T
and satisfy sup {|x(t)| : t > t1} > 0 for any t1 ≥ tx. A solution x(t) of (1) is said to
be oscillatory if it is neither eventually positive nor eventually negative; otherwise
it is called nonoscillatory. Equation (1) is said to be oscillatory if all its solutions
are oscillatory. The monographs of Bohner and Peterson ([4], [5]) summarize and
organize much of the time scale calculus.

Recently, there has been increasing interest in obtaining sufficient conditions for
oscillation of the solutions of different classes of dynamic equations with or without
deviating arguments on time scales. For recent contributions we refer the reader to
the papers ([1]–[14]) and the references cited therein. The majority of these results
are obtained for particular cases of equation (1). For example, Agarwal et al. [1]
considered the second order linear delay dynamic equation

x∆∆(t) + q(t)x(τ(t)) = 0, for t ∈ T, (4)

and established some sufficient conditions for oscillation of (4). Sahiner [23] consid-
ered the second-order nonlinear delay dynamic equation

x∆∆(t) + q(t)f(x(τ(t))) = 0, for t ∈ T, (5)

and obtained some sufficient conditions for oscillation of (5) by using a Riccati type
transformation. Han et al. [17] extended the results in Agarwal et al. [1] to the
second-order Emden-Fowler delay dynamic equation

x∆∆(t) + q(t)xγ(τ(t)) = 0, for t ∈ T, (6)In
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OSCILLATION CRITERIA FOR SECOND ORDER... 19

where γ is a quotient of odd positive integers.
Erbe et al. [12] considered the second-order nonlinear delay dynamic equation

(r(t)x∆(t))∆ + q(t)f(x(τ(t))) = 0, for t ∈ T, (7)

and gave some oscillation results that improve the results established by Zhang and
Shanliang [27] and Sahiner [23].

Han et al. [18] considered the second-order nonlinear delay dynamic equation

(r(t)
(

x∆(t)
)γ
)∆ + q(t)f(x(τ(t))) = 0, for t ∈ T, (8)

and established some oscillation results for γ ≥ 1 being an odd positive integer that
improve and extend the results of Saker ([24], [25]) and Sahiner [23].

Very recently, Chen [7] considered the second-order half-linear dynamic equation

(

r(t)
∣

∣x∆(t)
∣

∣

γ−1
x∆(t)

)∆
+ q(t) |x(t)|γ−1 x(t) = 0, for t ∈ T, (9)

and obtained some sufficient conditions for the oscillation of the equation (9 ) that
improve and extend the results of Saker [25], Agarwal et al. [3] and Hassan [20].

Motivated by the work in [1, 23, 17, 12, 18, 7] mentioned above, using Riccati type
transformations we establish some sufficient conditions guaranteeing the oscillation
of solutions of Eq. (1). It should be noted that Agarwal et al. [1], Sahiner [23],
Han et al. [17], Erbe et al. [12], and Han et al. [18] only discussed the oscillation
of solutions in the delay case τ(t) ≤ t. Here, our results also can be applied to the
advanced case τ(t) ≥ t as well. Finally, some example are given to illustrate our
results.

The usual notation and concepts from the time scale calculus as can be found
in Bohner and Peterson ([4],[5]) will be used throughout the paper without further
mention.

2. Some Lemmas

In this section, we give some lemmas that will be used in the proofs of our main
results. We also need the expression

(xγ(t))∆ = γ







1
∫

0

[(1− h)x(t) + hxσ(t)]γ−1 dh







x∆(t), (10)

which is a simple consequence of Keller’s chain rule [4, Theorem 1.90].

Lemma 2.1. (Mean Value Theorem on time scales [5, 15]) If f is a continuous
function on [a, b] and is ∆-differentiable on [a, b), then there exist ξ, η ∈ [a, b) such
that

f∆(η)(b − a) ≤ f(b)− f(a) ≤ f∆(ξ)(b− a). (11)In
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20 J.R. Graef, E. Tunç

Lemma 2.2. ([19]) If X and Y are nonnegative and λ > 1, then

λXY λ−1 −Xλ ≤ (λ− 1)Y λ,

where equality holds if and only if X = Y .

For convenience in what follows we let τ∗(t) = min {t, τ(t)}.

Lemma 2.3. Suppose that the following conditions are satisfied:

(C1) u ∈ C2
rd(I,R) where I = [T,∞)T ⊂ T for some T > 0;

(C2) u(t) > 0, u∆(t) > 0, and u∆∆(t) ≤ 0 for t ≥ T .

Then, for each 0 < k < 1, there is a Tk ≥ T such that

u(τ(t)) ≥ ku(t)
τ∗(t)

t
for t ≥ Tk. (12)

Proof. We consider the two cases: (i) τ(t) ≤ t and (ii) τ(t) ≥ t.
Case (i): τ(t) ≤ t. If τ(t) = t, (12) clearly holds, so it suffices to consider only

those t for which τ(t) < t. Let T1 ≥ T be such that τ(t) ≥ T for t ≥ T1. By the
Mean Value Theorem on time scales and the monotone property of u∆, for each
t > T1, there exists ξ1 ∈ [τ(t), t) such that

u(t)− u(τ(t)) ≤ u∆(ξ1)(t− τ(t)) ≤ u∆(τ(t))(t − τ(t)).

Since u(t) > 0, we have

u(t)

u(τ(t))
≤ 1 +

u∆(τ(t))

u(τ(t))
(t− τ(t)) for t > τ(t) ≥ T1. (13)

Similarly, there exists ξ2 ∈ [T1, τ(t)) such that

u(τ(t))− u(T1) ≥ u∆(ξ2)(τ(t) − T1) ≥ u∆(τ(t))(τ(t) − T1),

so
u(τ(t))

u∆(τ(t))
≥ τ(t)− T1. (14)

Let k ∈ (0, 1). Then for t ≥ T1/(1 − k) = Tk ≥ T we have t − T1 ≥ kt and
τ(t)− T1 ≥ kτ(t). Now, (14) implies

u(τ(t))

u∆(τ(t))
≥ kτ(t) for t ≥ Tk. (15)

From (13) and (15), we obtain

u(t)

u(τ(t))
≤ 1 +

u∆(τ(t))

u(τ(t))
(t− τ(t))
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OSCILLATION CRITERIA FOR SECOND ORDER... 21

≤ 1 +
t− τ(t)

kτ(t)

=
t+ (k − 1)τ(t)

kτ(t)

≤
t

kτ(t)
=

t

kτ∗(t)

for t ≥ Tk, which is inequality (12).

Case (ii): τ(t) ≥ t. Since u∆(t) > 0, we have

u(τ(t)) ≥ u(t) ≥ ku(t) = ku(t)
τ∗(t)

t
for t ≥ Tk,

which again is (12). This completes the proof of the lemma.

Lemma 2.4. Assume that (2) holds, r∆(t) ≥ 0,

sgnF (t, x, u, v, w) = sgnx for t ∈ [t0,∞)T and x, u, v, w ∈ R, (16)

and x is an eventually positive solution of (1). Then, there exist T ≥ t0 such that

x∆(t) > 0, x∆∆(t) < 0, and
(

r(t)
∣

∣x∆(t)
∣

∣

γ−1
x∆(t)

)∆
< 0 (17)

for t ≥ T .

Proof. Since x(t) is an eventually positive solution of (1), there exists t1 ≥ t0
such that x(t) > 0 and x(τ(t)) > 0 for all t ≥ t1. From (1) and (16), we have

(

r(t)
∣

∣x∆(t)
∣

∣

γ−1
x∆(t)

)∆

= −F (t, x(t), x(τ(t)), x∆(t), x∆(τ(t))) < 0 (18)

for t ≥ t1, so r(t)
∣

∣x∆(t)
∣

∣

γ−1
x∆(t) is eventually decreasing, say for t ∈ [t2,∞)T

⊂ [t1,∞)T. We claim that

x∆(t) > 0 for t ≥ t2. (19)

If this is not so, then there exists t3 ∈ [t2,∞)T such that x∆(t3) ≤ 0. In view of
(18), there is a t4 ≥ t3 such that

r(t)
∣

∣x∆(t)
∣

∣

γ−1
x∆(t) ≤ r(t4)

∣

∣x∆(t4)
∣

∣

γ−1
x∆(t4) := c < 0

for t ∈ [t4,∞)T. Hence,

x∆(t) ≤ −(−c)1/γ
1

r1/γ(t)
, (20)
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22 J.R. Graef, E. Tunç

for t ≥ t4, and so from (2),

x(t) ≤ x(t4)− (−c)1/γ
t
∫

t4

∆s

r1/γ(s)
→ −∞ as t → ∞,

which contradicts the fact that x(t) > 0 for t ≥ t1. Hence, (19) holds.
From (18) and (19), we see that

(

r(t)
(

x∆(t)
)γ
)∆

= −F (t, x(t), x(τ(t)), x∆(t), x∆(τ(t))) < 0 (21)

for t ∈ [t2,∞)T. Thus, r(t)(x
∆(t))γ is decreasing on [t2,∞)T.

Finally, we want to show that

x∆∆(t) < 0 for t ≥ t2. (22)

Assume that x∆∆(t) ≥ 0 for t ≥ t2. Then, x
∆(t) is nondecreasing and so x∆(t) ≤

x∆(σ(t)) for t ≥ t2. This, together with the fact that r∆(t) ≥ 0, implies

r(t)(x∆(t))γ ≤ r(σ(t))(x∆(t))γ ≤ r(σ(t))(x∆(σ(t)))γ ,

which contradicts r(t)(x∆(t))γ being decreasing on [t2,∞)T. Thus, (22) holds and
this completes the proof of the lemma.

3. Main Results

In this section, we present our main oscillation results. For any continuous function
u(t) we set u(t)+ = max{u(t), 0} and u(t)− = max{−u(t), 0} so that u(t) = u(t)+−
u(t)−.

Theorem 3.5. In addition to condition (2), assume there are positive functions
δ ∈ C1

rd([t0,∞)T,R) and p ∈ Crd([t0,∞)T,R) such that

F (t, x, u, v, w)/ |x|γ−1 x ≥ p(t) (23)

for all t ∈ [t0,∞)T, x ∈ R \ {0}, and u, v, w ∈ R, and

lim sup
t→∞

t
∫

t0











δ(s)p(s) −
r(s)

[

(

δ∆(s)
)

+

]γ+1

(γ + 1)γ+1 δγ(s)











∆s = ∞. (24)

Then every solution of equation (1) is oscillatory on [t0,∞)T.In
te
rn

a
ti
o
n
a
l
E
le
c
tr
o
n
ic

J
o
u
rn

a
l
o
f
P
u
re

a
n
d

A
p
p
li
e
d

M
a
th

e
m
a
ti
c
s
–
IE

J
P
A
M

,
V
o
lu
m
e
8
,
N
o
.
1
(2

0
1
4
)



OSCILLATION CRITERIA FOR SECOND ORDER... 23

Proof. Suppose, to the contrary, that Eq. (1) has a nonoscillatory solution x(t)
on [t0,∞)T, say x(t) > 0 and x(τ(t)) > 0 on [t1,∞)T for some t1 ∈ [t0,∞)T. From
(1) and (23), we have

(

r(t)
∣

∣x∆(t)
∣

∣

γ−1
x∆(t)

)∆
≤ −p(t)xγ(t) < 0, (25)

for all t ≥ t1, and so r(t)
∣

∣x∆(t)
∣

∣

γ−1
x∆(t) is strictly decreasing on [t1,∞)T. As in

the proof of Lemma 2.4 we can show that

x∆(t) > 0 for t ∈ [t2,∞)T (26)

for some t2 ≥ t1. In view of (25) and (26), we see that

(

r(t)
(

x∆(t)
)γ
)∆

≤ −p(t)xγ(t) < 0 for t ∈ [t2,∞)T. (27)

Now consider the generalized Riccati substitution

w(t) = δ(t)
r(t)

(

x∆(t)
)γ

xγ(t)
for t ≥ t2. (28)

Clearly, w(t) > 0, and

w∆(t) =
(

r(t)
(

x∆(t)
)γ
)∆ δ(t)

xγ(t)
+
(

r(t)
(

x∆(t)
)γ
)σ
(

δ(t)

xγ(t)

)∆

≤ −δ(t)p(t) +
(

r(t)
(

x∆(t)
)γ
)σ
(

δ∆(t)

xγ(σ(t))
−

δ(t) (xγ(t))∆

xγ(t)xγ(σ(t))

)

= −δ(t)p(t) +
δ∆(t)

δσ(t)
wσ(t)− δ(t)

(

r(t)
(

x∆(t)
)γ)σ

(xγ(t))∆

xγ(t)xγ(σ(t))

≤ −δ(t)p(t) +

(

δ∆(t)
)

+

δσ(t)
wσ(t)− δ(t)

(

r(t)
(

x∆(t)
)γ)σ

(xγ(t))∆

xγ(t)xγ(σ(t))
. (29)

From (10) and (26), we obtain

(xγ(t))∆ = γ







1
∫

0

[(1− h)x(t) + hxσ(t)]γ−1 dh







x∆(t)

≥

{

γ (xσ(t))γ−1 x∆(t), 0 < γ ≤ 1,

γ (x(t))γ−1 x∆(t), γ > 1
(30)

If 0 < γ ≤ 1, then (29) and (30) imply

w∆(t) ≤ − δ(t)p(t) +

(

δ∆(t)
)

+

δσ(t)
wσ(t)
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24 J.R. Graef, E. Tunç

− δ(t)

(

r(t)
(

x∆(t)
)γ)σ

γ (xσ(t))γ−1 x∆(t)

xγ(t)xγ(σ(t))

= − δ(t)p(t) +

(

δ∆(t)
)

+

δσ(t)
wσ(t)

− γδ(t)

(

r(t)
(

x∆(t)
)γ)σ

xγ+1(σ(t))

xγ(σ(t))

xγ(t)
x∆(t). (31)

If γ > 1, (29) and (30) imply

w∆(t) ≤ − δ(t)p(t) +

(

δ∆(t)
)

+

δσ(t)
wσ(t)

− δ(t)

(

r(t)
(

x∆(t)
)γ)σ

γ (x(t))γ−1 x∆(t)

xγ(t)xγ(σ(t))

= − δ(t)p(t) +

(

δ∆(t)
)

+

δσ(t)
wσ(t)

− γδ(t)

(

r(t)
(

x∆(t)
)γ)σ

xγ+1(σ(t))

x(σ(t))

x(t)
x∆(t). (32)

Since t ≤ σ(t) and x(t) is increasing on [t2,∞)T, we have x(t) ≤ x(σ(t)). Therefore,
(31) and (32) yield

w∆(t) ≤ −δ(t)p(t) +

(

δ∆(t)
)

+

δσ(t)
wσ(t)− γδ(t)

(

r(t)
(

x∆(t)
)γ)σ

xγ+1(σ(t))
x∆(t) (33)

on [t2,∞)T for γ > 0.
Since r(t)

(

x∆(t)
)γ

is decreasing, we have

r(t)
(

x∆(t)
)γ

≥
(

r(t)
(

x∆(t)
)γ
)σ

,

so

x∆(t) ≥

[(

r(t)
(

x∆(t)
)γ)σ]1/γ

r1/γ(t)
. (34)

Using (34) in (33), we obtain

w∆(t) ≤ −δ(t)p(t) +

(

δ∆(t)
)

+

δσ(t)
wσ(t)

− γδ(t)r−1/γ(t)

[(

r(t)
(

x∆(t)
)γ)σ](γ+1)/γ

xγ+1(σ(t))
. (35)

From (28) and (35), we conclude that
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OSCILLATION CRITERIA FOR SECOND ORDER... 25

w∆(t) ≤ −δ(t)p(t) +

(

δ∆(t)
)

+

δσ(t)
wσ(t)

− γδ(t)r−1/γ(t) (δσ(t))−(γ+1)/γ (wσ(t))(γ+1)/γ . (36)

Letting

X =
(γδ(t))γ/(γ+1)wσ(t)

r1/(γ+1)(t)δσ(t)
, λ =

γ + 1

γ
,

and

Y =
rγ/(γ+1)(t)

(

(

δ∆(t)
)

+

)γ

λγ (γδ(t))γ/λ
,

in Lemma 2.2, (36) implies

w∆(t) ≤ −δ(t)p(t) +
r(t)

[

(

δ∆(t)
)

+

]γ+1

(γ + 1)γ+1δγ(t)
for t ∈ [t2,∞)T. (37)

Integrating (37) from t2 to t, we obtain

t
∫

t2











δ(s)p(s) −
r(s)

[

(

δ∆(s)
)

+

]γ+1

(γ + 1)γ+1δγ(s)











∆s ≤ −w(t) + w(t2) ≤ w(t2),

which contradicts condition (24). Therefore, equation (1) is oscillatory.

Theorem 3.6. Assume that conditions (2) and (16) hold, r∆(t) ≥ 0, and there
are a positive functions δ ∈ C1

rd([t0,∞)T,R) and p ∈ Crd([t0,∞)T,R) and a constant
k ∈ (0, 1) such that

F (t, x, u, v, w)/ |u|γ−1 u ≥ p(t) (38)

for t ∈ [t0,∞)T, x, u ∈ R \ {0}, and v, w ∈ R. If

lim sup
t→∞

t
∫

t0











δ(s)p(s)

[

kτ∗(s)

s

]γ

−
r(s)

[

(

δ∆(s)
)

+

]γ+1

(γ + 1)γ+1 δγ(s)











∆s = ∞, (39)

then every solution of equation (1) is oscillatory on [t0,∞)T.

Proof. Suppose that Eq. (1) has a nonoscillatory solution x(t), say x(t) > 0 and
x(τ(t)) > 0 on [t1,∞)T for some t1 ∈ [t0,∞)T. From Lemma 2.4, we eventually have
x∆(t) > 0 and x∆∆(t) < 0. Hence, in view of Lemma 2.3, there exits t2 ≥ t1, such
that

x(τ(t)) ≥
kτ∗(t)

t
x(t) for all t ≥ t2. (40)In
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Defining w(t) as in the proof of Theorem 3.5, we have

w∆(t) =
(

r(t)
(

x∆(t)
)γ
)∆ δ(t)

xγ(t)
+
(

r(t)
(

x∆(t)
)γ
)σ
(

δ(t)

xγ(t)

)∆

= −δ(t)
F (t, x(t), x(τ(t)), x∆(t), x∆(τ(t)))

xγ(t)

+
(

r(t)
(

x∆(t)
)γ
)σ
(

δ∆(t)

xγ(σ(t))
−

δ(t) (xγ(t))∆

xγ(t)xγ(σ(t))

)

= −δ(t)
F (t, x(t), x(τ(t)), x∆(t), x∆(τ(t)))

(x(τ(t)))γ
(x(τ(t)))γ

xγ(t)

+
δ∆(t)

δσ(t)
wσ(t)− δ(t)

(

r(t)
(

x∆(t)
)γ)σ

(xγ(t))∆

xγ(t)xγ(σ(t))

≤ −δ(t)p(t)
(x(τ(t)))γ

xγ(t)
+

(

δ∆(t)
)

+

δσ(t)
wσ(t)

−δ(t)

(

r(t)
(

x∆(t)
)γ)σ

(xγ(t))∆

xγ(t)xγ(σ(t))
. (41)

As in the proof of Theorem 3.5, we conclude from (41) that

w∆(t) ≤ −δ(t)p(t)

[

kτ∗(t)

t

]γ

+

(

δ∆(t)
)

+

δσ(t)
wσ(t)

− γδ(t)r−1/γ(t) (δσ(t))−(γ+1)/γ (wσ(t))(γ+1)/γ .

The remainder of the proof is similar to that of Theorem 3.5 and is omitted.

Next, if (3) holds, we establish some sufficient conditions that guarantee a solu-
tion x(t) of Eq. (1) either oscillates or converges to zero.

Theorem 3.7. Assume that (3) holds and let δ and p be defined as in Theorem
3.5 so that (23) and (24) hold. If

∞
∫

t0





1

r(t)

t
∫

t0

p(s)∆s





1/γ

∆t = ∞, (42)

then a solution of Eq. (1) is either oscillatory or converges to zero.

Proof. Proceeding as in the proof of Theorem 3.5, we let x(t) be a nonoscillatory
solution of (1) with x(t) > 0 and x(τ(t)) > 0 on [t1,∞)T for some t1 ∈ [t0,∞)T.
There are two possible cases for the sign of x∆(t). The proof if x∆(t) is eventually
positive is similar to that in the proof of Theorem 3.5, and hence is omitted.In
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Now assume that x∆(t) ≤ 0 for t ≥ t1 ≥ t0. Then x(t) is decreasing and
limt→∞ x(t) = b ≥ 0 exists. If b > 0, then x(t) > b > 0 for t ≥ t2 ≥ t1. So, in view
of (25) and the fact that x∆(t) ≤ 0, we see that

−
(

r(t)(−x∆(t))γ
)∆

≤ −bγp(t)

for all t ∈ [t2,∞)T. Integrating from t2 to t, we obtain

x∆(t) ≤ −b





1

r(t)

t
∫

t2

p(s)∆s





1/γ

.

A second integration yields

x(t) ≤ x(t2)− b

t
∫

t2





1

r(u)

u
∫

t2

p(s)∆s





1/γ

∆u.

Letting t → ∞, we have limt→∞ x(t) = −∞, which contradicts the fact that x(t) > 0
for all t ≥ t1. Thus, b = 0 and x(t) → 0 as t → ∞. This completes the proof of the
theorem.

The proof of our next and final result is similar to the proof of Theorem 3.7 and
so we omit the details.

Theorem 3.8. Assume that (3) and (16) hold, r∆(t) ≥ 0, and τ(t) ≤ t. Let δ
and p be defined as in Theorem 3.6 such that (38) and (39) hold for some constant
k ∈ (0, 1). If (42) holds, then a solution of Eq. (1) is either oscillatory or converges
to zero.

4. Examples

In this section, we give some examples to illustrate our main results.

Example 4.9. Consider the second-order dynamic equation

(

tγ
∣

∣x∆(t)
∣

∣

γ−1
x∆(t)

)∆
+

(

t+
β

t

)

|x(t)|γ−1 x(t) = 0, (43)

for t ∈ [t0,∞)T, t0 > 0, where γ > 0 and β > 0 are constants, p(t) = t + β
t , and

r(t) = tγ . Then,
∞
∫

t0

∆t

r1/γ(t)
=

∞
∫

t0

∆t

t
= ∞,

In
te
rn

a
ti
o
n
a
l
E
le
c
tr
o
n
ic

J
o
u
rn

a
l
o
f
P
u
re

a
n
d

A
p
p
li
e
d

M
a
th

e
m
a
ti
c
s
–
IE

J
P
A
M

,
V
o
lu
m
e
8
,
N
o
.
1
(2

0
1
4
)



28 J.R. Graef, E. Tunç

so (2) holds. With δ(t) = t, condition (24) becomes

lim sup
t→∞

t
∫

t0











δ(s)p(s)−
r(s)

[

(

δ∆(s)
)

+

]γ+1

(γ + 1)γ+1 δγ(s)











∆s

= lim sup
t→∞

t
∫

t0

{

s

(

s+
β

s

)

−
sγ

(γ + 1)γ+1 sγ

}

∆s

= lim sup
t→∞

t
∫

t0

{

s2 + β −
1

(γ + 1)γ+1

}

∆s = ∞.

So every solution of (43) is oscillatory by Theorem 3.5.

Example 4.10. Consider the dynamic equation

(

tγ−1
∣

∣x∆(t)
∣

∣

γ−1
x∆(t)

)∆
+ (t+ σ(t)) |x(τ(t))|γ−1 x(τ(t)) = 0, (44)

for t ∈ [1,∞)T, where r(t) = tγ−1, p(t) = t + σ(t), γ > 1, and τ(t) ≥ t. It is clear
that

∞
∫

1

∆t

r1/γ(t)
=

∞
∫

1

∆t

t1−1/γ
= ∞.

For δ(t) = 1, we have

lim sup
t→∞

t
∫

1











δ(s)p(s)

[

kτ∗(s)

s

]γ

−
r(s)

[

(

δ∆(s)
)

+

]γ+1

(γ + 1)γ+1 δγ(s)











∆s

= lim sup
t→∞

t
∫

1

(s+ σ(s))

[

kτ∗(s)

s

]γ

∆s

= kγ lim sup
t→∞

t
∫

1

(s+ σ(s))∆s

= kγ lim sup
t→∞

t
∫

1

(

s2
)∆

∆s = kγ lim sup
t→∞

(

t2 − 1
)

= ∞.

Therefore, every solution of (44) is oscillatory by Theorem 3.6.In
te
rn

a
ti
o
n
a
l
E
le
c
tr
o
n
ic

J
o
u
rn

a
l
o
f
P
u
re

a
n
d

A
p
p
li
e
d

M
a
th

e
m
a
ti
c
s
–
IE

J
P
A
M

,
V
o
lu
m
e
8
,
N
o
.
1
(2

0
1
4
)



OSCILLATION CRITERIA FOR SECOND ORDER... 29

Example 4.11. Consider the second-order dynamic equation

(

tγ+1
∣

∣x∆(t)
∣

∣

γ−1
x∆(t)

)∆
+ α

∣

∣

∣

∣

x

(

t

2

)
∣

∣

∣

∣

γ−1

x

(

t

2

)

= 0, (45)

for t ∈ [t0,∞)T, t0 > 0, where γ > 0 is constant, p(t) = α > 0, r(t) = tγ+1, and
τ(t) = t/2. Then,

∞
∫

t0

∆t

r1/γ(t)
=

∞
∫

t0

∆t

t
γ+1

γ

< ∞,

so (3) holds. To apply Theorem 3.8, it remains to show that conditions (39) and
(42) hold. To see this, note that if δ(t) = 1, then

lim sup
t→∞

t
∫

t0











δ(s)p(s)

[

kτ∗(s)

s

]γ

−
r(s)

[

(

δ∆(s)
)

+

]γ+1

(γ + 1)γ+1 δγ(s)











∆s

= lim sup
t→∞

t
∫

t0

α

(

k

2

)γ

∆s = ∞,

which implies that (39) holds. Note that t− t0 ≥ t/2 if t ∈ [2t0,∞)T. Thus,

∞
∫

t0





1

r(t)

t
∫

t0

p(s)∆s





1/γ

∆t =

∞
∫

t0





1

tγ+1

t
∫

t0

α∆s





1/γ

∆t

=

∞
∫

t0

(

α(t− t0)

tγ+1

)1/γ

∆t

≥ (α/2)1/γ
∞
∫

2t0

∆t

t
= ∞,

so (42) holds. Therefore, by Theorem 3.8, a solution of (45) is either oscillatory or
converges to zero.
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