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ABSTRACT

Mining generator patterns has raised great research sttieree-
cent years. The main purpose of mining itemset generatdhais
they can form equivalence classes together with closedse&sn
and can be used to generate simple classification rulesdiagor
to the MDL principle. In this paper, we devise an efficientcalg
rithm called StreamGen to mine frequent itemset generat@sa
stream sliding window. We adopt a novel enumeration tragstr
ture to help keep the information of mined generators andbtine
der between generators and non-generators, and propogeogem
timization techniques to speed up the mining process. Wadur
extend the algorithm to directly mine a set of high qualigssiifica-
tion rules over stream sliding windows while keeping highfge
mance. The extensive performance study shows that ourithligor
outperforms other state-of-the-art algorithms which qenf simi-
lar tasks in terms of both runtime and memory usage efficiearay
has high utility in terms of classification.
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1. INTRODUCTION

Frequent itemset mining is one of the essential data mimisigst
Since it was firstly proposed in [1], various algorithms haeen
proposed, including Apriori [2] and FP-growth [12] algdwits.
Many studies have also demonstrated its application inufeate-
lection and associative classifier construction [18, 9,174 ,3, 26,
8,24,5,6].
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If we divide the set of all itemset patterns into a set of eguiv
lence classes, where each equivalence class contains fateet-o
set patterns which are supported by the same set of inpaitan
tions, the closed itemsets are those maximal ones in eadtrequ
alence class. It is evident that the set of closed itemsejissts
a subset of all itemset patterns, and thus it is possibleentify
some parts of search space which are unpromising to geramate
closed itemsets and can be pruned. Thus, closed itemsatgnini
can be potentially more efficient than all itemset mining.eRa
the concise representation and high efficiency, many ahgos for
mining frequent closed itemsets have been proposed [2221,
19, 25, 11].

In each equivalence class of itemset patterns, if we calfrtime
imal ones itemset generators, similarly we get that the tello
itemset generators is a subset of all itemset patterns, tantsét
generator mining can be potentially more efficient thantathiset
pattern mining too. Itis also evident that the average lenfitem-
set generators tends to be smaller than that of all itemstgrpa
(or closed itemset patterns). Since one of the importanliGpp
tions of frequent itemset mining is to be used for featurect&in
and associative classifier construction. According to thieifdum
Description Length (MDL) Principle, generators are prafde in
tasks like inductive inference and classification amongttinee
types of itemset patterns (namely, all itemset patterosecl item-
set patterns,

Recently stream data became ubiquitous. One popular form of
such kind of data is a sequence of transactions arriving deror
continuously. They usually come at a high speed and haveaa dat
distribution that often evolves with time. Due to the unigtier-
acteristics of the stream data, it is not feasible to simplgpa the
algorithms originally designed for static datasets toastradata.
Hence several efforts have been devoted to frequent iteminetg
and closed itemset mining over stream data [23, 28, 7, 13lv-Ho
ever, to our best knowledge, there exists no algorithm whittes
frequent itemset generators over a stream sliding windadwilew
such an algorithm is very useful in building associativessifiers
over stream data.

In this paper, we introduce an efficient algorithm, StreamGe
mine frequent itemset generators over sliding windows ceast
data. It adopts the FP-Tree structure to concisely storedinsac-
tions of the current window, and devises a novel enumeratem
structure to keep all the mined generators and their borléne
non-generators. In the meantime, some optimization teciesi
are also proposed to accelerate the mining process. To deratmn
its utility, we further extend StreamGen to directly minasdifica-
tion rules over a stream sliding window. The experimentatpt
shows that StreamGen is efficient and achieves high cleetsific
accuracy.
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The contributions of the paper are summarized as follows.

e \We devise the first algorithm on mining frequent itemset gen-
erators over sliding windows on stream data, StreamGen.

e \We propose a novel enumeration tree structure and explores
some effective optimization techniques to enhance the effi-

ciency of the StreamGen algorithm.

the percentage of transactions that contgiiis called therelative
support In the following we will usesupportto denoteabsolute
supportandrelative supporinterchangeably when there is no con-
fusion, and useups to denote the support of itemsgt

Given a user specified minimum support threshalg,, ., we
have the following definitions.

DEFINITION 1. AnitemsefS is frequent if and only ifups >

e We extend StreamGen and devise an algorithm to directly supmin. L]

mine classification rules on a sliding window.

DEFINITION 2. A frequent itemset generator (or shortly gener-

¢ An extensive performance study was conducted, which showsator) S is a frequent itemset where there is no itenf$esuch that

that StreamGen is very efficient, outperforms other stéte-o
the-art algorithms performing similar tasks to StreamGen,
and achieves high accuracy in classifying categorical. data

The remainder of this paper is organized as follows. In $aai
we introduce the related work. In Section 3, we present tbblpm
statement. The details of StreamGen are discussed in Bektio
Section 5 describes the extended algorithm to mine claasdit
rules directly over a stream sliding window. The empirieagults
are shown in Section 6, and we conclude the paper in Section 7.

2. RELATED WORK

ZIGZAG [23] is an algorithm designed for mining all frequent
itemsets over a sliding window. The algorithm supports taig-
date, and hence outperforms other algorithms updating rams-t
action at a time when the batch size is large. [28] also dgaziBe-
guent itemset mining from transactional data streams. faf@ses
an algorithm called MOMENT to mine frequent closed itemsets
over a stream sliding window. It adopts the FP-Tree strectar
compress transactions in the current window, and an entimera
tree to maintain the mined closed itemsets. While CFI-$trpeo-
posed in [13] is another algorithm which only keeps closechgets
in its enumeration tree to further compress the storage ecelex-
ate the mining process. To our best knowldge, currentlyetieeno
algorithm which mines frequent itemset generators overeast
sliding window, although there exist several frequent gethgener-
ator mining algorithms for static dataset, such as GR-Grgh4],
DPM [16], and an algorithm for incremental mining of itemgen-
erators, such as [27].

One important application of frequent itemset mining istdiea
selection for building classification models. There aresg\pieces
of work which try to directly mine a set of itemset patternsdtas-
sification. The HARMONY algorithm [26] tries to directly nmen
k best rules for each transaction, and use them for buildindea r
based classifier. [8] proposes another algorithm to minekias-
sociative classification rules on gene data. [5] provesittiatma-
tion gain should be preferred to confidence in mining clasatifbn
rules, and proposes an algorithm using information gairetecs
rules. [6] further devises an algorithm called DDPMine tredily
mine rules using a sequential covering paradigm. There ialno
gorithm which directly mines a set of itemset generatorscfas-
sification. [10] tries to mine sequential generators fossifying
sequential data and achieves good accuracy.

3. PROBLEM STATEMENT

Given a set of item$={41, 42, . . ., i;}, @ transaction databade
consists of a set of transactions and a transaction is a tuglé,
T>, wheretid is the transaction identifier (or time stamp), and
TCI. An itemset (i.e., a set of itemsj is said to be contained
in a transaction<tid, T> if SCT holds. The number of transac-
tions containing itemsef is called theabsolute supporof S, and

S* C Sandsups+ = sups. O

DEFINITION 3. Anunpromising itemset is a frequent non-generator

itemset.]

COROLLARY 1. A frequent itemse§ is unpromising iff3S™
such thaS*| = |S| — 1 and sups* = sups. O

The main task of this work i$o mine the complete set of fre-
quent itemset generators from the most recent sliding windb
M transactions in a transactional data strearfio show the util-
ity of itemset generator mining, we will also discuss how timen
generator-based classification rules over a sliding windgure 1
shows a running example of transactional data stream wiitiiag
window size of 4.
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Figure 1: A Running Example of Transactional Stream Data.

4. THE STREAMGEN ALGORITHM

We introduce the StreamGen algorithm in details in thisieact
First, we present and prove some common properties whidh wil
be used in the algorithm design. Then, we introduce the ER-Tr
structure for storing transactions in the current slidirigdew in
Section 4.1, the enumeration tree structure in Sectiortde2ADD
operation in Section 4.3, and the REMOVE operation in Sactio
4.4, respectively. Finally, we will discuss how to combihe ADD
and REMOVE operations to get the integrated StreamGen algo-
rithm for mining itemset generators over a stream slidingdeiv
in Section 4.5.

Based on the definitions in Section 3, we have the following
properties.

THEOREM 1. Afrequent itemsef is a generator iff there exists
no subseS* such that.S*|=|S|—1 and sups+=sups.

PrRoOOF Sufficiency. Assume there does not exist a subSét
such thaiS*|=|S|—1 andsups+=sups, we prove that itemsef
must be a generator.

SupposeS is not a generator, then there must exist a subsét
that sups=supg=+. According to assumption that there does not
exist a subsetS™ such that|S*|=|S|—1 and sups+=sups, we



can conclude thafiS**|<|S|—1, sups«==sups, and there exists
at least one subsef* such thatS**CS*CS and |S*|=|S|—1.
However, according to the Apriori principle, we also knovatth
sups=+> sups«> sups must hold. Hence we further conclude
that sups+=sups, which contradicts the assumption.

Necessity It can be easily derived from Definition 2.1

THEOREM 2. Given a generatoiS, any subset of would be
also a generator.

PROOF AssumeS is a generator and has a non-generator subset
S*. Then there must exist a generator sulis&t of S* such that
sups+=sups+=. We could further conclude that for the itemset
U=5—(5"—S"") we haveU CS andsupy=sups, thus, we have
thatS is not a generator, which contradicts the assumptidn.

THEOREM 3. Given an unpromising items#t any superset of
S must be either unpromising or infrequent.

PROOF It can be easily derived from Theorem 2 and the Apriori
property. [

The above three theorems were used in several studies si4th as

Head Table

ID Table

Figure 2: The FP-Tree of the First Sliding Window.

Theorems 2 and 3 help define the border between generators and

non-generators, and form the foundation for the enumeratie
used in our algorithm. While with Theorem 1 we can check wéeth
an itemsetS is a generator or not by simply checking all the item-
sets which are a subset 8fand have a length df5|—1.

THEOREM 4. Given an itemseb and its supersef™ = S U
{z}, then for any itemseét” we have eithefS* NY|=|SNY|or
[S*NY|=|SNY|+ 1.

PROOF The proof of this theorem is obvious[]

The new property shown in Theorem 4 can be easily proved.
With theorem 4, we could know whether the state of an iteriset
will change to another or not when a new transactioarrives, and
it also helps the intersection calculation which will beradtuced
in Section 4.3.

THEOREM 5. Given two itemset§ and T, we haveS C T if
and only if[SNT| > |S] — 1.

ProoF Sufficiency. AssumdS N T| > |S| — 1, wehavgSNT|
=|5|, thusS C T holds.

Necessity AssumeS C T, we havelS N T'| = ||, thus|S N T|
>|S] —1holds. O

Theorem 5 is used later in both the ADD and REMOVE opera-
tions introduced in Sections 4.3 and 4.4.

4.1 FP-Tree

Like the Moment algorithm [7], we also adopt a variant of the
FP-Tree structure [12] to help maintain a concise reprasient of
the transactions in the current sliding window. The use oflFée
structure not only reduces the need for memory, but alsderedes
some operations such like support counting, etc.

The FP-Tree structure adopted in our algorithm is a varififteo
CET tree used by Moment. That is, it keeps not only the frejuen
items, but also the infrequent items for further processBegsides,
the items are not sorted by supports, but in lexicograptdermnto
avoid re-sorting the items each time as the sliding windoweso
Note that with an FP-Tree structure it is no longer necestary
keep any transactions in the sliding window, and all therimfation
could be retrieved or calculated easily from FP-Tree.

Figure 2 shows the FP-Tree built from the first sliding window
of the running example shown in Figure 1. We notice that astran
action ID table is used to map all those transactions in tiheenot
sliding window to those FP-Tree nodes which contain theifiesh
in the sorted itemset of each transaction.

4.2 The Enumeration Tree

In the algorithm we use an enumeration tree to help maintein t
whole relationship between itemsets and the mined generatbe
idea of using enumeration tree was inspired by [7]. Thererase
types of tree nodes in the enumeration tree.

e Infrequent Node: An infrequent node represents an infre-
guent itemset. Note that in our algorithm we only keep those
infrequent nodes which do not have infrequent uncles (i.e.,
the nodes which have the same parent node with the parent
node of the corresponding infrequent node).

Unpromising Node An unpromising node represents an un-
promising itemset. Like the infrequent node we only keep
those unpromising nodes which do not have unpromising un-
cles.

Generator Node A generator node represents a frequent
generator itemset. In our algorithm we keep all the frequent
generators in the current sliding window.

Note that we do not need the gateway node used in [7], since ac-
cording to Theorem 2 there is no non-generator node whassée
is a subset of the itemset of some generator nodes. Furtherthe
existence of infrequent and unpromising nodes forms thedraf
the generators to the non-generators in the enumeratien tre

To accelerate the checking operation on whether an iteraset i
a generator or not, we adopt a hash table structure whoseskey i
the sum of items in one itemset, and whose value is a pointeeto
enumeration tree node which contains the itemset. Eachindde
same level is stored in a same hash table. Hence it is verylusef
focus on the desired nodes by only checking one hash tablsavho
level is smaller by one than the level of current node.

As described above, instead of pruning all infrequent naaes
unpromising nodes from the enumeration tree, we only priooset
infrequent nodes and unpromising nodes which have an inéreq
or an unpromising uncle node. The reason we adopt this gjrate
is that the ‘complete pruning’ may cost a lot when either addir
removing a transaction, and the saved time by ‘completeipgin
could not even offset the time used in ‘complete pruninglits

Figure 3 shows the enumeration tree built from the first stidi
window of the running example. An ellipse with solid line Isty
indicates a generator node, an ellipse with dotted linee stydii-
cates an unpromising node, and a rectangle with dotted tite s



indicates an infrequent node. Note that the emptyzsét treated
as a valid itemset in this paper, and the minimum absolutpatip
threshold here is set at 2.

Figure 3: The Enumeration Tree of the First Sliding Window.

4.3 The ADD Operation

The ADD operation in StreamGen mines and maintains the set ¢,tion of newChild(

of frequent generators when a new transaction arrives. rBefe
introduce the details of the ADD operation, we first prove som
properties which are helpful in understanding the algarith

THEOREM 10. When an infrequent node becomes a generator
node, all its newly added child nodes will be either infregfuer
unpromising.

PrROOF When an infrequent node becomes a generator node,
it must satisfysup, = supmin. Hence any new frequent child
node ofn, n*, must satisfsup,, = sup,~ and thus is an unpromis-
ing node; and all its infrequent children are infrequentesod []

Theorem 10 is very useful since it guarantees that we do reat ne
to check the new child nodes if they are generator nodes,hwhic
saves much time.

After introducing the properties related to itemset getwesawe
will discuss how to explore these properties to design aniefft
generator mining algorithm (i.e., the ADD operation) upensiv-
ing a new transaction.

Before we elaborate on the ADD operation, we first introduce a
sub-proceduregzplore(n), which is shown in Algorithms 1 and
describes how to explore a node Note that the algorithm calls a
n, i) which is used to create a new child
node of noden with an itemset ofitemset,U {i}. The algo-
rithm creates the child node by merging the itemset of nodath
the lexicographically largest item of the itemset of oneusf sib-

THEOREM 6. During the ADD operation, a generator node would lings which have the same parent as naddt also re-creates the

never change its type.

PROOF. Given a generator nodewhose corresponding itemset
isitemset,, we have that for any itemsStCitemset,, sups>supn
holds. If the new transaction is a supersetteinset.,, the support
of itemsets and all its subsets would all increase by one, hence
would remain a generator node. While if the new transacgorot
a superset oftemset,,, only some subsets éfemset,, would get
their support increased by one and thustill remains a generator
node. [

This theorem indicates that we only need to care about the sup
port update of a generator node, but do not need to consider th
change of its node type since it would never happen.

THEOREM 7. If the itemset of an unpromising node is a subset
of the new transaction, the node would not change its type.

PROOF A noden whose itemset igtemset,, iS unpromising
means there exists a subsgtof itemset,, satisfying sups
Supitemset, - |f itemset, is a subset of the new transaction, the
support of bothitemset,, and its subse§ will be all increased by
one, hence node remains an unpromising node[]

THEOREM 8. Given a new transactiofl’, if an unpromising
noden whose itemset istemset,, becomes a generator node it
must satisfyitemset, N T| = |itemset,|—1.

PROOF If |itemset, N T'|<|itemset,|—1, then there does not
exist any subse$ of itemset,, satisfying|S|=|itemset,|—1 and
gets its support increased by one. Henagould remain unpromis-
ing according to Theorem 1. |ftemset, NT| > |itemsetn| —

1, we could know that its type would also not change according t
Theorem 7. [

THEOREM 9. Given a new transactioff’, if a noden whose
itemset isitemset,, satisfies|itemset, NT| < |itemsetn| — 1,
the state of nodex and all its descendant nodes will remain un-
changed.

PROOF We could easily prove that the node type would not
change according to Theorems 6 and 8. Furthermore, we caa pro
that all its descendants would also satisfy the conditiotiisfthe-
orem according to Theorem 4. Hence the state of moded all its
descendant nodes will remain unchange(]

child nodes which were pruned out due to the existence of an in
frequent or unpromising uncle node, and hence extends tlieho
of the enumeration tree. Note that we only need to re-gem¢hat
child nodes with only one level lower, since Theorem 10 assur
that all the newly added child nodes of a generator node which
are infrequent nodes would become either infrequent oramjs-

ing. When an unpromising node becomes a generator node af-
ter receiving a new transactidf, it must satisfy|itemset, N T|

= |itemsetn| — 1 according to Theorem 8. Hence any new fre-
quent child nodex” would satisfylitemset,, N T'| = |itemsetn, |

— 1 or |itemset,, NT| < |itemsetn,| — 1 according to Theo-
rem 4. If we havditemset,, NT| < |itemset,,| — 1, the new
child can be safely skipped according to Theorem 9. If we have
|itemset,, N'T| = |itemset,,| — 1 and the new child node is a
generator, it will be traversed later.

Algorithm 1: explore(n)

Input : A noden of the enumeration tree.
1 begin
2 foreach z€{y|parenty=parenty, MATitemset, >
MATitemset, » Y IS @ generato} do
3 newChild(n, maZitemset, );
4 foreachz € {y|parent, = parentn, MaTitemset, <
MATitemset, , Y IS @ generatof do
5 if not hasChild(z, mazitemset,, ) then
newChild(x, maxitemset, )
7 end

Algorithm 2 gives the details of the ADD operation, from winic
we see that it uses a right-to-left, top-down updating styat The
top-down strategy is necessary due to the fact that the oigeok
whether a node is a generator node or not must examine thdes no
which are on a higher level in the enumeration tree and hdmset
nodes must have been updated before updating the curreet nod
While a right-to-left strategy is used due to the fact thelenodes
used in Algorithms 1 are all on the right side to the currerdeno
and hence we must assure those nodes have already beed dreate
they do not exist in the last sliding window.

The algorithm determines how to deal with the update accord-
ing to whethelitemset,, N T is equal to, less than, or great than
|itemset, N T|—1.



Algorithm 2 add(r, T)

Input : The root node of the enemuration treeand the newly
arrived transactior".
1 begin
2 enqueue(r);
3 while g is not emptydo
4 n < dequeue();
5 if |itemset, NT| = |itemset, NT| — 1 then
6 if n is unpromisinghen
7 identify(n);
8 if n is unpromisinghen
9 continue;
10 explore(n);
11 foreach cn € childreny, in reversed ordedo
12 if cn is not infrequenthen
13 enqueue(cn);
14 else
15 if |itemset, N T|>|itemset, N'T|—1then
16 Supn — supn + 1;
17 if n is unpromisinghen
18 continue;
19 if n is infrequentthen
20 if supn < supmin then
21 continue;
22 identify(n);
23 if n is generatorthen
24 explore(n);
25 else
26 foreach cn € children, in reversed ordedo
27 enqueue(cn);
28 M < MaTitemsety,
29 foreachi € {c|c € T,c > m} do
30 if node {itemset, — {m}yu{i} IS geNerator
then
31 newChild(n, i);
32 end

In addition, there is no need to calculate the itemset ipt#isn
every time. Since according to Theorem 4 we can always atkul
the intersection incrementally from the last intersecteomd hence
save a lot of time. Note that in our algorithm we do not prure al
the infrequent and/or unpromising nodes whose itemsetsuger-
sets of the itemsets of some infrequent and/or unpromisats
due to the potential cost of rebuilding those nodes in a lidr
ing window and the significant pruning cost. The sub-procedu
identify(n) is used for updating the type information of current
node.

Figure 4 illustrates the enumeration tree built from the isl-
ing window after adding a new transaction (i.e., the tratisaevith
an ID of 5).

Figure 4: The Enumeration Tree after Adding a Transaction.

Finally, we could easily prove the number of nodes in the enu-
meration tree does not decrease during the ADD operation.

4.4 The REMOVE Operation

We will introduce the REMOVE operation in this section, whic
mines and maintains frequent itemset generators upon iamau
old transaction.

THEOREM 11. During the REMOVE operation, an unpromis-
ing node would never change its type unless it becomes irdreq
or is pruned.

PROOF Given an unpromising node, we know that there ex-
ists an itemse$' such thatS C itemset,, andsups = supitemset,, »
which means a removed transactibreither contains bott$' and
itemsety, Or contains neither of anditemset,,. Thus, by remov-
ing transactionT’, the relationship betweef anditemset,, re-
mains unchanged, namelyCitemset,, andsups = supitemset,,
still hold. [

THEOREM 12. By removing a transactiofi’, a generator node
n would not change its type if it satisfiggemset,, N T'| > |itemsety|
— 1.

PROOF Sincen is a generator node, there does not exist any
subsetS such thatS|=|itemset, |—1 andsups=sup,. The con-
dition of |itemset,, N T'|>|itemset,|—1 meansl’ containsitemsety,
thus, by removing transactidh, not only the support of but also
the support of all its subsets would be decreased by one.dHaec
noden would not change its type unless it becomes infrequeni.

THEOREM 13. By removing a transactiofi’, a generator node
n would become an unpromising node only when it satigfiesiset,, N T|
= |itemset,| — 1 and sup(itemset, NT) = supn + 1.

PROOF. As a generator node becomes unpromising after re-
moving transactior?’, according to Theorem 1, there must exist
at least one subsef such that|S|=|itemset,|—1 and its sup-
port sups becomes exactlpupitemset,. AS the deletion ofl’
can at most decreaseps by one, thusups = sup, + 1 must
hold before removindg’, and we can derive that the only condi-
tion which makes a generator nodédbecomes unpromising is that
|itemset, NT| = |itemsetn| — 1 and sup(itemset, NT) =
sup, + 1. O

THEOREM 14. In removing an old transactioff’, if a noden
whose itemset iBemset,, satisfiegitemset, N T| < |itemsety|
— 1, the state of node and all its descendant nodes will remain
unchanged.

PROOF The proof is similar to that of Theorem 9]

After introducing some nice properties of the generatoresod
and the unpromising nodes which can be used to enhance the ef-
ficiency of mining and maintaining the set of frequent getws
during the REMOVE operation, we now turn to the algorithm for
the REMOVE operation. Algorithm 4 shows the details of the
REMOVE operation. Like the ADD operation, we also adopt a
right-to-left and top-down updating strategy here. Theodthm
also determines how to deal with the update according totvehnet
|itemset, N T'|is equal to, less than, or great thatemset,, N T'|
— 1.

The REMOVE operation invokes a procedurksan(), which is
depicted in Algorithm 3. Algorithm 3 is used to clean thosee®
some of whose uncle nodes change their types to infrequent or
unpromising. In Algorithm 3, the functiodeanChildren(n) is
used to clean all child nodes of nodeand function-emoveChild(n, i)
is used to remove the child node of nedehose itemset igemset,,

U {il.



Algorithm 3: clean(n)

Input : A noden of the enemuration tree.
1 begin
2 cleanChildren(n);
3 foreachx € {y|parent, = parent,, MaTitemset, <

MATitemset,, , Y IS & generato} do
if hasChild(x, mazitemset,, ) then
z < getChildren(x, mazitemset., )
if z is generatorthen
clean(z)
removeChild(parent., maZitemset, )

© O ~NO g AN

end

Algorithm 4 remove(r)

Input : The root node- of the enemuration tree.
1 begin
2 T <« the oldest transaction in sliding window;
3 enqueue(r);
4 while ¢ is not emptydo
5 n < dequeue();
6 if |itemset, NT| = |itemset, NT| — 1then
7 if n is generatorthen
8 tdentify(n);
9 if n is unpromisinghen
10 clean(n);
11 else
12 foreach z€childreny, in reversed ordedo
13 if x is generatorthen
14 enqueue(z);
15 else
16 if |itemset, N T|>|itemset, N'T|—1then
17 SUpn — supn — 1;
18 if nis infrequentand sup, = 0 then
19 removeChild(parenty, maZitemset,, );
20 else
21 if supn < supmqin then
22 if n is generatorthen
23 clean(n);
24 setn as infrequent;
25 else
26 if n is generatorthen
27 foreach yechildren, in reversed
orderdo
28 enqueue(y);
29 end

Algorithm 4 shows the details of th& EM OV E operation.
Like the ADD operation, we also adopt a right-to-left and top-
down updating strategy here.

Figure 5 depicts the enumeration tree built from the sectidd s
ing window (namely, after adding a new transaction with arofD
5 and removing an old transaction with an ID of 1).

Similarly, we could prove the number of nodes in the enumera-
tion tree would not increase during the REMOVE operation.

Figure 5: The Enumeration Tree of the 2nd Sliding Window.

ADD REMOVE
Type|z<yJz=ylz>ylz<ylz=ylz>y
G G G G G G/U IIG
U ] G/U U ] U 18]
| | | I/IG/U | | |

Table 1: Transforming matrix for Add and Remove operations
(x = |itemset, N T, y = |itemset,| — 1, G = Generator, U =
Unpromising, | = Infrequent)

ation tree structure to maintain the set of generators (tenpial
generators), the ADD operation and the REMOVE operation, we
can easily derive the integrated StreamGen algorithm te rfra
quent itemset generators over a stream sliding window. The F
tree like structure and the enumeration tree structurendialized

to empty. After receiving a new transaction, StreamGenopars

the ADD operation as shown in Algorithm 2, and if the size @& th
current sliding window exceeds the user-specified slidiimgpaw
size, it then performs the REMOVE operation as shown in Algo-
rithm 4. The set of generators for the current sliding windew
always maintained and can be found in the enumeration tree. |
addition, although the above StreamGen algorithm minegrgen
tors over a stream sliding window, we need to point out that we
can easily turn it into an incremental algorithm if we do npply

the REMOVE operation, as the ADD and REMOVE operations are
totally independent of each other.

Note that since the two operations are not related, we cautd ¢
bine them freely for specific environments. For example, & w
only adopt ADD operation, we could easily get an incremeatal
gorithm.

5. EXTENSION FOR MINING CLASSIFICA-
TION RULES

Since one important application of itemset generator ngirgro
construct concise classification rules, we further extbedStream-
Gen framework to directly mine generator-based classidicatles.

Since the complete set of frequent itemset generators éaut
rent sliding window are maintained in the enumeration tteecs
ture, it is straightforward to retrieve all the generatament the
enumeration tree, which can be further used to build classifi

From the above analysis we could easily see that both ADD and tjon rules. Algorithm 5 shows the framework StreamGenRifdes
REMOVE operations determine how to update the enumeration ¢|assification rule construction. It adopts the informatigin as a

tree according to whethgitemset,, N T'| is equal to, less than, or
greater thatjitemset, N T| — 1, whereitemset,, is the itemset
represented by any a noden the treeT" is the transaction being
added to (or removed from) the current sliding window. Hemee
summarize the transforming matrix in Table 1.

4.5 The Integrated StreamGen Algorithm

After introducing some properties, the FP-tree like stitestto
store the transactions of the current sliding window, theneer-

measure of discriminative ability which has been proveteodhan
confidence in [5]. Note that it very easy to change our frantewo
to the confidence-based.

It is very easy to prove that all the itemsets in the same equiv
alence class have the same information gain (and, the sanfie co
dence) due to the fact they have the same supporting seteliesc
generators could represent all the discriminative rules.

In Algorithm 5, the function getGenerators is used to tragehe
whole enumeration tree and return all the generators, henvexe



Algorithm 5: StreamGenRules(n)

Input : The root node: of the enemuration tree.
1 begin
2 nodes < getGenerators(n);
3 sortnodesby info-gain;
4 rules < 0;
5 foreach cn € nodes do
6 if Vr € rules,r ¢ cnthen
7 if cn covers at least one transactidhen
8 rules < rules U {cn};
9 remove covered transactions;
10 if no more transactionthen
11 break;
12 return rules;
13 end

could apply a pruning technique in the function which pruaks
those unpromising child nodes whose information gain isllema
than their ancestors and return only a subset of (and som&tinly
a small subset of) high quality generators.

The algorithm can be easily adapted to mine a set of rules cov-
ering each transaction more than one time. However, thegehan
could cause the loss of pruning powegit Generators(n) which
could prune a great many of unpromising generators. Bediua®
is no evidence that covering each transaction more thanioms t
could provide a better accuracy [22].

The StreamGenRules framework seems much like the DDPMine
[6] algorithm at the first glance. Both algorithms use infarm
tion gain as the discriminative measure, and the sequertial
ering paradigm to select rules. However, there exists dfiignt
difference between StreamGenRules and DDPMine. StreamGen
Rules tries to find the best rules from the generators whieh ar
computed from the full set of transactions in the currerdisg
window, while DDPMine tries to find the best discriminativdas
from those transactions which have not been covered and/ezino
Hence the rules found by StreamGenRules are globally optima
while DDPMines finds only those locally optimal rules, thhe t
rules returned by StreamGenRules tend to have better agcura
classification. From the experimental results in Sectidh\@e
could easily validate that our method can achieve a betteu-ac
racy on average. Actually, our algorithm accords with treaifirst
proposed in [26], which tries to find one most discriminatiuée
for each transaction.

6. EXPERIMENTAL RESULTS

In this section we evaluate the performance and classiitati
accuracy of our StreamGen algorithm in comparison with rsdve
state-of-the-art algorithms. The performance study waslacted
on a computer with Intel Core Duo 2 E6550 CPU and 2GB memory
installed. A set of UCI datasets were used in the experimant$
Table 2 shows the dataset characteristics. The datasdtgwet
class labels were used in classification accuracy evatyatibile
the datasets with multiple class labels, and the horse astirmom
datasets were used in performance test. Note all theseetiatas
publicly available and have been used widely in evaluatergous
data mining algorithms.

6.1 Performance Evaluation

As there is no existing algorithm which mines frequent item-
set generators over a sliding window, we evaluate the ruméffi-
ciency of StreamGen algorithm in comparison with threeestedt
the-art algorithms which perform a similar task to StreamGlkhe
first algorithm is Moment which mines frequent closed itetase

[ Dataset | #ltems] #tran. [ #Pos. | #Neg. | Avg. Len. |

mushroom| 116 8,124 | 4,208 | 3,916 21.695
horse 89 368 232 136 16.769
adult 128 48,842 | 11,687 | 37,155 13.868
breast 45 699 458 241 8.977

hepatitus 55 155 32 123 17.923
pima 40 768 500 268 8
chess 75 3,196 - - 37

connect 129 67,557 - - 43

pumsb 2,113 | 49,046 - - 74

Table 2: Dataset characteristics.

over a stream sliding window [7], the second one is DPM which
mines frequent itemset generators and frequent closedétsnmn
equivalence classes [16], and the third one is DDPMine wtich
rectly mines classification rules [6].

6.1.1 Comparison with Moment

We used four datasets, mushroom, chess, pumsb, and cahnect-
to compare the performance of StreamGen with Moment. Fi§ure
shows the efficiency comparison on mushroom dataset witidl-a sl
ing windows size oft, 000 and2, 000, respectively.
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Figure 6: Runtime comparison with MOMENT

Figure 7 depicts the evaluation results on chess datasktawit
sliding window size of2,000 and 1, 000, respectively. From the
results we could find that our algorithm is significantly &asthan
Moment algorithm on datasets mushroom and chess.
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Figure 7: Runtime comparison with MOMENT

We also evaluated the algorithm on dataset pumsb, and Figure
8 shows the result on a sliding window sizel®f, 000 and2, 500,
respectively. We see that StreamGen outperforms Momenbst m
cases except when the support is extremely high. We do neitero
the result corresponding to the supportOof, since Moment ran
out of all the available memory (i.e2G B) while our algorithm
consumed less thard0M B memory.

Figure 9 demonstrates the results on connect-4 datasetawith
sliding window size 060, 000 and 30, 000, respectively. The re-
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Figure 8: Runtime comparison with MOMENT

sults indicate a similar result that our algorithm outperfe Mo-
ment in all situations. Note that we do not provide the resuola
lower sliding window size as Moment could not finish in an gatee
able time.
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Figure 10 a) shows the comparison results on mushroom datase

with a sliding window size oft, 000. DPM'’s performance is very
stable when the minimum support varies, while our algorituuld
be a little slower when the support becomes lower. Howeter, t
advantage of our algorithm is evident. We could see from feigu
10 a) that our algorithm is orders of magnitude faster thaMDP
Figure 10 b) shows the results on chess with a sliding windee/ s
of 1, 000, which is similar to that on mushroom.
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Figure 10: Runtime comparison with DPM

We also evaluated the performance on connect-4 datasetwith

sliding window size of67, 000. We did not provide the result on
other window size because DPM is too slow and could not fimish i
an acceptable time. Note th@it, 000 is almost the biggest window
Minimum Support Threshold (n %) Minimum Support Threshold (in %) size given the whole size of connect-4 @&f, 557. The result in

a) dataset = connect, b) dataset = connect, Figure 11 a) shows our algorithm outperforms DPM signifiyant
window_size = 30,000 window_size = 60,000 Figure 11 b) provides the result on pumsb with an extremely
. . . . large sliding window size 019, 000 compared with the size of the

Figure 9: Runtime comparison with MOMENT g 9 ’ b

entire dataset49, 046. We do not provide the results on a lower

sliding window size as DPM cannot finish in an acceptable time
Table 3 compares the peak memory usage on the datasets useWe see that our algorithm is more efficient than DPM.

above with the lowest minimum support used in performanse te
We see that StreamGen always uses less memory than Moment,
thus StreamGen is more memory efficient.

| Dataset | window_size | supmin | Moment | StreamGen|

mushroom 4,000 0.1 14,476 10,108
mushroom 2,000 0.1 12,504 8,472
chess 2,000 0.6 103,180 31,636
chess 1,000 0.75 34,624 9,176
connect-4 60,000 0.95 141,756 98,236
connect-4 30,000 0.998 73,056 52,372
pumsb 10,000 0.7 1,732,136 75,316
pumsb 2,500 0.75 90,944 23,472

Table 3: Peak memory usage comparsion

6.1.2 Comparison with DPM
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Figure 11: Runtime comparison with DPM

1.3 Comparison with DDPMine

We also compared the efficiency of StreamGen with DDPMine

in terms of mining classification rules directly from the akts.

To our best knowledge, DPM is the newest and fastest algorith  Similar to DPM, we also adapt DDPMine to mine classification
for mining frequent itemset generators. A naive way to adlapt rules in stream data setting by running DDPMine on eachrgjidi
to mine frequent itemset generators over a stream slidimglow window having full window size (we denote the DDPMine-based

is to run DPM on each new sliding window (In the following we

approach by DDPMine-stream). Figure 12 a) provides the com-

denote this approach by DPM-stream). Our performance compa parison results on mushroom dataset with a large slidinglavin
ison between StreamGen and DPM-stream in the data stream setsize of8, 000 for mining classification rules. We could easily find
ting shows that DPM-stream is not feasible in terms of ruatim that DDPMine-stream is much slower than StreamGen. Agtuall

efficiency. Note that the runtime of DPM-stream is measurdg o

even one round running of DDPMine-stream on one sliding win-

on the sliding windows with a full size, which means we igbre  dow is much longer than the total time of StreamGen on alirglid
the time period for DPM-stream before the sliding windowctess windows.

Figure 12 b) shows the results on horse dataset with a sliding
runtime of DPM-stream is even longer and DPM-stream coutd no window size of600. We see that DDPMine-stream uses nearly

terminate in an acceptable time on most datasets. 1, 000 seconds while StreamGen uses less than one second. In fact,

its full size. If this period is also considered for DPM-sine, the



Dataset StreamGen DDPMine
Accuracy | max. fen.] avg. len.] avg. num.| Accuracy [ max. Ien.] avg. len.] avg. num.
breast 96.708 3 1.551 23.6 95.28 9 2.448 11.6
adult 82.146 3 1.831 13 81.292 14 4583 7.2
mushroom| 98.918 3 1.958 9.6 97.184 22 15.592 16.2
hepatitus 82.006 4 2.387 15 76.986 8 4.8 5
horse 81.512 2 1.389 3.6 81.246 20 4.88 10
pima 74.87 4 1.663 18.4 75.124 7 2.435 12.6

Table 4: Classification accuracy and some related statistid information of the mined rules (supmin = 0.1).

the total runtime of StreamGen on all sliding windows ovez th
entire dataset is shorter than the runtime of DDPMine-sirea
only one sliding window.
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Figure 12: Runtime comparison with DDPMine

6.2 Classification Accuracy Evaluation

Similar to the state-of-the-art classification rule minatgorithm,
DDPMine, StreamGen builds a SVM classification model wigh it
features based on those mined association rules. We codntbere
classification accuracy using the five-fold cross-valmatcheme.

StreamGen DDPMine
38 17 39
1225 5781113151617 181920 26
1325 81718
767 5791314151617 1819 20 40 41 46 53 54
66 27911131415161718192021384044535476
768 2791113141516 1718192028 384044535476
1118 2791113141516 1718192032 3840535465 76
618 37 27911131415161718192022 323840535476
453 2791113141516 17 181920 28 3238 40 46 53 54 76
2791113141516 17 1819202132 384045465354 76
2791113141516 17 18192021 3234384046 485354 76

Table 5: One example of the classification rules mined by
StreamGen and DDPMine @ataset = mushroom, supmin =
0.1).

challenging problem of mining frequent itemset generatwes a
data stream sliding window. We devise a novel enumeratiea tr
structure to help maintain the information of the mined gane
tors and the border between generators and non-generatdes.
also propose some effective optimization techniques andloje
the StreamGen algorithm. The comprehensive performancky st
shows that StreamGen outperforms several state-of-thelgo-
rithms in terms of efficiency and classification accuracy.

Table 4 shows the accuracy comparison between StreamGen and

DDPMine and some statistical information of the mined rées.,
the average pattern length, the maximum pattern length,tlznd
average number of patterns) for datasets breast, adulhroums,
hepatitus, horse, and pima, with a minimum support of 0. Iririgu
the experiment, DDPMine ran on the entire dataset, whileastr
Gen ran with a window size equal to the dataset size (That snean
there is only one sliding window for StreamGen).

We see that StreamGen achieves better accuracy than DDPMin
in most cases, which validates that StreamGen is effeativein-
ing classification rules over stream data with high accuréégcan

also observe that the rules mined by StreamGen is much shorte
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than those mined by DDPMine. We have to concede that the num-

ber of rules mined by StreamGen is usually larger than thaGi?-
Mine, which is due to the fact that DDPMine always tries to find
an optimum rule for the remaining transactions and thusllysua
outputs a smaller number of rules in practice. However, tire s
plicity of the rules is more important since simpler rules dm®
better understood and explained. Table 5 shows an examge of
rules mined by StreamGen and DDPMine in one of the five folds
on the mushroom dataset with a supporaf. We could easily
find that the rules mined by StreamGen are significantly smpl
Note we have tried some other support thresholds (e.g.) €085
these datasets, and got similar comparison results.

7. CONCLUSIONS

Many previous studies have shown that mining itemset gener-
ators is very meaningful from the classification point ofwiac-
cording to the MDL principle. In this paper, we explore a newd a
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