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ABSTRACT
Mining generator patterns has raised great research interest in re-
cent years. The main purpose of mining itemset generators isthat
they can form equivalence classes together with closed itemsets,
and can be used to generate simple classification rules according
to the MDL principle. In this paper, we devise an efficient algo-
rithm called StreamGen to mine frequent itemset generatorsover a
stream sliding window. We adopt a novel enumeration tree struc-
ture to help keep the information of mined generators and thebor-
der between generators and non-generators, and propose some op-
timization techniques to speed up the mining process. We further
extend the algorithm to directly mine a set of high quality classifica-
tion rules over stream sliding windows while keeping high perfor-
mance. The extensive performance study shows that our algorithm
outperforms other state-of-the-art algorithms which perform simi-
lar tasks in terms of both runtime and memory usage efficiency, and
has high utility in terms of classification.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing

General Terms
Algorithms, Experimentation, Performance

Keywords
Stream Data, Sliding Window, Itemset Generator, Feature Selec-
tion, Classification

1. INTRODUCTION
Frequent itemset mining is one of the essential data mining tasks.

Since it was firstly proposed in [1], various algorithms havebeen
proposed, including Apriori [2] and FP-growth [12] algorithms.
Many studies have also demonstrated its application in feature se-
lection and associative classifier construction [18, 9, 14,17, 3, 26,
8, 24, 5, 6].
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If we divide the set of all itemset patterns into a set of equiva-
lence classes, where each equivalence class contains a set of item-
set patterns which are supported by the same set of input transac-
tions, the closed itemsets are those maximal ones in each equiv-
alence class. It is evident that the set of closed itemsets isjust
a subset of all itemset patterns, and thus it is possible to identify
some parts of search space which are unpromising to generateany
closed itemsets and can be pruned. Thus, closed itemset mining
can be potentially more efficient than all itemset mining. Due to
the concise representation and high efficiency, many algorithms for
mining frequent closed itemsets have been proposed [20, 21,29,
19, 25, 11].

In each equivalence class of itemset patterns, if we call themin-
imal ones itemset generators, similarly we get that the set of all
itemset generators is a subset of all itemset patterns, and itemset
generator mining can be potentially more efficient than all itemset
pattern mining too. It is also evident that the average length of item-
set generators tends to be smaller than that of all itemset patterns
(or closed itemset patterns). Since one of the important applica-
tions of frequent itemset mining is to be used for feature selection
and associative classifier construction. According to the Minimum
Description Length (MDL) Principle, generators are preferable in
tasks like inductive inference and classification among thethree
types of itemset patterns (namely, all itemset patterns, closed item-
set patterns,

Recently stream data became ubiquitous. One popular form of
such kind of data is a sequence of transactions arriving in order
continuously. They usually come at a high speed and have a data
distribution that often evolves with time. Due to the uniquechar-
acteristics of the stream data, it is not feasible to simply adapt the
algorithms originally designed for static datasets to stream data.
Hence several efforts have been devoted to frequent itemsetmining
and closed itemset mining over stream data [23, 28, 7, 13]. How-
ever, to our best knowledge, there exists no algorithm whichmines
frequent itemset generators over a stream sliding window, while
such an algorithm is very useful in building associative classifiers
over stream data.

In this paper, we introduce an efficient algorithm, StreamGen, to
mine frequent itemset generators over sliding windows on stream
data. It adopts the FP-Tree structure to concisely store thetransac-
tions of the current window, and devises a novel enumerationtree
structure to keep all the mined generators and their border to the
non-generators. In the meantime, some optimization techniques
are also proposed to accelerate the mining process. To demonstrate
its utility, we further extend StreamGen to directly mine classifica-
tion rules over a stream sliding window. The experimental study
shows that StreamGen is efficient and achieves high classification
accuracy.
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The contributions of the paper are summarized as follows.

∙ We devise the first algorithm on mining frequent itemset gen-
erators over sliding windows on stream data, StreamGen.

∙ We propose a novel enumeration tree structure and explores
some effective optimization techniques to enhance the effi-
ciency of the StreamGen algorithm.

∙ We extend StreamGen and devise an algorithm to directly
mine classification rules on a sliding window.

∙ An extensive performance study was conducted, which shows
that StreamGen is very efficient, outperforms other state-of-
the-art algorithms performing similar tasks to StreamGen,
and achieves high accuracy in classifying categorical data.

The remainder of this paper is organized as follows. In Section 2,
we introduce the related work. In Section 3, we present the problem
statement. The details of StreamGen are discussed in Section 4.
Section 5 describes the extended algorithm to mine classification
rules directly over a stream sliding window. The empirical results
are shown in Section 6, and we conclude the paper in Section 7.

2. RELATED WORK
ZIGZAG [23] is an algorithm designed for mining all frequent

itemsets over a sliding window. The algorithm supports batch up-
date, and hence outperforms other algorithms updating one trans-
action at a time when the batch size is large. [28] also discusses fre-
quent itemset mining from transactional data streams. [7] proposes
an algorithm called MOMENT to mine frequent closed itemsets
over a stream sliding window. It adopts the FP-Tree structure to
compress transactions in the current window, and an enumeration
tree to maintain the mined closed itemsets. While CFI-Stream pro-
posed in [13] is another algorithm which only keeps closed itemsets
in its enumeration tree to further compress the storage and acceler-
ate the mining process. To our best knowldge, currently there is no
algorithm which mines frequent itemset generators over a stream
sliding window, although there exist several frequent itemset gener-
ator mining algorithms for static dataset, such as GR-Growth [15],
DPM [16], and an algorithm for incremental mining of itemsetgen-
erators, such as [27].

One important application of frequent itemset mining is feature
selection for building classification models. There are several pieces
of work which try to directly mine a set of itemset patterns for clas-
sification. The HARMONY algorithm [26] tries to directly mine
k best rules for each transaction, and use them for building a rule-
based classifier. [8] proposes another algorithm to mine top-K as-
sociative classification rules on gene data. [5] proves thatinforma-
tion gain should be preferred to confidence in mining classification
rules, and proposes an algorithm using information gain to select
rules. [6] further devises an algorithm called DDPMine to directly
mine rules using a sequential covering paradigm. There is noal-
gorithm which directly mines a set of itemset generators forclas-
sification. [10] tries to mine sequential generators for classifying
sequential data and achieves good accuracy.

3. PROBLEM STATEMENT
Given a set of itemsI={ i1, i2, . . ., il}, a transaction databaseD

consists of a set of transactions and a transaction is a tuple<tid,
T>, wheretid is the transaction identifier (or time stamp), and
T⊆I . An itemset (i.e., a set of items)S is said to be contained
in a transaction<tid, T> if S⊆T holds. The number of transac-
tions containing itemsetS is called theabsolute supportof S, and

the percentage of transactions that containS is called therelative
support. In the following we will usesupport to denoteabsolute
supportandrelative supportinterchangeably when there is no con-
fusion, and usesupS to denote the support of itemsetS.

Given a user specified minimum support thresholdsupmin, we
have the following definitions.

DEFINITION 1. An itemsetS is frequent if and only ifsupS ≥
supmin. □

DEFINITION 2. A frequent itemset generator (or shortly gener-
ator) S is a frequent itemset where there is no itemsetS∗ such that
S∗ ⊂ S andsupS∗ = supS . □

DEFINITION 3. An unpromising itemset is a frequent non-generator
itemset.□

COROLLARY 1. A frequent itemsetS is unpromising iff∃S∗

such that∣S∗∣ = ∣S∣ − 1 andsupS∗ = supS . □

The main task of this work isto mine the complete set of fre-
quent itemset generators from the most recent sliding window of
M transactions in a transactional data stream. To show the util-
ity of itemset generator mining, we will also discuss how to mine
generator-based classification rules over a sliding window. Figure 1
shows a running example of transactional data stream with a sliding
window size of 4.
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Figure 1: A Running Example of Transactional Stream Data.

4. THE STREAMGEN ALGORITHM
We introduce the StreamGen algorithm in details in this section.

First, we present and prove some common properties which will
be used in the algorithm design. Then, we introduce the FP-Tree
structure for storing transactions in the current sliding window in
Section 4.1, the enumeration tree structure in Section 4.2,the ADD
operation in Section 4.3, and the REMOVE operation in Section
4.4, respectively. Finally, we will discuss how to combine the ADD
and REMOVE operations to get the integrated StreamGen algo-
rithm for mining itemset generators over a stream sliding window
in Section 4.5.

Based on the definitions in Section 3, we have the following
properties.

THEOREM 1. A frequent itemsetS is a generator iff there exists
no subsetS∗ such that∣S∗∣=∣S∣−1 andsupS∗=supS .

PROOF. Sufficiency. Assume there does not exist a subsetS∗

such that∣S∗∣=∣S∣−1 andsupS∗=supS , we prove that itemsetS
must be a generator.

SupposeS is not a generator, then there must exist a subsetS∗∗

that supS=supS∗∗ . According to assumption that there does not
exist a subsetS∗ such that∣S∗∣=∣S∣−1 and supS∗=supS , we



can conclude that∣S∗∗∣<∣S∣−1, supS∗∗=supS , and there exists
at least one subsetS∗ such thatS∗∗⊂S∗⊂S and ∣S∗∣=∣S∣−1.
However, according to the Apriori principle, we also know that
supS∗∗≥ supS∗≥ supS must hold. Hence we further conclude
thatsupS∗=supS , which contradicts the assumption.

Necessity. It can be easily derived from Definition 2.

THEOREM 2. Given a generatorS, any subset ofS would be
also a generator.

PROOF. AssumeS is a generator and has a non-generator subset
S∗. Then there must exist a generator subsetS∗∗ of S∗ such that
supS∗∗=supS∗ . We could further conclude that for the itemset
U=S−(S∗−S∗∗) we haveU⊂S andsupU=supS , thus, we have
thatS is not a generator, which contradicts the assumption.

THEOREM 3. Given an unpromising itemsetS, any superset of
S must be either unpromising or infrequent.

PROOF. It can be easily derived from Theorem 2 and the Apriori
property.

The above three theorems were used in several studies such as[4].
Theorems 2 and 3 help define the border between generators and
non-generators, and form the foundation for the enumeration tree
used in our algorithm. While with Theorem 1 we can check whether
an itemsetS is a generator or not by simply checking all the item-
sets which are a subset ofS and have a length of∣S∣−1.

THEOREM 4. Given an itemsetS and its supersetS∗ = S ∪
{x}, then for any itemsetY we have either∣S∗ ∩ Y ∣= ∣S ∩ Y ∣ or
∣S∗ ∩ Y ∣ = ∣S ∩ Y ∣ + 1.

PROOF. The proof of this theorem is obvious.

The new property shown in Theorem 4 can be easily proved.
With theorem 4, we could know whether the state of an itemsetS

will change to another or not when a new transactionY arrives, and
it also helps the intersection calculation which will be introduced
in Section 4.3.

THEOREM 5. Given two itemsetsS andT , we haveS ⊆ T if
and only if∣S ∩ T ∣ > ∣S∣ − 1.

PROOF. Sufficiency. Assume∣S ∩ T ∣> ∣S∣ − 1, we have∣S ∩ T ∣
= ∣S∣, thusS ⊆ T holds.

Necessity. AssumeS ⊆ T , we have∣S ∩ T ∣= ∣S∣, thus∣S ∩ T ∣
> ∣S∣ − 1 holds.

Theorem 5 is used later in both the ADD and REMOVE opera-
tions introduced in Sections 4.3 and 4.4.

4.1 FP-Tree
Like the Moment algorithm [7], we also adopt a variant of the

FP-Tree structure [12] to help maintain a concise representation of
the transactions in the current sliding window. The use of FP-Tree
structure not only reduces the need for memory, but also accelerates
some operations such like support counting, etc.

The FP-Tree structure adopted in our algorithm is a variant of the
CET tree used by Moment. That is, it keeps not only the frequent
items, but also the infrequent items for further processing. Besides,
the items are not sorted by supports, but in lexicographic order to
avoid re-sorting the items each time as the sliding window moves.
Note that with an FP-Tree structure it is no longer necessaryto
keep any transactions in the sliding window, and all the information
could be retrieved or calculated easily from FP-Tree.

Figure 2 shows the FP-Tree built from the first sliding window
of the running example shown in Figure 1. We notice that a trans-
action ID table is used to map all those transactions in the current
sliding window to those FP-Tree nodes which contain the firstitem
in the sorted itemset of each transaction.
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Figure 2: The FP-Tree of the First Sliding Window.

4.2 The Enumeration Tree
In the algorithm we use an enumeration tree to help maintain the

whole relationship between itemsets and the mined generators. The
idea of using enumeration tree was inspired by [7]. There arethree
types of tree nodes in the enumeration tree.

∙ Infrequent Node: An infrequent node represents an infre-
quent itemset. Note that in our algorithm we only keep those
infrequent nodes which do not have infrequent uncles ( i.e.,
the nodes which have the same parent node with the parent
node of the corresponding infrequent node).

∙ Unpromising Node: An unpromising node represents an un-
promising itemset. Like the infrequent node we only keep
those unpromising nodes which do not have unpromising un-
cles.

∙ Generator Node: A generator node represents a frequent
generator itemset. In our algorithm we keep all the frequent
generators in the current sliding window.

Note that we do not need the gateway node used in [7], since ac-
cording to Theorem 2 there is no non-generator node whose itemset
is a subset of the itemset of some generator nodes. Furthermore, the
existence of infrequent and unpromising nodes forms the border of
the generators to the non-generators in the enumeration tree.

To accelerate the checking operation on whether an itemset is
a generator or not, we adopt a hash table structure whose key is
the sum of items in one itemset, and whose value is a pointer tothe
enumeration tree node which contains the itemset. Each nodein the
same level is stored in a same hash table. Hence it is very useful to
focus on the desired nodes by only checking one hash table whose
level is smaller by one than the level of current node.

As described above, instead of pruning all infrequent nodesand
unpromising nodes from the enumeration tree, we only prune those
infrequent nodes and unpromising nodes which have an infrequent
or an unpromising uncle node. The reason we adopt this strategy
is that the ‘complete pruning’ may cost a lot when either adding or
removing a transaction, and the saved time by ‘complete pruning’
could not even offset the time used in ‘complete pruning’ itself.

Figure 3 shows the enumeration tree built from the first sliding
window of the running example. An ellipse with solid line style
indicates a generator node, an ellipse with dotted line style indi-
cates an unpromising node, and a rectangle with dotted line style



indicates an infrequent node. Note that the empty set∅ is treated
as a valid itemset in this paper, and the minimum absolute support
threshold here is set at 2.
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Figure 3: The Enumeration Tree of the First Sliding Window.

4.3 The ADD Operation
The ADD operation in StreamGen mines and maintains the set

of frequent generators when a new transaction arrives. Before we
introduce the details of the ADD operation, we first prove some
properties which are helpful in understanding the algorithm.

THEOREM 6. During the ADD operation, a generator node would
never change its type.

PROOF. Given a generator noden whose corresponding itemset
is itemsetn, we have that for any itemsetS⊂itemsetn, supS>supn
holds. If the new transaction is a superset ofitemsetn, the support
of itemsetS and all its subsets would all increase by one, hencen

would remain a generator node. While if the new transaction is not
a superset ofitemsetn, only some subsets ofitemsetn would get
their support increased by one and thusn still remains a generator
node.

This theorem indicates that we only need to care about the sup-
port update of a generator node, but do not need to consider the
change of its node type since it would never happen.

THEOREM 7. If the itemset of an unpromising node is a subset
of the new transaction, the node would not change its type.

PROOF. A noden whose itemset isitemsetn is unpromising
means there exists a subsetS of itemsetn satisfying supS =
supitemsetn . If itemsetn is a subset of the new transaction, the
support of bothitemsetn and its subsetS will be all increased by
one, hence noden remains an unpromising node.

THEOREM 8. Given a new transactionT , if an unpromising
noden whose itemset isitemsetn becomes a generator node it
must satisfy∣itemsetn ∩ T ∣= ∣itemsetn∣−1.

PROOF. If ∣itemsetn ∩ T ∣<∣itemsetn∣−1, then there does not
exist any subsetS of itemsetn satisfying∣S∣=∣itemsetn∣−1 and
gets its support increased by one. Hencen would remain unpromis-
ing according to Theorem 1. If∣itemsetn ∩ T ∣ > ∣itemsetn∣ −
1, we could know that its type would also not change according to
Theorem 7.

THEOREM 9. Given a new transactionT , if a noden whose
itemset isitemsetn satisfies∣itemsetn ∩ T ∣ < ∣itemsetn∣ − 1,
the state of noden and all its descendant nodes will remain un-
changed.

PROOF. We could easily prove that the node type would not
change according to Theorems 6 and 8. Furthermore, we can prove
that all its descendants would also satisfy the condition ofthis the-
orem according to Theorem 4. Hence the state of noden and all its
descendant nodes will remain unchanged.

THEOREM 10. When an infrequent node becomes a generator
node, all its newly added child nodes will be either infrequent or
unpromising.

PROOF. When an infrequent noden becomes a generator node,
it must satisfysupn = supmin. Hence any new frequent child
node ofn, n∗, must satisfysupn = supn∗ and thus is an unpromis-
ing node; and all its infrequent children are infrequent nodes.

Theorem 10 is very useful since it guarantees that we do not need
to check the new child nodes if they are generator nodes, which
saves much time.

After introducing the properties related to itemset generators, we
will discuss how to explore these properties to design an efficient
generator mining algorithm (i.e., the ADD operation) upon receiv-
ing a new transaction.

Before we elaborate on the ADD operation, we first introduce a
sub-procedure,explore(n), which is shown in Algorithms 1 and
describes how to explore a noden. Note that the algorithm calls a
function of newCℎild(n, i) which is used to create a new child
node of noden with an itemset ofitemsetn∪ { i}. The algo-
rithm creates the child node by merging the itemset of noden with
the lexicographically largest item of the itemset of one ofn’s sib-
lings which have the same parent as noden. It also re-creates the
child nodes which were pruned out due to the existence of an in-
frequent or unpromising uncle node, and hence extends the border
of the enumeration tree. Note that we only need to re-generate the
child nodes with only one level lower, since Theorem 10 assures
that all the newly added child nodes of a generator node which
are infrequent nodes would become either infrequent or unpromis-
ing. When an unpromising noden becomes a generator node af-
ter receiving a new transactionT , it must satisfy∣itemsetn ∩ T ∣
= ∣itemsetn∣ − 1 according to Theorem 8. Hence any new fre-
quent child noden∗ would satisfy∣itemsetn∗

∩ T ∣= ∣itemsetn∗
∣

− 1 or ∣itemsetn∗
∩ T ∣ < ∣itemsetn∗

∣ − 1 according to Theo-
rem 4. If we have∣itemsetn∗

∩ T ∣ < ∣itemsetn∗
∣ − 1, the new

child can be safely skipped according to Theorem 9. If we have
∣itemsetn∗

∩ T ∣ = ∣itemsetn∗
∣ − 1 and the new child node is a

generator, it will be traversed later.

Algorithm 1 : explore(n)
Input : A noden of the enumeration tree.
begin1

foreachx∈{y∣parenty=parentn, maxitemsety>2
maxitemsetn , y is a generator} do

newCℎild(n,maxitemsetx );3
foreachx ∈ {y∣parenty = parentn, maxitemsety <4
maxitemsetn , y is a generator} do

if not ℎasCℎild(x,maxitemsetn ) then5
newCℎild(x,maxitemsetn );6

end7

Algorithm 2 gives the details of the ADD operation, from which
we see that it uses a right-to-left, top-down updating strategy. The
top-down strategy is necessary due to the fact that the checking of
whether a node is a generator node or not must examine those nodes
which are on a higher level in the enumeration tree and hence those
nodes must have been updated before updating the current node.
While a right-to-left strategy is used due to the fact the uncle nodes
used in Algorithms 1 are all on the right side to the current node
and hence we must assure those nodes have already been created if
they do not exist in the last sliding window.

The algorithm determines how to deal with the update accord-
ing to whether∣itemsetn ∩ T ∣ is equal to, less than, or great than
∣itemsetn ∩ T ∣−1.



Algorithm 2 : add(r, T )

Input : The root node of the enemuration treer, and the newly
arrived transactionT .

begin1
enqueue(r);2
while q is not emptydo3

n← dequeue();4
if ∣itemsetn ∩ T ∣ = ∣itemsetn ∩ T ∣ − 1 then5

if n is unpromisingthen6
identify(n);7
if n is unpromisingthen8

continue;9
explore(n);10

foreach cn ∈ cℎildrenn in reversed orderdo11
if cn is not infrequentthen12

enqueue(cn);13
else14

if ∣itemsetn ∩ T ∣>∣itemsetn ∩ T ∣−1 then15
supn ← supn + 1;16
if n is unpromisingthen17

continue;18
if n is infrequentthen19

if supn < supmin then20
continue;21

identify(n);22
if n is generatorthen23

explore(n);24
else25

foreach cn ∈ cℎildrenn in reversed orderdo26
enqueue(cn);27

m← maxitemsetn ;28
foreach i ∈ {c∣c ∈ T, c > m} do29

if node{itemsetn−{m}}∪{i} is generator30
then

newCℎild(n, i);31
end32

In addition, there is no need to calculate the itemset intersection
every time. Since according to Theorem 4 we can always calculate
the intersection incrementally from the last intersection, and hence
save a lot of time. Note that in our algorithm we do not prune all
the infrequent and/or unpromising nodes whose itemsets aresuper-
sets of the itemsets of some infrequent and/or unpromising nodes
due to the potential cost of rebuilding those nodes in a laterslid-
ing window and the significant pruning cost. The sub-procedure
identify(n) is used for updating the type information of current
node.

Figure 4 illustrates the enumeration tree built from the first slid-
ing window after adding a new transaction (i.e., the transaction with
an ID of 5).
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Figure 4: The Enumeration Tree after Adding a Transaction.

Finally, we could easily prove the number of nodes in the enu-
meration tree does not decrease during the ADD operation.

4.4 The REMOVE Operation
We will introduce the REMOVE operation in this section, which

mines and maintains frequent itemset generators upon removing an
old transaction.

THEOREM 11. During the REMOVE operation, an unpromis-
ing node would never change its type unless it becomes infrequent
or is pruned.

PROOF. Given an unpromising noden, we know that there ex-
ists an itemsetS such thatS ⊂ itemsetn andsupS = supitemsetn ,
which means a removed transactionT either contains bothS and
itemsetn or contains neither ofS anditemsetn. Thus, by remov-
ing transactionT , the relationship betweenS and itemsetn re-
mains unchanged, namely,S⊂itemsetn andsupS = supitemsetn

still hold.

THEOREM 12. By removing a transactionT , a generator node
n would not change its type if it satisfies∣itemsetn ∩ T ∣> ∣itemsetn∣
− 1.

PROOF. Sincen is a generator node, there does not exist any
subsetS such that∣S∣=∣itemsetn∣−1 andsupS=supn. The con-
dition of ∣itemsetn ∩ T ∣>∣itemsetn∣−1meansT containsitemsetn,
thus, by removing transactionT , not only the support ofn but also
the support of all its subsets would be decreased by one. Hence the
noden would not change its type unless it becomes infrequent.

THEOREM 13. By removing a transactionT , a generator node
n would become an unpromising node only when it satisfies∣itemsetn ∩ T ∣
= ∣itemsetn∣ − 1 andsup(itemsetn ∩ T ) = supn + 1.

PROOF. As a generator noden becomes unpromising after re-
moving transactionT , according to Theorem 1, there must exist
at least one subsetS such that∣S∣=∣itemsetn∣−1 and its sup-
port supS becomes exactlysupitemsetn . As the deletion ofT
can at most decreasesupS by one, thussupS = supn + 1 must
hold before removingT , and we can derive that the only condi-
tion which makes a generator noden becomes unpromising is that
∣itemsetn ∩ T ∣ = ∣itemsetn∣ − 1 and sup(itemsetn ∩ T ) =
supn + 1.

THEOREM 14. In removing an old transactionT , if a noden
whose itemset isitemsetn satisfies∣itemsetn ∩ T ∣< ∣itemsetn∣
− 1, the state of noden and all its descendant nodes will remain
unchanged.

PROOF. The proof is similar to that of Theorem 9.

After introducing some nice properties of the generator nodes
and the unpromising nodes which can be used to enhance the ef-
ficiency of mining and maintaining the set of frequent generators
during the REMOVE operation, we now turn to the algorithm for
the REMOVE operation. Algorithm 4 shows the details of the
REMOVE operation. Like the ADD operation, we also adopt a
right-to-left and top-down updating strategy here. The algorithm
also determines how to deal with the update according to whether
∣itemsetn ∩ T ∣ is equal to, less than, or great than∣itemsetn ∩ T ∣
− 1.

The REMOVE operation invokes a procedure,clean(), which is
depicted in Algorithm 3. Algorithm 3 is used to clean those nodes
some of whose uncle nodes change their types to infrequent or
unpromising. In Algorithm 3, the functioncleanCℎildren(n) is
used to clean all child nodes of noden, and functionremoveCℎild(n, i)
is used to remove the child node of noden whose itemset isitemsetn
∪ {i}.



Algorithm 3 : clean(n)
Input : A noden of the enemuration tree.
begin1

cleanCℎildren(n);2
foreachx ∈ {y∣parenty = parentn,maxitemsety <3
maxitemsetn , y is a generator} do

if ℎasCℎild(x,maxitemsetn ) then4
z ← getCℎildren(x,maxitemsetn )5
if z is generatorthen6

clean(z)7
removeCℎild(parentz ,maxitemsetz )8

end9

Algorithm 4 : remove(r)

Input : The root noder of the enemuration tree.
begin1

T ← the oldest transaction in sliding window;2
enqueue(r);3
while q is not emptydo4

n← dequeue();5
if ∣itemsetn ∩ T ∣ = ∣itemsetn ∩ T ∣ − 1 then6

if n is generatorthen7
identify(n);8
if n is unpromisingthen9

clean(n);10
else11

foreachx∈cℎildrenn in reversed orderdo12
if x is generatorthen13

enqueue(x);14
else15

if ∣itemsetn ∩ T ∣>∣itemsetn ∩ T ∣−1 then16
supn ← supn − 1;17
if n is infrequentand supn = 0 then18

removeCℎild(parentn,maxitemsetn );19
else20

if supn < supmin then21
if n is generatorthen22

clean(n);23
setn as infrequent;24

else25
if n is generatorthen26

foreach y∈cℎildrenn in reversed27
order do

enqueue(y);28
end29

Algorithm 4 shows the details of theREMOV E operation.
Like the ADD operation, we also adopt a right-to-left and top-
down updating strategy here.

Figure 5 depicts the enumeration tree built from the second slid-
ing window (namely, after adding a new transaction with an IDof
5 and removing an old transaction with an ID of 1).

Similarly, we could prove the number of nodes in the enumera-
tion tree would not increase during the REMOVE operation.

From the above analysis we could easily see that both ADD and
REMOVE operations determine how to update the enumeration
tree according to whether∣itemsetn ∩ T ∣ is equal to, less than, or
greater than∣itemsetn ∩ T ∣ − 1, whereitemsetn is the itemset
represented by any a noden in the tree,T is the transaction being
added to (or removed from) the current sliding window. Hence, we
summarize the transforming matrix in Table 1.

4.5 The Integrated StreamGen Algorithm
After introducing some properties, the FP-tree like structure to

store the transactions of the current sliding window, the enumer-

Ø::4

D:4C:2B:3A:3

AB:2 AC:1 BC:2

Figure 5: The Enumeration Tree of the 2nd Sliding Window.

ADD REMOVE
Type x < y x = y x > y x < y x = y x > y

G G G G G G/U I/G
U U G/U U U U I/U
I I I I/G/U I I I

Table 1: Transforming matrix for Add and Remove operations
(x = ∣itemsetn ∩ T ∣, y = ∣itemsetn∣ − 1, G = Generator, U =
Unpromising, I = Infrequent)

ation tree structure to maintain the set of generators (or potential
generators), the ADD operation and the REMOVE operation, we
can easily derive the integrated StreamGen algorithm to mine fre-
quent itemset generators over a stream sliding window. The FP-
tree like structure and the enumeration tree structure are initialized
to empty. After receiving a new transaction, StreamGen performs
the ADD operation as shown in Algorithm 2, and if the size of the
current sliding window exceeds the user-specified sliding window
size, it then performs the REMOVE operation as shown in Algo-
rithm 4. The set of generators for the current sliding windowis
always maintained and can be found in the enumeration tree. In
addition, although the above StreamGen algorithm mines genera-
tors over a stream sliding window, we need to point out that we
can easily turn it into an incremental algorithm if we do not apply
the REMOVE operation, as the ADD and REMOVE operations are
totally independent of each other.

Note that since the two operations are not related, we could com-
bine them freely for specific environments. For example, if we
only adopt ADD operation, we could easily get an incrementalal-
gorithm.

5. EXTENSION FOR MINING CLASSIFICA-
TION RULES

Since one important application of itemset generator mining is to
construct concise classification rules, we further extend the Stream-
Gen framework to directly mine generator-based classification rules.

Since the complete set of frequent itemset generators for the cur-
rent sliding window are maintained in the enumeration tree struc-
ture, it is straightforward to retrieve all the generators from the
enumeration tree, which can be further used to build classifica-
tion rules. Algorithm 5 shows the framework StreamGenRulesfor
classification rule construction. It adopts the information gain as a
measure of discriminative ability which has been proved better than
confidence in [5]. Note that it very easy to change our framework
to the confidence-based.

It is very easy to prove that all the itemsets in the same equiv-
alence class have the same information gain (and, the same confi-
dence) due to the fact they have the same supporting set. Hence the
generators could represent all the discriminative rules.

In Algorithm 5, the function getGenerators is used to traverse the
whole enumeration tree and return all the generators, however, we



Algorithm 5 : StreamGenRules(n)

Input : The root noden of the enemuration tree.
begin1

nodes← getGenerators(n);2
sortnodesby info-gain;3
rules← ∅;4
foreach cn ∈ nodes do5

if ∀r ∈ rules, r ∕⊂ cn then6
if cn covers at least one transactionthen7

rules← rules ∪ {cn};8
remove covered transactions;9
if no more transactionsthen10

break;11
return rules;12

end13

could apply a pruning technique in the function which prunesall
those unpromising child nodes whose information gain is smaller
than their ancestors and return only a subset of (and sometimes only
a small subset of) high quality generators.

The algorithm can be easily adapted to mine a set of rules cov-
ering each transaction more than one time. However, the change
could cause the loss of pruning power ingetGenerators(n)which
could prune a great many of unpromising generators. Besides, there
is no evidence that covering each transaction more than one times
could provide a better accuracy [22].

The StreamGenRules framework seems much like the DDPMine
[6] algorithm at the first glance. Both algorithms use informa-
tion gain as the discriminative measure, and the sequentialcov-
ering paradigm to select rules. However, there exists a significant
difference between StreamGenRules and DDPMine. StreamGen-
Rules tries to find the best rules from the generators which are
computed from the full set of transactions in the current sliding
window, while DDPMine tries to find the best discriminative rules
from those transactions which have not been covered and removed.
Hence the rules found by StreamGenRules are globally optimal,
while DDPMines finds only those locally optimal rules, thus the
rules returned by StreamGenRules tend to have better accuracy in
classification. From the experimental results in Section 6.2 we
could easily validate that our method can achieve a better accu-
racy on average. Actually, our algorithm accords with the idea first
proposed in [26], which tries to find one most discriminativerule
for each transaction.

6. EXPERIMENTAL RESULTS
In this section we evaluate the performance and classification

accuracy of our StreamGen algorithm in comparison with several
state-of-the-art algorithms. The performance study was conducted
on a computer with Intel Core Duo 2 E6550 CPU and 2GB memory
installed. A set of UCI datasets were used in the experiments, and
Table 2 shows the dataset characteristics. The datasets with two
class labels were used in classification accuracy evaluation, while
the datasets with multiple class labels, and the horse and mushroom
datasets were used in performance test. Note all these datasets are
publicly available and have been used widely in evaluating various
data mining algorithms.

6.1 Performance Evaluation
As there is no existing algorithm which mines frequent item-

set generators over a sliding window, we evaluate the runtime effi-
ciency of StreamGen algorithm in comparison with three state-of-
the-art algorithms which perform a similar task to StreamGen. The
first algorithm is Moment which mines frequent closed itemsets

Dataset # Items # tran. # Pos. # Neg. Avg. Len.

mushroom 116 8,124 4,208 3,916 21.695
horse 89 368 232 136 16.769
adult 128 48,842 11,687 37,155 13.868
breast 45 699 458 241 8.977

hepatitus 55 155 32 123 17.923
pima 40 768 500 268 8

chess 75 3,196 - - 37
connect 129 67,557 - - 43
pumsb 2,113 49,046 - - 74

Table 2: Dataset characteristics.

over a stream sliding window [7], the second one is DPM which
mines frequent itemset generators and frequent closed itemsets in
equivalence classes [16], and the third one is DDPMine whichdi-
rectly mines classification rules [6].

6.1.1 Comparison with Moment
We used four datasets, mushroom, chess, pumsb, and connect-4,

to compare the performance of StreamGen with Moment. Figure6
shows the efficiency comparison on mushroom dataset with a slid-
ing windows size of4, 000 and2, 000, respectively.
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Figure 6: Runtime comparison with MOMENT

Figure 7 depicts the evaluation results on chess dataset with a
sliding window size of2, 000 and1, 000, respectively. From the
results we could find that our algorithm is significantly faster than
Moment algorithm on datasets mushroom and chess.
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Figure 7: Runtime comparison with MOMENT

We also evaluated the algorithm on dataset pumsb, and Figure
8 shows the result on a sliding window size of10, 000 and2, 500,
respectively. We see that StreamGen outperforms Moment in most
cases except when the support is extremely high. We do not provide
the result corresponding to the support of0.6, since Moment ran
out of all the available memory (i.e.,2GB) while our algorithm
consumed less than100MB memory.

Figure 9 demonstrates the results on connect-4 dataset witha
sliding window size of60, 000 and30, 000, respectively. The re-
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Figure 8: Runtime comparison with MOMENT

sults indicate a similar result that our algorithm outperforms Mo-
ment in all situations. Note that we do not provide the resulton a
lower sliding window size as Moment could not finish in an accept-
able time.
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Figure 9: Runtime comparison with MOMENT

Table 3 compares the peak memory usage on the datasets used
above with the lowest minimum support used in performance test.
We see that StreamGen always uses less memory than Moment,
thus StreamGen is more memory efficient.

Dataset window_size supmin Moment StreamGen

mushroom 4,000 0.1 14,476 10,108
mushroom 2,000 0.1 12,504 8,472

chess 2,000 0.6 103,180 31,636
chess 1,000 0.75 34,624 9,176

connect-4 60,000 0.95 141,756 98,236
connect-4 30,000 0.998 73,056 52,372

pumsb 10,000 0.7 1,732,136 75,316
pumsb 2,500 0.75 90,944 23,472

Table 3: Peak memory usage comparsion

6.1.2 Comparison with DPM
To our best knowledge, DPM is the newest and fastest algorithm

for mining frequent itemset generators. A naïve way to adaptit
to mine frequent itemset generators over a stream sliding window
is to run DPM on each new sliding window (In the following we
denote this approach by DPM-stream). Our performance compar-
ison between StreamGen and DPM-stream in the data stream set-
ting shows that DPM-stream is not feasible in terms of runtime
efficiency. Note that the runtime of DPM-stream is measured only
on the sliding windows with a full size, which means we ignored
the time period for DPM-stream before the sliding window reaches
its full size. If this period is also considered for DPM-stream, the
runtime of DPM-stream is even longer and DPM-stream could not
terminate in an acceptable time on most datasets.

Figure 10 a) shows the comparison results on mushroom dataset
with a sliding window size of4, 000. DPM’s performance is very
stable when the minimum support varies, while our algorithmcould
be a little slower when the support becomes lower. However, the
advantage of our algorithm is evident. We could see from Figure
10 a) that our algorithm is orders of magnitude faster than DPM.
Figure 10 b) shows the results on chess with a sliding window size
of 1, 000, which is similar to that on mushroom.
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Figure 10: Runtime comparison with DPM

We also evaluated the performance on connect-4 dataset witha
sliding window size of67, 000. We did not provide the result on
other window size because DPM is too slow and could not finish in
an acceptable time. Note that67, 000 is almost the biggest window
size given the whole size of connect-4 of67, 557. The result in
Figure 11 a) shows our algorithm outperforms DPM significantly.

Figure 11 b) provides the result on pumsb with an extremely
large sliding window size of49, 000 compared with the size of the
entire dataset,49, 046. We do not provide the results on a lower
sliding window size as DPM cannot finish in an acceptable time.
We see that our algorithm is more efficient than DPM.

 1

 10

 100

 1000

 97.015  97.761  98.507  99.254  100

R
un

tim
e 

(in
 s

ec
on

ds
)

Minimum Support Threshold (in %)

DPM
StreamGen

a) dataset = connect,
window_size = 67, 000

 1

 10

 89.796  91.837  93.878  95.918  97.959  100

R
un

tim
e 

(in
 s

ec
on

ds
)

Minimum Support Threshold (in %)

DPM
StreamGen

b) dataset = pumsb,
window_size = 49, 000

Figure 11: Runtime comparison with DPM

6.1.3 Comparison with DDPMine
We also compared the efficiency of StreamGen with DDPMine

in terms of mining classification rules directly from the datasets.
Similar to DPM, we also adapt DDPMine to mine classification
rules in stream data setting by running DDPMine on each sliding
window having full window size (we denote the DDPMine-based
approach by DDPMine-stream). Figure 12 a) provides the com-
parison results on mushroom dataset with a large sliding window
size of8, 000 for mining classification rules. We could easily find
that DDPMine-stream is much slower than StreamGen. Actually,
even one round running of DDPMine-stream on one sliding win-
dow is much longer than the total time of StreamGen on all sliding
windows.

Figure 12 b) shows the results on horse dataset with a sliding
window size of600. We see that DDPMine-stream uses nearly
1, 000 seconds while StreamGen uses less than one second. In fact,



Dataset StreamGen DDPMine
Accuracy max. len. avg. len. avg. num. Accuracy max. len. avg. len. avg. num.

breast 96.708 3 1.551 23.6 95.28 9 2.448 11.6
adult 82.146 3 1.831 13 81.292 14 4.583 7.2

mushroom 98.918 3 1.958 9.6 97.184 22 15.592 16.2
hepatitus 82.006 4 2.387 15 76.986 8 4.8 5

horse 81.512 2 1.389 3.6 81.246 20 4.88 10
pima 74.87 4 1.663 18.4 75.124 7 2.435 12.6

Table 4: Classification accuracy and some related statistical information of the mined rules (supmin = 0.1).

the total runtime of StreamGen on all sliding windows over the
entire dataset is shorter than the runtime of DDPMine-stream on
only one sliding window.
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Figure 12: Runtime comparison with DDPMine

6.2 Classification Accuracy Evaluation
Similar to the state-of-the-art classification rule miningalgorithm,

DDPMine, StreamGen builds a SVM classification model with its
features based on those mined association rules. We compared the
classification accuracy using the five-fold cross-validation scheme.
Table 4 shows the accuracy comparison between StreamGen and
DDPMine and some statistical information of the mined rules(e.g.,
the average pattern length, the maximum pattern length, andthe
average number of patterns) for datasets breast, adult, mushroom,
hepatitus, horse, and pima, with a minimum support of 0.1. During
the experiment, DDPMine ran on the entire dataset, while Stream-
Gen ran with a window size equal to the dataset size (That means
there is only one sliding window for StreamGen).

We see that StreamGen achieves better accuracy than DDPMine
in most cases, which validates that StreamGen is effective in min-
ing classification rules over stream data with high accuracy. We can
also observe that the rules mined by StreamGen is much shorter
than those mined by DDPMine. We have to concede that the num-
ber of rules mined by StreamGen is usually larger than that ofDDP-
Mine, which is due to the fact that DDPMine always tries to find
an optimum rule for the remaining transactions and thus usually
outputs a smaller number of rules in practice. However, the sim-
plicity of the rules is more important since simpler rules can be
better understood and explained. Table 5 shows an example ofthe
rules mined by StreamGen and DDPMine in one of the five folds
on the mushroom dataset with a support of0.1. We could easily
find that the rules mined by StreamGen are significantly simpler.
Note we have tried some other support thresholds (e.g., 0.05) for
these datasets, and got similar comparison results.

7. CONCLUSIONS
Many previous studies have shown that mining itemset gener-

ators is very meaningful from the classification point of view ac-
cording to the MDL principle. In this paper, we explore a new and

StreamGen DDPMine
38 17 39

12 25 5 7 8 11 13 15 16 17 18 19 20 26
13 25 8 17 18
7 67 5 7 9 13 14 15 16 17 18 19 20 40 41 46 53 54
66 2 7 9 11 13 14 15 16 17 18 19 20 21 38 40 44 53 54 76

7 68 2 7 9 11 13 14 15 16 17 18 19 20 28 38 40 44 53 54 76
11 18 2 7 9 11 13 14 15 16 17 18 19 20 32 38 40 53 54 65 76

6 18 37 2 7 9 11 13 14 15 16 17 18 19 20 22 32 38 40 53 54 76
4 53 2 7 9 11 13 14 15 16 17 18 19 20 28 32 38 40 46 53 54 76

2 7 9 11 13 14 15 16 17 18 19 20 21 32 38 40 45 46 53 54 76
2 7 9 11 13 14 15 16 17 18 19 20 21 32 34 38 40 46 48 53 54 76

Table 5: One example of the classification rules mined by
StreamGen and DDPMine (dataset = musℎroom, supmin =
0.1).

challenging problem of mining frequent itemset generatorsover a
data stream sliding window. We devise a novel enumeration tree
structure to help maintain the information of the mined genera-
tors and the border between generators and non-generators.We
also propose some effective optimization techniques and develop
the StreamGen algorithm. The comprehensive performance study
shows that StreamGen outperforms several state-of-the-art algo-
rithms in terms of efficiency and classification accuracy.
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