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Abstract: In this paper, we present a class of new generalized quasi-Newton algorithms for
unconstrained optimization. The new algorithms are very extensive, including the algorithms
in Jiao’s paper and also in Zhangs’ even the class of Broyden. The global convergence and
the superlinear convergence of the new algorithms are also proved under the weak condition.
Numerical experiment indicates that the new algorithms are more feasible and effective.
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1 Introduction

Optimization is a very active branch in the computational Mathematics . It is already extensive to apply
in many engineering sections. Readers can refer to[1 ∼ 13] and many other papers.

For unconstrained optimization problem[1]

min f(x), x ∈ Rn, (1.1)

where f(x) is twice continuously differentiable. The standard quasi-Newton equation is

Bk+1δk = yk,, (1.2)

here δk = xk+1 − xk, gk = ∇f(xk), yk = gk+1 − gk and Bk+1 is the approximation of Hessian matrix
G(x) at xk+1 .

Obviously, only two gradients are exploited in (1.2). Techniques using gradients as well as function
values (which are also available) have been studied by several authors. Recently, Zhang[2] made use of the
quadratic function q(τ) = aτ2 + bτ + c, where a, b, c ∈ Rn to approximate the gradient and established a
new quasi-Newton equation

Gk+1δk = yk + γkδk/‖δk‖2 (1.3)

where Gk+1 = ∇2f(xk+1), γk = 3gT
k+1δk + 3gT

k δk + 6(fk − fk+1). He, furthermore, gave the equivalent
form of (1.3) in another article[3]

Gk+1δk = ŷk (1.4)

where ŷk = yk + γkµk/δT
k µk, δT

k µk 6= 0, µk is the vector parameter. Zhang proved that ŷk in (1.4) can be
better approximates ∇2f(xk+1) than yk.

Notice that, if we define Rk = fk+1 − fk − gT
k δk then we have Rk ≈ 1

2δT
k Gk+1δk for enough small δk.

Thus
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δT
k Gk+1δk ≈ 2Rk (1.5)

In this paper, we combine (1.4) and (1.5) to the following weighted form

δT
k Gk+1δk = θ(δT

k yk + γk) + 2(1− θ)Rk, θ ∈ [0, 1].

Then we consider a new extensive equation as follows

δT
k Bk+1δk = θ1δ

T
k yk + 2θ2Rk + θ3γk (1.6)

where the scalars θ1, θ2, θ3 ≥ 0, θ1 + θ2 > 0.
Based on (1.6), we deduced a new class of algorithms to solve the optimization problem. Throughout

this paper, we call (1.6) the generalized quasi-Newton equation, and call the algorithms based on (1.6)
generalized quasi-Newton algorithms.

The generalized quasi-Newton equation (1.6) makes use of not only gradient of the objective function,
but also the value of objective function. Thus compared with the standard quasi-Newton equation, the
new algorithms make good use of the information resources. In addition, the generalized quasi-Newton
equation is very extensive. It is the expansion of the standard quasi-Newton equation (1.2). They include
the algorithms in Zhang’s paper[2][3] and also in Jiao’[4] even the class of Broyden. From the above, we can
analyze that the algorithms may be better when θ1 + θ2 = 1 and θ3 = θ1.Actually, numerical experiment at
Section 4 will prove this point.

This paper is organized as follows: we give the generalized quasi-Newton algorithms which are based
on the generalized quasi-Newton equation in Section 2. In Section 3, we prove that the new algorithms have
global convergence and the superlinear convergence. Section 4 presents the numerical experiment.

In the remainder of the paper, we use the following notation: ‖ · ‖denotes the Euclidean norm; x∗ is a
minimizer of f and G∗ which is the Hessian matrix of f atx∗is positive-definite.

2 The Generalized Quasi-Newton Algorithms

In order to obtain the generalized quasi-Newton algorithms, firstly, we consider the rank 1 correction

Bk+1 = Bk + uvT ,

where u, v ∈ Rn.
Let Qk = θ1δ

T
k yk + 2θ2Rk + θ3γk, then from (1.6) we have Qk = δT

k Bkδk + δT
k uvT δk. Therefore,

if vT δk 6= 0, then δT
k u = 1

vT δk
(Qk − δT

k Bkδk). Let U = 1
vT δk

( Qk

yT
k δk

yk − Bkδk), we obtain the rank 1

correction Bk+1 = Bk + 1
vT δk

( Qk

yT
k δk

yk−Bkδk)vT . Since the Hessian matrix G(x) is symmetric, we require

that its approximate Bk+1 be symmetric also. Therefore, we denote v = Qk

yT
k δk

yk − Bkδk and obtain the
symmetric rank 1 correction formula

Bk+1 = Bk +
1

Qk − δT
k Bkδk

(
Qk

yT
k δk

yk −Bkδk)(
Qk

yT
k δk

yk −Bkδk)T .

The weaknesses of rank 1 correction formula are: First, it can’t guarantee that the matrix Bk+1is always
positive-definite; second, it is possible that the numeral is unsteady.

In order to overcome these weaknesses, we directly consider the rank 2 correction which is different
from Jiao[4]. Let

Bk+1 = Bk + auuT + bvvT ,

where the coefficients a, b ∈ R and the vector u, v ∈ Rn.
Exploiting u = 1

vT δk
( Qk

yT
k δk

yk −Bkδk), we choose v = yk and obtain

Bk+1 = Bk +
a

(yT
k δk)2

[(
Qk

yT
k δk

)2yky
T
k −

Qk

yT
k δk

(ykδ
T
k Bk + Bkδky

T
k ) + Bkδkδ

T
k Bk] + byky

T
k .
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In order to simplify the above formula, we let a = (yT
k δk)2. Because of Bk+1 satisfies (1.6), then we have

b = (Qk−δT
k Bkδk)(1−Qk+δT

k Bkδk)

(yT
k δk)2

. Therefore, we have the following rank 2 correction formulae

Bk+1 = Bk −
Bkδkδ

T
k Bk

δT
k Bkδk

+
Qkyky

T
k

(yT
k δk)2

+ VkV
T
k

where Vk = (δT
k Bkδk)

1
2 ( yk

yT
k δk

− Bkδk

δT
k Bkδk

). Since V T
k δk = 0,the formulae still satisfy (1.6) even if the last

term multiplies the constant Φk.
Thus, we obtain a class of rank 2 correction formulae with four parameters

Bk+1 = Bk −
Bkδkδ

T
k Bk

δT
k Bkδk

+
Qkyky

T
k

(yT
k δk)2

+ ΦkVkV
T
k (2.1)

Obviously, when θ1 = 1, θ2 = θ3 = 0,Φk = 0, (2.1)is the famous class of Broyden. Let Hk = B−1
k then

Hk+1 = Hk −
Hkyky

T
k Hk

yT
k Hkyk

+
δkδ

T
k

Qk
+ φkzkz

T
k (2.2)

where zk = (yT
k Hkyk)

1
2 ( δk

yT
k δk

− Hkyk

yT
k Hkyk

) and Hk+1 is the approximation of inverse of Hessian matrix Gk+1.

Here the parameters Φk and φk satisfy[1]

φk =
Φk − 1

Φk(1− µk)− 1
, µk =

δT
k Bkδky

T
k Hkyk

(yT
k δk)2

.

Then we present the generalized quasi-Newton algorithms (I)
Step 0: Select an initial point x1 ∈ Rn and the positive-definite matrix B1 ∈ Rn×n or H1 ∈ Rn×n,

choose a sufficiently small constant ε > 0. Let k = 1.
Step 1: If ‖gk‖ = 0, stop; otherwise, go to Step 2.
Step 2: Solve Bkdk = −gkor dk = −Hkgk to get the search direction dk.
Step 3: Starts with λ = 1, find xk+1 = xk +δk, where δk = λkdk, λk > 0 and satisfies the Wolfe search

g(xk + λkdk)T dk ≥ βgT
k dk, α < β < 1,

f(xk + λkdk) ≤ f(xk) + αλkg
T
k dk, 0 ≤ α < 1/2.

Step 4: If ‖xk+1 − xk‖ = 0, stop; otherwise, go to Step 5.
Step 5: Update Bk+1 or Hk+1by formula (2.1) or (2.2), where Qk = θ1δ

T
k yk + 2θ2Rk + θ3γk, and γk

is defined by

γk =
{

3gT
k+1δk + 3gT

k δk + 6(fk − fk+1), if Qk ≥ ε‖δk‖2;
0, otherwise.

Step 6: Let k = k + 1, and go to Step 1.

3 The Convergence Analysis

As the quasi-Newton algorithms are discussed in [1], we can easily prove that the generalized quasi-
Newton algorithms (I) also have the properties of symmetric positive-definite. The algorithms can terminate
in the nth step for quadratic function and not be changed after linear transformation. We state the three
properties as follows.

Theorem 3.1 If Bk is a symmetry positive-definite matrix, and then there is a sufficiently small constant
ε > 0, such that Bk+1 which is updated by (2.1) is symmetric positive-definite.

Theorem 3.2 If f(x) is a quadratic function and G(x) is the Hessian matrix, the following equations
hold with the exact line search

Hi+1yj = δj/(θ1 + θ2), j = 0, 1, · · · , i,
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δT
i Gδj = 0, j = 0, 1, · · · , i− 1.

The algorithms (I) must terminate at the m + 1 ≤ niteration; if m + 1 = n, then Hn = G−1.
Theorem 3.3 If (Hk)x = A−1(Hk)yA

−T holds for all k, then the algorithms (I) are not changed with
fixed steplength λk after linear transformation y = Ax + a, where A ∈ Rn×n,a ∈ Rn, and (Hk)x,(Hk)y

mean that Hk calculates from the vector x and y, respectively. In order to prove that the algorithms (I) have
the properties of the globe and superlinear convergence which are the main results of this paper, we give the
following assumption which is weaker than [5].

AssumptionH The function f(x)in the problem (1.1) is twice continuously differentiable. It is forcible
convex over the level set D.

Theorem3.4[6] For f(x) is a forcible convex function in the Euclidean space Rn,x0 ∈ Rn. Let

D(x0) = {x ∈ Rn | f(x) ≤ f(x0)},

U∗ = {x ∈ Rn | f(x) ≤ f(z),∀z ∈ Rn},
Then the level set D(x0) is bounded and not empty; both D(x0) and U∗ are closed convex.

Lemma 3.5[6] f(x) is forcible convex over the level set D, if and only if, there is m > 0, such that
m‖z‖2 ≤ zT G(x)z for all z ∈ Rn and all x ∈ D.

From the above Assumption H , Theorem 3.4 and Lemma 3.5, we have G(x) are bounded over the level
set D for all x ∈ D, namely there is m,M > 0, such that m‖z‖2 ≤ zT G(x)z ≤ M‖z‖2 for all z ∈ Rn.

For the arbitrary matrix B ∈ Rn×n, we define

Ψ(B) = tr(B)− ln[det(B)] =
n∑

i=1

(λi − lnλi),

where λ1, λ2, · · · , λn are the eigenvalue of matrix B.
Similar to [5], we can obtain the following Lemma3.6 easily.
Lemma 3.6 If Assumption H holds, then
1) There are the constants C1 > 0, such that

fk+1 − f∗ ≤ (1− αmC1 cos2 ωk)(fk − f∗). (3.1)

where −gT
k δk = ‖gk‖ · ‖δk‖ cos ωk, f∗ = f(x∗).

2) There is the constants 0 ≤ C2 < 1, such that

fk+1 − f∗ ≤ Ck
2 (f1 − f∗) (3.2)

Lemma 3.7 If Assumption H holds, the scalar Φ ∈ [0, 1). When δk 6= 0, we have

Ψ(Bk+1) ≤ Ψ(Bk) + [M(
M

m
)2 − lnm− (1− Φ)] + (1− Φ) ln qk

+(1− Φ)[1− (1− Φ)m2 − Φ(M2 cos2 ωk + 2Mm cos ωk + m2 cos2 ωk)
(1− Φ)m2 cos2 ωk

qk], (3.3)

where M = (θ1 + θ2)M + θ3ε, m = (θ1 + θ2)m− θ3ε and qk = δT
k Bkδk

δT
k δk

= ‖Bkδk‖
‖δk‖ cos ωk.

According to Lemma3.6 and 3.7, we can now prove the globe and superlinear convergence.
Theorem 3.8 If Assumption H holds, x1 and B1 is the initial point and symmetry positive-definite

matrix respectively, Φ ∈ [0, 1), then the sequence xk generated by the algorithms (I) is convergent at x∗.
Proof: When δk 6= 0,Bk can keep positive-definite for k sufficiently large and thus Ψ(Bk) > 0.
Suppose

lim
k→∞

cos2 ωk = 0,

then there is k1 > 0, we have Φcos2 ωk ≤ 1
2(1− Φ) for all k > k1.

Let Tk = (1−Φ)−Φcos2 ωk

(1−Φ) cos2 ωk
, then Tk > 1

2 cos2 ωk
, hence lnTk > − ln 2−ln cos2 ωk. It is easy to understand

that 1− t ≤ − ln t holds for t > 0. Hence from (3.3) we obtain
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Ψ(Bk+1) ≤ Ψ(Bk) + (M − lnm− 1) + (1− Φ) ln qk + (1− Φ)[1− qkTk]
≤ Ψ(Bk) + (M − lnm− 1) + (1− Φ) ln qk + (1− Φ) ln qkTk

≤ Ψ(Bk) + (M − lnm− 1)− (1− Φ) ln Tk

< Ψ(Bk) + (M − lnm− 1) + (1− Φ)(ln 2 + ln cos2 ωk)

Thus, according to Assumption H and the k1, there is k2 > k1 > 0 such that

ln cos2 ωk ≤ − 2
1− Φ

[M − lnm− 1 + (1− Φ) ln 2]

for all k > k2.Thus

Ψ(Bk+1) < Ψ(Bk)− [M − lnm− 1 + (1− Φ) ln 2]

≤ · · · ≤ Ψ(Bk2)− [M − lnM − 1 + (1− Φ) ln 2](k − k2 + 1)

It is easy to find that the term inside the above square brackets is positive. Then the right tends to negative
infinite for the sufficient large k. This is contradict with Ψ(Bk) > 0, so the above supposition can not hold,

namely there is k, such that cos ωk > ε for all k > k, where 0 < ε <
√

1
αmC1

. Substitute it into (3.1), we

have fk+1 − f∗ ≤ (1− αmC1ε
2)(fk − f∗). It then follows that the sequence {fk} converges to f∗.

On the other hand, from Assumption H and the Taylor’s theorem we have fk−f∗ ≥ 1
2m‖xk−x∗‖2 ≥ 0.

Therefore, the sequence {xk} is convergent at x∗.
Theorem 3.9 If Assumption H holds, G∗ = I , then the algorithms(I) satisfies

lim
k→∞

‖(Bk − I)δk‖
‖δk‖ = 0 (3.4)

and λk is taken equal to 1 for sufficient large k, thus the sequence {xk} converges to x∗ superlinearly.
Proof: With Assumption H and the Taylor’s theorem, we can obtain fk+1 − f∗ ≥ 1

2m‖xk+1 − x∗‖2.
Using this in (3.2), we have ‖xk+1 − x∗‖2 ≤ 2

mCk
2 (f1 − f∗), then

∞∑

k=0

‖xk+1 − x∗‖ ≤ [
2
m

(f1 − f∗)]1/2
∞∑

k=0

C
k/2
2 < +∞. (3.5)

From the Proposition 4 in [7], we know (3.4) holds.
Using Theorem 2.2 in [8], we know (3.4) is equivalent to the fact that the sequence xksuperlinearly

converges to x∗.
Next, we will prove λk → 1 (similar to Theorem 6.3 and 6.4 in [9] ). From (3.4), (3.5) and

0 ≤ ‖gk + Gkdk‖
‖dk‖ =

‖(Bk −Gk)dk‖
‖dk‖ ≤ ‖(Bk −G∗)dk‖

‖dk‖ +
‖(Gk −G∗)dk‖

‖dk‖

≤ ‖(Bk −G∗)δk‖
‖δk‖ + M‖xk − x∗‖

we have

lim
k→∞

‖gk + Gkdk‖
‖dk‖ = 0, (3.6)

and hence − gT
k dk

‖dk‖2 = dT
k Gkdk

‖dk‖2 − dT
k (Gkdk+gk)

‖dk‖2 > 0. Therefore, there is η > 0 such that

−gT
k dk ≥ η‖dk‖2 (3.7)

From Theorem 6.3 in [9], namely lim
k→∞

gT
k dk

‖dk‖ = 0, we can obtain lim
k→∞

‖dk‖ = 0. Combining (3.6) and (3.7),

we know that there is uk ∈ (xk, xk + dk) such that the following inequality holds for sufficient large k and
the above η

f(xk + dk)− f(xk)− 1
2
gT
k dk =

1
2
dT

k (G(uk)dk + gk) ≤ (
1
2
− α)η‖dk‖2 ≤ (α− 1

2
)gT

k dk.

IJNS email for contribution: editor@nonlinearscience.org.uk



H. Zhu, S. Wen: A Class of Generalized Quasi-Newton Algorithms with Superlinear Convergence 145

Hencef(xk + dk)− f(xk) ≤ αgT
k dk.

On the other hand, similar to the above proof, we know that there is vk ∈ (xk, xk + dk) such that the
following inequality holds for the sufficient large k and the above η.

dT
k g(xk + dk) = dT

k (g(xk) + G(vk)dk) ≤ ηβ‖dk‖2 ≤ −βdT
k g(xk).

Therefore, λk = 1 satisfies the Wolfe search for k sufficiently large.

4 Numerical Experiment

In this section, we will solve the Rosenbrock function which is the typical unconstrained optimization
problem,namely f(x) = 100(x2 − x2

1)
2 + (1− x1)2,where x = (x1, x2)T .

We know x∗ = (1, 1)T and f(x∗) = 0. Let α = 1/4, β = 2/3, ε = 10−15 and Φ = 1/2.

Table 1: The scalars θ1=0.9, θ2=0.5, θ3=0.6

x1 x∗ xJiao∗ xZhang
∗(

1.5
0.5

) (
1
1

) (
1.36839237531073
1.87390722131381

) (
0.86160303144629
0.739907870396847

)

Itera. 45 8 6
(

0.5
1.5

)(
1

0.999999999999999

) (
1.01747141620734
1.03532415220092

) (
1.00234389438897
1.00469825826696

)

Itera. 48 8 24

Table 2: The scalars θ1=0.9, θ2=0.5, θ3=0.6

xT
1

x∗ xT∗

(0,0) 43 (1,1)

(2,2) 42 (1,0.999999999999999)

(10,10) 54 (1.00000000000001,1.00000000000001)

(100,100) 109 (1,1)

(-10,-1) 65 (0.999999999999999,0.999999999999999)

Table 3: The initial point x1 = (−1.2, 1)T and the scalars θ1 + θ2 = 1, Φ = 0 and θ1 = θ3

θ1 0.1 0.75 0.5 1(θ3 = 0)

x∗
(

1.0000109553952
10000000009543

) (
1.0000000053811
1.0000000008939

) (
1.00000000023
1.00000000446

) (
1
1

)

Time 0.046999999999 0.0469999999997 0.047000000025 0.000109799

Itera. 17 6 9 5
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In the tables, x1 is the initial point. x∗, xJiao∗ and xZhang
∗ are the results which are solved by the

algorithms in this paper, Jiao’s[4] and Zhang’s[2] paper, respectively. Itera. and Time mean the number and
time of iteration. As reported in Table 1, it is easy to find that our new algorithms behave more efficiently
than Jiao’s and Zhang’s. From Table 2, we can see that the new algorithms in our paper can give us a useful
globe convergence result. In Table 3: for θ1 = 1,θ2 = θ3 = 0 we obtain the BFGS method. Obviously, it
has better performance. Therefore, it is very interesting that we also validate that BFGS method is indeed
one of the best methods up to now.
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