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Abstract: In this paper, we present a class of new generalized quasi-Newton algorithms for
unconstrained optimization. The new algorithms are very extensive, including the algorithms
in Jiao’s paper and also in Zhangs’ even the class of Broyden. The global convergence and
the superlinear convergence of the new algorithms are also proved under the weak condition.
Numerical experiment indicates that the new algorithms are more feasible and effective.
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1 Introduction

Optimization is a very active branch in the computational Mathematics . It is already extensive to apply
in many engineering sections. Readers can refer to[1 ~ 13] and many other papers.
For unconstrained optimization problem[1]

min f(x),z € R", (1.1)
where f(x) is twice continuously differentiable. The standard quasi-Newton equation is

By 110k = yg,, (1.2)

here 0y = Txy1 — Tk, gx = Vf(2k), Yk = gr+1 — gk and By is the approximation of Hessian matrix
G(z)at zpiq .

Obviously, only two gradients are exploited in (1.2). Techniques using gradients as well as function
values (which are also available) have been studied by several authors. Recently, Zhang!?! made use of the
quadratic function ¢(7) = a7? + br + ¢, where a,b,c € R™ to approximate the gradient and established a
new quasi-Newton equation

Gra10k = Y + W0k /|| 0% |1 (1.3)

where Gj1 = V2f(2pq1), Yk = 3g£+15k + 3g,{5k + 6(fx — fx+1)- He, furthermore, gave the equivalent
form of (1.3) in another article[3]

Gr+10k = Uk (1.4)

where 4 = yr + %uk/éguk, 5;{,% # 0, g is the vector parameter. Zhang proved that gy, in (1.4) can be
better approximates V2 f (1) than yy.

Notice that, if we define Ry, = fr+1 — fx — ngék then we have R ~ %55Gk+15k for enough small dy.
Thus
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6F G106 ~ 2Ry (1.5)

In this paper, we combine (1.4) and (1.5) to the following weighted form
8% G416k = 0(8% i, + ) +2(1 — O) Ry, 0 € [0, 1],

Then we consider a new extensive equation as follows

6} Bry16 = 016} yr + 202 Ry + O3y, (1.6)

where the scalars 61, 65,63 > 0,607 + 65 > 0.

Based on (1.6), we deduced a new class of algorithms to solve the optimization problem. Throughout
this paper, we call (1.6) the generalized quasi-Newton equation, and call the algorithms based on (1.6)
generalized quasi-Newton algorithms.

The generalized quasi-Newton equation (1.6) makes use of not only gradient of the objective function,
but also the value of objective function. Thus compared with the standard quasi-Newton equation, the
new algorithms make good use of the information resources. In addition, the generalized quasi-Newton
equation is very extensive. It is the expansion of the standard quasi-Newton equation (1.2). They include
the algorithms in Zhang’s paper[2][3] and also in Jiao’ [4] even the class of Broyden. From the above, we can
analyze that the algorithms may be better when 61 4+ 05 = 1 and 03 = 6;.Actually, numerical experiment at
Section 4 will prove this point.

This paper is organized as follows: we give the generalized quasi-Newton algorithms which are based
on the generalized quasi-Newton equation in Section 2. In Section 3, we prove that the new algorithms have
global convergence and the superlinear convergence. Section 4 presents the numerical experiment.

In the remainder of the paper, we use the following notation: || - ||denotes the Euclidean norm; z, is a
minimizer of f and G, which is the Hessian matrix of f atx.is positive-definite.

2 The Generalized Quasi-Newton Algorithms
In order to obtain the generalized quasi-Newton algorithms, firstly, we consider the rank 1 correction

Bgt1 = B + UUTa

where u,v € R".
Let Qr = 015,{% + 205 Ry, + 037, then from (1.6) we have @ = 5kTBk5k + 5,{uvT5k. Therefore,
if v, # 0, then 5,{u = ﬁ(@k — 5,{Bk6k). Let U = ﬁ(ﬁ—’gkyk — B0y ), we obtain the rank 1
k

correction By 1 = By + ﬁ(y%gk yr — Biox)vT. Since the Hessian matrix G(x) is symmetric, we require

that its approximate By, be symmetric also. Therefore, we denote v = y%?gk yr — Bprdy and obtain the
k

symmetric rank 1 correction formula

1 ( Qr
Qr — 6] By,

Biy1 = By, + Yk — Bk%)(?(];kyk — Biop)".

Yi O, Yk
The weaknesses of rank 1 correction formula are: First, it can’t guarantee that the matrix By, 1is always
positive-definite; second, it is possible that the numeral is unsteady.
In order to overcome these weaknesses, we directly consider the rank 2 correction which is different
from Jiaol*l. Let
Byy1 = B + avu® + b,

where the coefficients a,b € R and the vector u,v € R".

Exploiting u = leék (y%)—’gkyk — By0r), we choose v = . and obtain

a Qk
Bpi = By + —[(—E
TR (T2 [(y}fék

v Qk

kT T, (yx0% Br, + Broryl) + Browdi Bi] + byryi .
k %k

)Yy
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In order to simplify the above formula, we let a = (ygék)Q. Because of By satisfies (1.6), then we have
bh— (Qr—08F Bidi,) (1—Qr+6{ Biby)

. Therefore, we have the following rank 2 correction formulae

(Y 0k)?
Bidkdl B Qryry} T
By.1 =By — + ViV,
+ 5,Z;Bk5k (yg5k)2 k
where V,, = (5kTBk5k)%( Ye_ B’Ci‘;"‘). Since Vk,T(Sk = 0,the formulae still satisfy (1.6) even if the last

o yI6, — ST Byoy
term multiplies the constant ®y.
Thus, we obtain a class of rank 2 correction formulae with four parameters

Bkéch{Bk
5T By

Qryry}
(yL 61,)?

Obviously, when 81 = 1,02 = 63 = 0, & = 0, (2.1)is the famous class of Broyden. Let Hy = Bk_lthen

Byi1 = B — + + &V V- 2.1

Hyyryt Hy  6,6F

Hyy1 = Hy — + Pr2nzy (2.2)
vl Hiyk Qx
where z;, = (ykTH kyk)% (y:‘ﬁ%k — yfﬁi’; - ) and Hy, 1 is the approximation of inverse of Hessian matrix G 1.
k k
Here the parameters @y, and ¢y, satisfy[1]
b = Py —1 = 67 By} Hyy
Py (1 — pg) — 1 (Y} or)?

Then we present the generalized quasi-Newton algorithms (I)

Step 0: Select an initial point z; € R™ and the positive-definite matrix By € R™*" or H; € R™",
choose a sufficiently small constant £ > 0. Let k£ = 1.

Step 1: If ||gx || = 0, stop; otherwise, go to Step 2.

Step 2: Solve Bydy = —gior di, = —Hj.gy, to get the search direction dj.

Step 3: Starts with A = 1, find xx 11 = x) + Ok, where o, = Apdy, A > 0 and satisfies the Wolfe search

9(vk + Medi) T di > Byt di, a< fp<l,
f(a:k =+ )\kdk) < f(l’k) -+ oz)\kg,zdk, 0<ax< 1/2.

Step 4: If ||zx+1 — x| = 0, stop; otherwise, go to Step 5.
Step 5: Update By or Hy41by formula (2.1) or (2.2), where @, = 915gyk + 2605 Ry, + 03y, and v
is defined by
e = { 39510k + 391 O + 6(fr — fry1), if Qp > ellok 1?5
0, otherwise.

Step 6: Let k = k + 1, and go to Step 1.

3 The Convergence Analysis

As the quasi-Newton algorithms are discussed in [1], we can easily prove that the generalized quasi-
Newton algorithms (I) also have the properties of symmetric positive-definite. The algorithms can terminate
in the nth step for quadratic function and not be changed after linear transformation. We state the three
properties as follows.

Theorem 3.1 If By, is a symmetry positive-definite matrix, and then there is a sufficiently small constant
€ > 0, such that By which is updated by (2.1) is symmetric positive-definite.

Theorem 3.2 If f(x) is a quadratic function and G(z) is the Hessian matrix, the following equations
hold with the exact line search

HiJrlyj = 5]/(01 +02)7] = 0717"' 7i7
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67 Gs; =0, j=0,1,--,i—1.

The algorithms (I) must terminate at the m + 1 < niteration; if m + 1 = n, then H,, = G~ L.

Theorem 3.3 If (Hy), = A~(Hy),A~T holds for all k, then the algorithms (I) are not changed with
fixed steplength )y, after linear transformation y = Ax + a, where A € R"*",a € R", and (H},).,(Hy)y
mean that H}, calculates from the vector « and y, respectively. In order to prove that the algorithms (I) have
the properties of the globe and superlinear convergence which are the main results of this paper, we give the
following assumption which is weaker than [5].

AssumptionH The function f(z)in the problem (1.1) is twice continuously differentiable. It is forcible
convex over the level set D.

Theorem3.4[6] For f(x) is a forcible convex function in the Euclidean space R",zy € R". Let

D(xo) = {z € R" | f(x) < f(z0)},
U ={z e R"| f(z) < f(2),Vz € R"},

Then the level set D(xg) is bounded and not empty; both D(z¢) and U* are closed convex.

Lemma 3.5[6] f(z) is forcible convex over the level set D, if and only if, there is m > 0, such that
m|z||? < 2T'G(z)z forall 2 € R" and all z € D.

From the above Assumption H, Theorem 3.4 and Lemma 3.5, we have G(z) are bounded over the level
set D for all x € D, namely there is m, M > 0, such that m||z||? < 2T G(x)z < M||z|? for all z € R™

For the arbitrary matrix B € R™*", we define

n
U(B) = tr(B) — In[det(B)] = > (A —In\y),
i=1
where A1, Ag, - -+, A, are the eigenvalue of matrix B.
Similar to [5], we can obtain the following Lemma3.6 easily.
Lemma 3.6 If Assumption H holds, then
1) There are the constants C7 > 0, such that

fei1 — fe < (1 —amCy cos® wi)(fx — fe)- 3.1

where —gi 0 = ||gkll - |0kl cosw, fi = f(a).
2) There is the constants 0 < Cy < 1, such that

Frp1 = fo < C5(f1 = ) (3.2)
Lemma 3.7 If Assumption H holds, the scalar ® € [0,1). When d;, # 0, we have

— M
W(Bin) < W(BK) + ML)~ — (1- ®)] + (1 - @) Ingy
(1 —®)m? — ®(M? cos® wi, + 2Mm coswy, + m? cos® wy)

- o)1 - (1 — ®)m? cos? wy,

ax), (3.3)
where M = (01 + 02)M + 03¢, m = (01 + 02)m — 03¢ and g, = 5%55;5]“ = ”ﬁgfﬁ” COS W
According to Lemma3.6 and 3.7, we can now prove the globe andk superlinear convergence.
Theorem 3.8 If Assumption H holds, 1 and B is the initial point and symmetry positive-definite
matrix respectively, ® € [0, 1), then the sequence xj, generated by the algorithms (I) is convergent at .
Proof: When 0y, # 0,B}; can keep positive-definite for & sufficiently large and thus W (By) > 0.
Suppose

lim cos?

k—o0
then there is k1 > 0, we have ® cos® wy, < 2(1 — @) forall k > k.
Let T}, = A=®)—@cos’wp oy Ty, > %k hence In T}, > — In 2—In cos? wy,. It is easy to understand

(1-®) cos?wy, ’ 2cos? w

that 1 — ¢ < —1Int holds for £ > 0. Hence from (3.3) we obtain

wkzo,
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U(Bry1) < U(Bp)+ (M —Inm—1)+ (1 —®)Ing, + (1 — ®)[1 — g Tx]
< UBp)+(M-Inm—1)+(1—®)Ing + (1 — ®)IngyTy
< UBp)+(M—-Inm—1)— (1 —®)InTy
< U(Bg)+ (M —Inm—1)+ (1 — ®)(In2 + Incos? wy)

Thus, according to Assumption H and the k1, there is ko > k1 > 0 such that

9
In cos® wy, < —ﬁ[M—lnm— 1+ (1—®)In2|

for all £ > ko.Thus

U(Byy1) < ¥(Bg) — [M —Inm —1+ (1 — ®)In2]
< <U(Bp,)—[M—-1InM—-1+(1—-®)In2)(k—ky+ 1)

It is easy to find that the term inside the above square brackets is positive. Then the right tends to negative
infinite for the sufficient large k. This is contradict with W(By,) > 0, so the above supposition can not hold,

L__ . Substitute it into (3.1), we

amCh
have fri1 — f« < (1 —amCie?)(fx — f+). It then follows that the sequence { fi} converges to f.

On the other hand, from Assumption H and the Taylor’s theorem we have fi — f. > %m”xk — T4 ||2 > 0.
Therefore, the sequence {xy} is convergent at .

Theorem 3.9 If Assumption H holds, G, = I, then the algorithms(I) satisfies

namely there is k, such that coswy, > ¢ forall k > k, where 0 < € <

(B — 1)ox|l _

lim =0 (34

and A is taken equal to 1 for sufficient large k, thus the sequence {x} converges to x, superlinearly.
Proof: With Assumption H and the Taylor’s theorem, we can obtain f, 1 — fi > imllzp11 — 2.
Using this in (3.2), we have ||z51 — z4]|> < 2C5(f1 — f.), then

o0 [e.e]
2 k
S lapps — ) < [ (- FI2 YO8 < 4. (35)
m
k=0 k=0
From the Proposition 4 in [7], we know (3.4) holds.
Using Theorem 2.2 in [8], we know (3.4) is equivalent to the fact that the sequence xjsuperlinearly

converges to .
Next, we will prove A\, — 1 (similar to Theorem 6.3 and 6.4 in [9] ). From (3.4), (3.5) and

gk + Grdill _ (Bx = Gr)dll _ [|(Br — G)dill | [[(Gr — G)d]

0< = <
|kl [kl [l [kl
By, — Gy)6
[0l
we have
gk + Grdg|
lim ——— =0, (3.6)
k—oo |[|dl
T T T
and hence — ﬁgk‘lil’g = dﬁdeT‘;lk _ % ﬁgjﬁ; 98) . Therefore, there is 17 > 0 such that

—gld > nl|de? (3.7)

T
From Theorem 6.3 in [9], namely klim % = 0, we can obtain klim ||dk|| = 0. Combining (3.6) and (3.7),
—00 —00
we know that there is uy, € (x,xx + di) such that the following inequality holds for sufficient large k and
the above 1
1

1 1 1
[z +di) — fzg) — 59;?6% = §df(G(Uk)dk +gr) < (5 — a)n|ldyl* < (o — §)ggdk'
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Hencef(zy + di) — f(z) < ag,fdk.
On the other hand, similar to the above proof, we know that there is vy € (xp,xx + di) such that the
following inequality holds for the sufficient large k£ and the above 7.

dig(zy, + di) = df (9(zx) + G(og)di) < nB||di|* < —Bdi g(zy).

Therefore, A\, = 1 satisfies the Wolfe search for k sufficiently large.

4 Numerical Experiment

145

In this section, we will solve the Rosenbrock function which is the typical unconstrained optimization

problem,namely f(x) = 100(

2

)2+ (1 — x1)%,where x = (21, 22)7.

We know x, = (1,1)” and f(z,) =0. Leta =1/4,3=2/3,c =107 and & = 1/2.

Table 1: The scalars 6;=0.9, §,=0.5, 03=0.6

Tq Ty x){iao I*Zhang
(1.5) (1) (1.36839237531073) ( 0.86160303144629 )
0.5 1 1.87390722131381 0.739907870396847

Itera. 45 8 6
0.5 1 1.01747141620734 1.00234389438897
1.5 0.999999999999999 1.03532415220092 1.00469825826696
Itera. 48 8 24
Table 2: The scalars 8,=0.9, 6,=0.5, 65=0.6
(0,0) 43 (1,1)
2,2) 42 (1,0.999999999999999)
(10,10) 54 (1.00000000000001,1.00000000000001)
(100,100) 109 (1,1)
(-10,-1) 65 (0.999999999999999,0.999999999999999)

Table 3: The initial point z; = (—1.2,1)7 and the scalars §; + 6 = 1, ® = 0 and 6; = 63

01 0.1 0.75 0.5 1(03 =0)
T ( 1.0000109553952 ) ( 1.0000000053811 ) ( 1.00000000023 ) ( 1 )
10000000009543 1.0000000008939 1.00000000446 1
Time 0.046999999999 0.0469999999997 0.047000000025 0.000109799
Itera. 17 6 9 5
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In the tables, z; is the initial point. z,, 27" and 2Z""™ are the results which are solved by the
algorithms in this paper, Jiao’s[4] and Zhang’s[2] paper, respectively. Itera. and Time mean the number and
time of iteration. As reported in Table 1, it is easy to find that our new algorithms behave more efficiently
than Jiao’s and Zhang’s. From Table 2, we can see that the new algorithms in our paper can give us a useful
globe convergence result. In Table 3: for ; = 1,03 = 63 = 0 we obtain the BFGS method. Obviously, it
has better performance. Therefore, it is very interesting that we also validate that BFGS method is indeed

one of the best methods up to now.
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