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Abstract—Multicore Dual-Criticality systems comprise two
types of applications, each with a different criticality level.
In the space domain these types are referred as payload and
control applications, which have high-performance and real-
time requirements respectively. In order to control the inter-
action (contention) among payload and control applications in
the access to the main memory, reaching the goals of high-
bandwidth for the former and guaranteed timing bounds for
the latter, we propose a Dual-Criticality memory controller
(DCmc). DCmc virtually divides memory banks into real-time
and high-performance banks, deploying a different request
scheduler policy to each bank type, which facilitates achieving
both goals. Our evaluation with a multicore cycle-accurate
simulator and a real space case study shows that DCmc enables
deriving tight WCET estimates, regardless of the co-running
payload applications, hence effectively isolating the effect of
contention in the access to memory. DCmc also enables payload
applications exploiting memory locality, which is needed for
high performance.

I. INTRODUCTION

In the space domain, the complexity and the amount of
data to be handled by on-board software is rising [35]. The
fact that space missions are becoming more autonomous
accentuates this trend and ultimately results in an increasing
demand for computation power. These performance demands
are shared across other real-time domains such as avionics
or automotive to provide more value-added functionality.
At hardware level, multicore processors can provide the
performance required, while enabling consolidating onto the
same hardware, applications1 subject to different criticality
levels. This results in reductions in space and weight which
are relentless in the space domain. However, multicores also
bring their own specific issues to the real-time domain from
which contention in the access to hardware shared resources
is one of the most prominent [9]. In particular, the memory
bandwidth, which is arbitrated by the memory controller,
is one of the shared resources with the highest impact on
systems’ average and guaranteed performance [27][36].

Multicore mixed-criticality systems [33] can consolidate
onto the same hardware applications with different criticality
levels in terms of safety (and security). While in other
domains safety standards define multiple safety integrity
levels (e.g. DAL in avionics and ASIL in automotive), in
the space domain it is well accepted that on-board systems
will comprise two criticality levels [28]. One level covers
control applications, which require real-time execution and
are designed to meet requirements in the worst case. Control
applications usually have low memory footprint, in the order

1In this paper we use the terms application and task interchangeably.

of kilobytes, so that if they are provided some cache space,
they incur low number of memory accesses. The second cov-
ers payload applications that are high-performance driven,
usually with data footprints in the order of megabytes, and
some (soft) real time requirements. For instance, spacecrafts
for Active Debris Removal [13], which have to remove
space junk autonomously, require a complex autonomous
Guidance and Navigation Control (GNC) system with image
processing inside the control loop to be able to determine the
rendezvous trajectory. The GNC system is critical, thus hav-
ing real-time constraints, while image processing has high-
performance requirements and soft real-time constraints2.

Contribution: In this paper we tackle the challenge of
handling inter-task interferences, a.k.a contention, in the
memory controller in multicore systems for the space do-
main. To that end we propose a Dual-Criticality memory
controller DCmc, which provides real-time guarantees for
control applications and high-performance for payload ones.
Instead of deploying a single policy to schedule requests
of different types, which inevitably ends up trading off
some performance for real-time guarantees, DCmc virtually
divides memory banks into real-time and high-performance
banks that are managed differently by the memory controller,
deploying a different scheduling in each case. For the real-
time banks, DCmc deploys round-robin scheduler across
the different requestors to provide predictable and tight
bounds on the memory latency. For high-performance banks
DCmc deploys a First-Ready First-Come First-Served (FR-
FCFS) [31] scheduler, similar to the one in Commercial Off-
The-Shelf (COTS) high-performance processors [18], to ex-
ploit locality of accesses and improve the memory through-
put. Further, DCmc prioritizes real-time requests over high-
performance ones, providing high degree of isolation for
critical applications running in dual-criticality workloads.
DCmc includes support to enable the Operating System (OS)
to manage the separation of banks dynamically at run-time.
This provides flexibility to distribute banks according to
tasks’ needs in each system instantiation.

Evaluation: We perform a detailed analysis of the timing
behavior of DCmc and compare it with the state of the art
memory controllers both analytically and quantitatively.

Our results show that for the real-time tasks, tight WCET
estimates can be derived with DCmc, regardless of the
co-running payload tasks, effectively isolating them from
payload tasks running on the system. These WCET estimates

2Although less frequent, some payloads are also designed with high
criticality in mind. For instance, the control of the cryogenic system of
Herschel [12] had to keep the sensors at 1.7 Kelvin degrees for about
3 years. The failure of the payload system would have compromised the
mission, hence making it mission critical.
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are significantly tighter than those obtained with FR-FCFS
[18]. Further, DCmc allows payload tasks to exploit the
memory locality, observing a performance degradation of
less than 1% due to the execution of real-time tasks.

Applicability in other domains: DCmc applies to other
dual-criticality real-time domains. We completed the DCmc
evaluation by using EEMBC benchmarks as representatives
of control real-time applications. Obtained results in terms of
real-time guarantees and high performance follow the same
trend as for the space case study.

The rest of this paper is organized as follows: Section II
explains basic DRAM background. Section III presents an
analysis of the worst-case memory latency under different
memory controller setups. In Section IV, the DCmc is
proposed and in Section V it is evaluated. Section VI
presents the different memory controller designs present in
the literature. Section VII presents the conclusions.

II. DRAM SYSTEMS BACKGROUND

Modern DRAM systems [14] comprise a memory con-
troller and DRAM memories, which are organized into
SIMM or DIMM modules that contain the DRAM devices
or chips. The memory controller acts as an interface between
the DRAM modules and the processor.

DRAM memories are organized into channels, ranks,
banks and arrays. The processor accesses the memory
through one or more independent memory channels with
separated command, control and data buses for each channel.
Each memory channel consists of one or several ranks that
can be accessed in parallel through the same memory bus. A
rank consists of several DRAM devices or chips connected
in parallel. Since DRAM devices have narrow data width,
several of them are needed to provide a wide data bus, e.g.
8x8 bits DRAM chip gives a 64 bit memory bus width. Every
DRAM device contains several memory arrays organized
into banks that can be accessed in parallel. Different banks,
as well as different ranks, can be accessed simultaneously,
which is called the Memory Level Parallelism (MLP). In the
rest of the paper, we consider a system with one channel and
one rank, for the sake of simplicity. Similar analysis can be
carried out when more ranks are added. Channels can be
analyzed separately when the system has more than one.

DRAM devices require several commands to operate them
due to their internal behavior. To serve a memory request,
an entire row from a bank has to be loaded on the per-
bank row buffers, which is done by issuing an activate
(ACT) command. This action is also referred as “opening
a row”. Once the row is on the row buffer, a column read
(CAS) or write (CWD) can be issued to get the data. If
the next request targets the same row that is open on the
row-buffer, column read or write commands can be issued
directly. Otherwise a precharge (PRE) command needs to
be issued before activating a different row, to write back
the open row to the memory arrays, which is also called
“closing the row”. Also, in DRAM memories, all memory
rows need to be periodically read out and restored for data
integrity due to leakage in memory cells. This is done by
issuing a refresh (REF) command. The impact of memory
refreshes on execution time is limited and can be bounded
as shown in [6] [7].

There are two different ways to manage memory rows,
also called pages, from the point of view of the row buffer:
(1) close-page policy that precharges a row immediately after
the column access and (2) open-page that leaves the row
open on the row buffer to exploit the locality of future
accesses, called Row Buffer Locality (RBL). In a close-
page policy, all requests perform the same actions: activate,
column access and precharge. In an open-page scheme,
depending on if the access is a row-hit or a row-miss, a
request behaves differently. If the access is a row-hit it
accesses the same row as the previous access, and hence
it can directly perform the column access. In the case of a
row-miss, the request has to precharge the actual row and
activate the new one before performing the column access.

All commands sent to the DRAM devices have to satisfy
the timing constraints specified on the JEDEC standard [1],
depending on the type of memory. The most important
timing parameters are the column read latency tCAS , write
latency tCWD, activate latency tRCD and precharge latency
tRP . There are more timing parameters detailed in [1].
Annex II provides a detailed list and definition of the timing
constraints needed in this paper.

The memory controller is in charge of scheduling the
different requests coming from the same or different pro-
cessors and translating the requests into the appropriate
commands. The Memory Mapping Scheme (MMS) defines
the mapping of physical addresses from the processors to
the actual memory blocks in the memory devices. The MMS
impacts both MLP and RBL. For instance, if the MMS maps
sequential addresses to the same row, it benefits the RBL.
Instead, if it maps consecutive addresses to different banks,
they could be accessed simultaneously, exploiting the MLP.

III. ANALYSIS OF MEMORY ACCESS LATENCY UNDER
DIFFERENT MEMORY CONTROLLER DESIGNS

Once a request arrives at the memory controller, its
latency, τ , can be divided into intrinsic latency and request
interference delay. The former accounts for the time it takes
the request to be processed once it is granted access, τreq.
The latter accounts for the impact of contention, ∆:

τ = τreq + ∆ (1)

There are three main design choices that affect a re-
quest’s latency: (1) The row-buffer policy, (2) the memory
mapping scheme and (3) the memory request scheduling
policy. As a necessary step towards understanding DCmc,
this section presents the impact that each memory controller
design choice has on determining the upper bound latency
of a memory request, required in real-time domains. All
references to the publications used in this section are in the
related work Section VI.

A. Row Buffer Policy
In the absence of interference, the request latency, τreq,

depends on the row buffer policy chosen. It is τclose−req for
close-page and τopen−req for open-page. They are defined
as shown in Equation 5 and 6.

On the event of an access to a non-open row (see
Equation 3), we need to activate the row first, with tRCD



latency. Once the row is open, the request latency covers the
column access, tCAS or tCWD, and transferring the data,
tBURST , which coincides with the latency of a row-hit. A
row-hit, see Equation 2, happens when the requested data
is on the open row. Finally, for a row-miss (Equation 4),
which happens when a different row is open in the row
buffer, the row is first precharged, with tRP latency, before
being activated. These latencies can be expressed as:

τhit−row = max(tCAS , tCWD) + tBURST (2)
τclosed−row = tRCD + τhit−row (3)
τmiss−row = tRP + τclosed−row (4)
τclose−req = τclosed−row (5)

τopen−req =

{
τhit−row if row-hit
τclosed−row if closed-row
τmiss−row if row-miss

(6)

Once we have the intrinsic request latency, we derive the
interference (delay) that other requests can generate under
the different row buffer policies.

Definition 1. Inter-request worst-case interference under
close-page, ∆close. Under close-page row-buffer policy, the
worst-case interference that a request suffers from another
request, ∆close, corresponds to the case in which both
requests target the same bank.

Under close-page, a request consists of the sequence
of commands ACT, CAS/CWD and PRE. Assuming that
requests are served consecutively, ∆close is determined by
the ACT-to-ACT time between the ACT commands of the
two requests and is defined in Equation 7. The ACT-to-
ACT time can be limited by the row-cycle constraint, tRC ,
which defines the interval between ACT to the same bank. In
the case of read requests, the time between CAS and PRE
commands has to satisfy the read-to-precharge constraint,
tRTP , and the minimum tBURST to be able to send the
data before precharging. For writes, the write recovery time,
tWR, needs to be satisfied before precharging. Figures 6
and 7, in Annex I provide a graphical description of the
ACT-to-ACT latency depending on the type (read or write)
of the previous request.

∆close = max(∆write,∆read) (7)

∆write = max(tRCD + tCWD + tBURST +

tWR + tRP , tRC) (8)
∆read = max(tRCD +max(tRTP , tCAS + tBURST ) +

tRP , tRC) (9)

Definition 2. Inter-request worst-case interference under
open-page, ∆open. The highest (worst) interference that
a request suffers from another request in an open-page
scheme, ∆open, manifests when both are row-misses and the
latter hits a different row in the same bank as the former.

∆open maximizes when all accesses are row-misses. In
that scenario, every memory request accesses a row dif-
ferent to the one active in the row buffer, making each
request to send PRE, ACT and CAS/CWD commands. The
interference corresponds to the PRE-to-PRE time, which has
the same timing constraints as the ACT-to-ACT time under

close-page. This is so because the sequence of commands
is essentially the same for close-page and open-page when
all accesses are row-misses. Thus, close-page and open-
page policies have the same worst-case interference [25],
i.e. ∆open = ∆close.

B. Memory Mapping Scheme (MMS)
The MMS defines the banks accessed by a request based

on its memory address, hence impacting the conflicts that
requests have in the access to memory banks. A bank
conflict happens when a request waits for another one that
is accessing the same bank. The interference that the for-
mer suffers, called intra-bank interference, manifests when
several requests share a bank. When those requests do not
share a bank, they can still have bus conflicts when accessing
the memory command and data buses. In that case, the
interference is called inter-bank interference.

In real-time designs, the MMS is selected to reduce the
conflicts among requests, and so reduce request’s interfer-
ence in the access to memory. To do so, one common choice
is the use of a private bank scheme in which each core has
exclusive access to certain banks, effectively removing intra-
bank interferences across tasks [30].

Definition 3. Inter-request worst-case interference under
private bank, ∆private. Under private bank, the worst-case
interference that a request from a given task suffers from
a request of a different task, ∆private, is the inter-bank
interference on the access to the command and data buses.

Under private bank, assuming that each request comprises
the commands PRE, ACT, and CAS/CWD(R/W), commands
from different banks are scheduled independently. The inter-
bank interference that such a request suffers can be split into
the interference that each of those commands suffers inde-
pendently when accessing the command and data buses [18]:

∆private = ∆PRE + ∆R/W + ∆ACT (10)

A PRE command can only be interfered by other com-
mands using the command bus, which is given by the
time between commands, tCMD. A CAS/CWD command
is delayed in the worst-case by another column command
sent to another bank, which corresponds to the write-to-
read, tWTR, and read-to-write, tRTRS , timing constraints.
Figures 8 and 9 in Annex I provide a graphical description
of the ∆R/W latency. The ACT command is interfered in
the worst-case by other ACT commands, due to ACT-to-
ACT timing constraints. The time between two ACTs to
different banks is limited by tRRD, and a maximum of four
ACTs can be issued during the tFAW time-frame, to restrict
the peak current. In the last case, the worst-case interference
happens when the other command is an ACT command that
is the fourth consecutive ACT so that tFAW does not allow
the actual ACT to be scheduled:

∆PRE = tCMD (11)
∆R/W = max(tCWD + tBURST + tWTR, tCAS +

tBURST + tRTRS − tCWD (12)
∆ACT = max(tRRD, tFAW − 3tRRD) (13)



However, the use of the private bank scheme in shared
memory models makes more difficult the communication
among cores. Moreover, with private banks the memory
is partitioned regardless of the specific application require-
ments, so applications with very small memory footprint
allocate one bank, resulting in a waste of memory. Finally,
the private bank scheme has scalability problems due to the
limiting number of memory banks (up to eight in case of
DDR3 memories). This can be partially mitigated by using
more memory ranks, which allows to have more banks [20].

Under interleaved bank scheme [27] [5], data are mapped
across all memory banks so that every request accesses all
banks simultaneously in a pipelined fashion exploiting bank-
level parallelism, and hence removing bus conflicts, or inter-
bank interference, among memory requests. For example,
in a four-bank interleaved access, four pipelined memory
accesses to different banks will be sent per memory request.
This scheme is not optimal when the length of a memory
request is smaller than the bandwidth of all memory banks
because all banks are accessed anyway. We discuss this point
in detail in the next section.

Definition 4. Inter-request worst-case interference under
interleaved bank, ∆interleaved. Given a request, the worst-
case interference that another request generates on the
former in an interleaved bank scheme, ∆interleaved, is given
by the intra-bank interference between command sequences
accessing all banks.

In the case of an interleaved bank scheme, every request
consists of the same precomputed sequence of commands
that access all Nbanks banks. The interference that a request
generates on another one is given by the time from one
sequence of commands to the next one, i.e., the ACT-to-ACT
time from requests going to the same bank, which matches
Equation 7. We need to consider also the timing constraints
on the data bus for the different bank access that each request
does, tBURST , and the limitation of ACT commands that is
imposed by tRRD. For illustration purposes, Equations 14
and 15 show a simplified version of the exact interference,
without considering tFAW , read-to-write and write-to-read
effects. The exact interference can be found in [4][27]:

∆interleaved = max(∆ACTBNbanks,∆close) (14)
∆ACTB = max(tRRD, tBURST ) (15)

Definition 5. Inter-request worst-case interference under
shared bank, ∆shared. The worst-case interference that a
request suffers from another one in a shared bank scheme
is the intra-bank interference generated by the latter if
both share the same bank, or the inter-bank interference
generated by the latter if it goes to a different bank.

Equation 16 defines ∆shared, where ∆inter, the inter-
bank interference, is equivalent to the interference of private
bank and ∆intra, the intra-bank interference, is equivalent
to the interference of interleaved bank, considering only one
bank access.

∆shared = max(∆intra,∆inter) (16)
∆intra = ∆interleaved(Nbanks = 1) (17)
∆inter = ∆private (18)

Note, that ∆shared is the interference caused by only one
request. In the case when several requests can be scheduled
concurrently, for instance, requests going to different banks,
the worst-case interference includes both, intra-bank and
inter-bank interference, as we show in Section IV-B. In
that case, both terms are not independent between them and
depend on the memory scheduler.

C. Memory Scheduler
The memory scheduler selects the next request to access

the memory. It is probably one of the most important com-
ponents of the memory controller, and the one making the
difference between real-time and high-performance designs.

In multi-core real-time designs, the scheduler is designed
to bound the impact of interferences across requestors, by
using predictable arbitration policies, e.g. round-robin [25].

Definition 6. Inter-requestor worst-case interference under
round-robin scheduler, ∆rr. The worst-case interference that
a request from a requestor i, ri, may suffer from the requests
of other requestors under round-robin memory scheduler,
∆rr, corresponds to the case in which all requestors get
a request ready in the same cycle and ri gets the lowest
priority.

Assuming Nreq requestors under round-robin arbitration,
a request has to wait in the worst-case for Nreq−1 requests,
one for each of the other requestors. The effect that each of
these other requests has on the former is given by the inter-
request interference (∆private, ∆interleaved or ∆shared). For
instance, with a private scheme, the worst-case inter-request
interference is given in Equation 10. For shared bank and
interleaved bank, ∆rr is computed by changing ∆private by
∆shared and ∆interleaved respectively.

∆rr
private = (Nreq − 1) · ∆private (19)

If instead of a real-time amenable scheduler policy, such
as round robin, a high-performance scheduler policy is used,
such as FR-FCFS, bounds can still be derived on the memory
latency [18], though these are less tight. It is required a
reordering term to be introduced in Equation 20, which in
order to be able to derive meaningful bounds on latency, has
to be limited by hardware. In fact, this is the case for the
COTS processor analyzed in [18]. That limit is also useful
to prevent memory performance attacks [23].

∆FR−FCFS = ∆reordering + ∆′intra + ∆′inter (20)

Further, with FR-FCFS the prioritization of ready requests
when scheduling between banks can have unbounded la-
tency, due to an unbounded ∆′inter, as shown in [36]. For
instance, whenever there are two requestors sending write
requests continuously, a read request can have unbounded
delay due to the write-to-read constraint. If the write-to-
read constraint is bigger than the write-to-write constraint,
writes will be ready before the read, thus being sent before
the read and delaying every time the read with the write-to-
read, tWTR constraint. In [36], authors change the FR-FCFS
policy with a FIFO policy to remove this effect.

FR-FCFS is a clear exponent of opposing metrics between
time-predictability and high-performance, since it improves
performance [31] on the average-case, however, the effects



that it introduces on the interference bounds affect the
predictability of the memory controller in the worst-case.

IV. DUAL-CRITICALITY MEMORY CONTROLLER (DCMC)

High-performance and real-time behavior are somehow
opposing goals, since the latter requires reserving hardware
resources (either temporally or spatially), which negatively
impacts the former. In our space system, these two objectives
are structured hierarchically. DCmc focuses on providing
time predictability to real-time tasks for their correct op-
eration. Once real-time guarantees are satisfied, available
resources are used to maximize the average performance of
high-performance tasks. DCmc design pursues the same two
hierarchical goals: providing predictable and tight memory
access-latency bounds for real-time tasks and maximizing
the average memory performance of high-performance tasks.

DCmc is driven by two design principles DP . DP1,
reducing the interference that high-performance (payload)
tasks introduce on the real-time (control) tasks. And DP2,
during those periods in which no real-time memory request
is processed, maximize the throughput of high-performance
memory requests.
DP1 is achieved by virtually dividing the banks into those

serving requests from/to real-time tasks and the rest which
serve high-performance tasks’ requests. Bank separation
between both application types reduces the interference
that high-performance applications introduce on real-time
ones. However, bank separation affects Bank Level Paral-
lelism.Interferences across application types are also reduced
by prioritizing real-time banks over high-performance ones,
such that only if a high-performance request is in-flight by
when a real-time request arrives, the latter is delayed by the
former. Other than in this case, high-performance requests
execute transparently, i.e. without delaying, real-time ones.
DP2 is achieved by having a memory controller structure

in which, during those periods where no real-time requests
are processed, high-performance requests can proceed as fast
as in high-performance memory controllers, e.g. FR-FCFS.
Hence, instead of arbitrating high-performance and real-time
requests with a single scheduling policy, which would trade
both metrics, DCmc makes them going to different banks
and hence allowing real-time and high-performance requests
to be scheduled differently.

DCmc architecture is shown on Figure 1. The MMS
allocates each request into different per-bank request queues.
Each bank is defined as real-time or high-performance.
The intra-bank scheduler (ABsch) determines the particular
commands and their schedule for each bank. The inter-bank
scheduler (EBsch) grants access to the memory bus to one
intra-bank scheduler at a time. Instead of having a fix separa-
tion of banks among real-time and high performance, which
intrinsically incurs in inefficiencies in real-time guarantees
and high performance, DCmc enables the operating system
to configure bank separation at runtime, i.e. to configure each
bank as real-time or high-performance. As a result, on each
system instantiation the operating system may distribute
banks in a different manner to increase efficiency.

Figure 1: DCmc architecture. ABSchi stands for Intra-Bank
Scheduler for bank i. EBS stands for Inter-Bank Scheduler. Grey
squares show the blocks that communicates with the OS.

A. DCmc: MMS, RBP, and Scheduler

Memory Mapping Scheme. As we have seen on Sec-
tion III, we can choose between interleaved, private and
shared bank schemes. Equations 10 and 14 show that private
and interleaved bank schemes can reduce the interferences,
suffering only from inter-bank or intra-bank interferences
respectively. Despite its advantages, an interleaved scheme is
not compatible with the MMS required to separate the real-
time banks from the high-performance ones, since a given
request would not be able to access all banks, as required
in an interleaved scheme. Also, the interleaved bank scheme
is not suitable when the data needed by a request, usually
a last-level cache line, requires only one access to a bank,
as it happens in most systems [18] [2]. In particular, for our
system, the NGMP multicore processor, generates requests
of 32 bytes [2] and the DDR2 system used provides 32
bytes per bank. This makes more efficient to access only
one bank at a time, rather than accessing all of them as it
would happen with an interleaved scheme.

The hardware-based private scheme lacks scalability due
to the reduced number of banks and also has problems with
memory usage and enabling the communication among cores
as stated on Section III.

For DCmc we use a shared bank scheme which is more
flexible. With DCmc, as opposed to what was shown in
Equation 16, a request suffers both, inter-bank and intra-
bank interferences, since it competes in the intra-bank sched-
uler and in the inter-bank scheduler. To be able to enjoy the
flexibility of shared bank and the reduced interference of
private bank, DCmc uses software bank partitioning [21] by
exposing the MMS to the OS. This makes the OS aware
of the address-to-bank mapping, which can allocate tasks
into a given bank [37] [18] with the help of an MMU. For
instance, in a system with four memory banks, addresses
starting with 0x00, 0x01, 0x10 and 0x11 go to banks 0,
1, 2 and 3 respectively. The OS will map any real-time
application data and code into real-time banks so that they
enjoy predictable latencies. If a single task is assigned to a
given real-time bank, it enjoys the benefits of a private bank
scheme. Alternatively, if several real-time tasks are assigned
to a given bank, they have a shared-bank scheme.

Intra-bank schedulers. The intra-bank scheduler selects
the order in which the requests targeting a given bank are
prioritized.

For real-time banks we use a policy that allows deriving
bounds on the interference that requests generate on each



other. In particular we use round-robin as in [27], since it is
implemented very efficiently on hardware, it has predictable
and composable bounds, as shown on Equation 19, with
small hardware support [26] and also is work-conserving,
providing better average case performance than other pre-
dictable policies like TDMA [15].

In order to exploit both, Bank Level Parallelism (BLP)
and Row-Buffer Locality (RBL) in high-performance banks,
DCmc schedules requests per bank, so that it can effectively
exploit BLP, and prioritize requests that target open rows,
i.e. row hits. Our choice is to use the FR-FCFS [31][18] as
scheduling policy, which chooses first row hits (First Ready)
and then in arrival order (First Come First Served), that is
also used in nowadays COTS processors [18]. This allows
high-performance tasks to benefit from open-page policies,
that in turn benefit from locality of accesses.

Inter-bank scheduler. The inter-bank scheduler is round-
robin, which is applied across the commands selected by
the intra-bank scheduler, having real-time banks priority
over high-performance ones. Round-robin is applied to ready
commands in the case of ACT and PRE commands, but for
CAS/CWD commands it will be applied for all commands,
whether they are ready or not, with the scheduler waiting in
the latter case (instead of issuing the next command in case
it was ready). This prevents very high latencies as explained
in Section III and in [36] for FR-FCFS policy.

Row buffer policy. DCmc uses open-page in both, real-
time and high-performance banks. For high-performance
banks, open-page is required to exploit RBL. For real-time
banks, we have seen in Section III that in the worst-case
open-page and close-page policies are equivalent in terms
of interference (see Equation 7). Open-page has predictable
latencies and also enables to exploit RBL when using a
private bank scheme. Under a shared bank scheme, for real-
time banks, all accesses need to be assumed as row misses,
since a requestor is not able to know which accesses perform
the rest of requestors sharing the bank.

B. Memory-access latency analysis under DCmc

The ultimate purpose of the real-time banks is to enable
deriving WCET estimates in the presence of contention in
the access to memory. This requires being able to derive
upper-bounds on the interference that do not depend on the
rest of requestors (tasks), especially the high-performance
ones.

Under DCmc, Equation 1 is redefined as shown in Equa-
tion 21. The latency of a request, τDCmc, is divided into
the intrinsic request latency, τDCmc

req , and the interference
delay, ∆DCmc. The interference delay is further divided
into the interference generated by the real-time banks, ∆rt,
and the one generated by the high-performance ones, ∆hp.
The real-time interference can be further split into inter-
bank interference, ∆rr

inter, which manifests in the inter-
bank round-robin (rr) scheduler; and intra-bank interference,
∆rr

intra, in the intra-bank round-robin scheduler:

τDCmc = τDCmc
req + ∆DCmc = τDCmc

req + ∆rt + ∆hp =

τDCmc
req + (∆rr

inter + ∆rr
intra) + ∆hp (21)

The different latencies of a request under an open-page
policy are shown in Equations 2, 3 and 4. In case other
requestors use the same bank or when the analysis tool is
unable to analyze the state of the row-buffer, all accesses
have to be considered row-misses. If we denote by NR the
number of requestors in the bank:

τDCmc
req =

{
τhit−row NR = 1 and row-hit
τclosed−row NR = 1 and closed-row
τmiss−row otherwise

(22)
Following a similar analysis like the one in [18] we upper

bound the interference that any memory request can have
in DCmc. The inter-bank interference affects the commands
sent by the request. In the worst-case, and access consists of
ACT, CAS/CWD (R/W) and PRE commands, which under
round-robin scheduler, generate a worst-case interference
when all the other real-time banks accessing the memory
have higher priority. If we have NB real-time banks, the
interference will be NB−1 times the interference suffered by
each command independently, equivalent to the interference
derived in Equation 19:

∆rr
inter = (NB − 1) · (∆ACT + ∆R/W + ∆PRE) (23)

The value of ∆ACT , ∆R/W and ∆PRE is the same as the
ones derived for private bank in Equations 11, 12 and 13.

The intra-bank interference is caused by the intra-bank
scheduler, that in our case is round-robin. If we have NR re-
questors in the bank, for a round-robin scheduler, the worst-
case corresponds to waiting for all the rest of requestors,
i.e., NR−1. The worst-case request time that other requests
might take is a row-miss also considering the possible inter-
bank interference. We need to take into account the row-
cycle time, tRC , which is the time between ACT commands
to different rows in the same bank, which is also affected
by the ∆ACT and ∆PRE inter-bank interference. That is:

∆rr
intra = (NR − 1)∆lid−req (24)

∆lid−req = max((NB − 1)∆ACT + (NB − 1)∆PRE +

tRC ,∆
rr
inter + τmiss−row) (25)

With DCmc, high-performance banks incur low inter-
ference on real-time banks, however, a high-performance
request can still cause some interference. The worst-latency,
∆hp, appears when the high-performance memory request
is issued just one cycle before the real-time request arrives.
If NB < Nbanks, so there are high-performance banks,
this may happen. ∆hp causes the same inter-bank bank
interference as a real-time request but removing tCMD

cycles for each command:

∆hp = Q(∆ACT + ∆PRE + ∆R/W − 3tCMD) (26)

Q =

{
1 NB < Nbanks

0 otherwise (27)

It is clear that the only input parameters of τDCmc are
the number of real-time banks, NB , and the number of
requestors sharing the same bank, NR, which both are
known by the OS at the moment of scheduling the task.
It is important to notice that the request latency bound does
not depend on the specific behavior of the rest of contenders,



Table I: Worst-case access latencies for a DDR2-667 device
(memory cycles).

NR
1 2 3 4

NB

1 27 50 73 96
2 40 70 100 130
3 53 96 139 182
4 56 112 168 224

thus enabling deriving time-composable WCET estimates. In
Table I we derive worst-case latencies for different scenarios
of NB and NR, assuming that all accesses are row-misses.

V. EVALUATION

In this section, we provide quantitative evidence of the
real-time and high-performance properties of DCmc.

A. Experimental setup
We use a modified version of the SoCLib [32] framework

that models a 4-core NGMP [2] running at 200MHz and
comprises a bus connecting cores to the L2 cache and an
on-chip memory controller. Each core is a LEON4 core
comprising seven stages. Each core has its own private
instruction (IL1) and data (DL1) caches. IL1 and DL1 are
16KB, 4-way with 32-byte lines. The shared second level
(L2) cache is split among cores, each receiving one way
of the L2, so that inter-task contention only happens on
the memory controller. DL1 is write-through and all caches
use LRU replacement policy. The bus connecting the cores
to the memory controller uses a round-robin arbitration
scheme.With DRAMsim2 [34] we model a 2-GB one-rank
DDR2-667 [19] with 4 banks, burst of 4 transfers and a 64-
bit bus, which provides 32 bytes per access, i.e., a cache
line.

To derive WCET estimates we use the upper bound delay
for the bus, as presented in [26], and the worst-case latency
derived in Section IV for memory accesses. The memory
access latency analysis can be applied either directly with
static timing analysis techniques or by means of a worst-case
mode [26] in case of measurement based techniques. Since
the L2 is split among cores, it does not have any contention.

As part of an internal study carried out in the European
Space Agency we evaluated the performance estimate pro-
vided by our simulator against a real NGMP implementation,
the N2X [3] evaluation board, using a low-overhead kernel
that allowed cycle-level validation. Our results for EEMBC
benchmarks showed a deviation in terms of accuracy of
less than 3% on average and for the NIR HAWAII bench-
mark [16] the inaccuracy reduces to less than 1%.

Space Applications. For the space case study we use a
real payload and control applications. As payload we use
the On-board Data Processing benchmark which contains
the algorithms used to process raw frames coming from
the state-of-the-art near infrared (NIR) HAWAII-2RG de-
tector, already used on real projects, like the Hubble Space
Telescope to detect cosmic rays. As control application we
use the Attitude and Orbit Control System (AOCS) from
the EagleEye project [8]. AOCS contains the Guidance and
Navigation Control system from the spacecraft in charge
of the correct position and orbit of the spacecraft. It is
one of the most critical systems of a spacecraft, since a

Figure 2: Worst-case memory latency, in memory cycles, for
tasks under private bank and sharing bank schemes under different
control-task count.

wrong position or orbit could mean the complete loss of the
spacecraft, due to loss of power (not pointing to the sun for
solar powered spacecrafts) or communication (antennas are
directional and have to be properly oriented).

Automotive Benchmarks. For the evaluation of DCmc in
another application domains we use the EEMBC Autobench
suite [29], which mimics some real-world automotive critical
functionalities.

B. Intra-bank scheduler
DCmc uses a different scheduler per bank type. For the

high-performance banks we FR-FCFS, which is deployed
in current high-performance architectures due to its high
average performance benefits [31] [18].

For the real-time banks we evaluate the benefits, in terms
of inter-task interference memory access bounds, of having
a round-robin scheduler w.r.t. the COTS FR-FCFS controller
analyzed in [18]. This evaluation is carried out under private
and shared bank schemes. In this experiment, we consider a
pure hard-real time system in which all tasks are real-time
(i.e. there are no high-performance tasks).

The left set of bars in Figure 2 shows that the effect of
the scheduling under private bank is the same for FR-FCFS
and round-robin. However, when real-time tasks share banks,
FR-FCFS produces high overestimation due to the reorder-
ing effect that can potentially introduce. In our experiment,
we assume that the reordering effect is limited to 12, as
shown in [18]. The round-robin scheduler reduces the effect
of interferences by 3.6x on average in the scenarios with 2, 3
and 4 control tasks sharing the same banks w.r.t. FR-FCFS,
making it much more convenient for real-time tasks.

C. Mixed-criticality in the Space domain
One of the main blocks in DCmc is the second-level

scheduling which arbitrates the requests from/to the banks.
The second-level scheduler prioritizes real-time banks over
high-performance ones. The idea behind these priorities
is removing as much as possible interference from high-
performance banks over real-time banks, while enabling
high-performance requests to go full-speed when there is
no real-time request to be processed.

We consider three different setups (workloads) for a
mixed-criticality system each with a varying number of real-
time and high-performance tasks. We assume a partitioned
system with one real-time partition and one payload parti-
tion. Hypervisors such as Xtratum, which has been ported
to LEON4 [22], have been shown to provide time and space



Figure 3: Normalized WCET under different mixed-criticality
workloads under private and shared banks

partitioning for the space domain [8] similarly to Integrated
Modular Avionics (IMA) in the avionics domain. In each
setup the number of cores assigned to each partition varies
from 1 to 3. We have the control setup with three AOCS
control applications and one NIR payload application; the
balanced setup with two AOCS and two NIR; and the
payload setup with one AOCS and three NIR.

Figure 3 shows the WCET for one AOCS task in each
mixed-criticality workload type (when there are several
copies of AOCS we observed that all copies present exactly
the same behavior in terms of WCET). Note that all WCET
values are normalized w.r.t. the WCET estimate computed
in isolation, i.e. assuming that only one task runs at a time.

We observe that for private bank, the WCET estimate for
the control task (AOCS) under FR-FCFS is insensitive to
the number of real-time (control) tasks. This is not the case
of DCmc since it uses round-robin among control tasks, so
that WCET estimates increase w.r.t the number of control
tasks. However, in all cases the WCET estimates with DCmc
improve those obtained with FR-FCFS. On the shared bank
scheme, DCmc is much more competitive, enabling tighter
WCET estimates, than FR-FCFS, which lead to very high
WCET estimates when the number of real-time tasks is
above one. For instance, for the balanced workload, DCmc
leads to WCET estimates 7.4/1.9 = 3.9x tighter than FR-
FCFS.

A problem that DCmc may face is negatively impacting
the average performance of payload applications. This is
so because real-time memory requests are prioritized over
high-performance ones. Interestingly, the performance that
the high-performance tasks can achieve depends on the
resources left by the real-time applications. Hence, the
performance of payload tasks depends on the workload
considered. Figure 4 shows the slowdown NIR experiences
under each scenario of increasing number of control tasks,
w.r.t. its execution time in isolation. Each payload appli-
cation has a dedicated bank, which minimizes the interfer-
ence between several payload applications running at the
same time. The control applications either have a dedicated
bank in the private scheme or share a bank in the shared
scheme. We observe that DCmc slightly affects payload task
performance, with a small increment when the number of
control applications increases. We have observed that the L2
cache efficiently filters most of the load and store operations

Figure 4: Execution time for the payload benchmark under DCmc
running along with real-time tasks with private and shared banks

issued by the control application, which in this case enables
the payload application to almost fully enjoy the memory
system.

D. Automotive benchmarks
In the next set of experiments, we use EEMBCs Au-

tobench as control applications and run them against our
payload application (NIR). In particular, for each workload
type, we generate 10 workloads from randomly selected
EEMBC Autobench applications in each of them.

We derive the WCET increment suffered by EEMBC
Autobench benchmarks w.r.t. their WCET estimate com-
puted in isolation, i.e. assuming that only one task runs
at a time. Figure 5 shows the average increment across
all executed benchmarks. We observe that, although the
particular WCET estimates change with respect to Figure 3,
the trends closely follow those observed with the space
control application (AOCS): DCmc improving FR-FCFS
mainly for the shared bank approach with the latter leading
to high WCET overestimation.

The impact of EEMBC Autobench benchmarks on the
payload application is roughly the same as the one presented
in Figure 4 for AOCS. Payload performance depends on
the resources left by control applications. We analyze this
trade-off by running real-time applications in a demanding
situation and measuring the performance degradation. For
that purpose, we run the EEMBC applications against high-
memory usage synthetic kernels as payload. The number
of Memory accesses per Kilo Instruction (MpKI) of these
kernels varies from 150 to 500. We measure that the per-
formance degradation of the synthetic kernels is up to 2.5%
for the 500 MpKI case and 1.8% on average.

VI. RELATED WORK

In this section, we discuss other existing memory con-
troller designs for high-performance and real-time.

A. Row Buffer Policy
Real-Time. Memory controllers [5][11][25][30][10] usu-

ally implement a close-page policy to ensure that memory
banks are in the same state after every request, reducing
the memory jitter. Time predictability provided by close-
page comes at the cost of preventing the exploitation of
spatial locality of multiple requests accessing the same row.
In order to address this issue, [10] presented the conservative
open-page policy, in which multiple requests to the same



Figure 5: Normalized WCET under different mixed-criticality
workloads under private and shared banks. EEMBC Autobench.

row are allowed to be issued while the row is open in a
close-page policy. In this case, the locality can be exploited
only during a small time-window in which the close-page
policy keeps the row opened due to timing constraints. The
worst-case is not affected, which remains the same as with
normal close-page, thus maintaining the predictability in
the worst-case and increasing the memory bandwidth for
the average-case. Open-page can also be used for real-time
systems [27], taking into account the effect of row-hits and
row-misses, assuming private bank [36] [20], which removes
the dependence from other tasks and also a COTS processor
can be analyzed [18].

High-Performance. Memory controllers [31][17][24] usu-
ally implement open-page policy to exploit row-buffer local-
ity and so provide high memory bandwidth, i.e. once a row
is open multiple requests to the same row can be performed,
maximizing the memory bandwidth.

B. Memory Mapping Scheme

Real-Time. A common choice in real-time designs is
the interleaved bank scheme [5][11][25][10] in which each
request accesses all banks exploiting bank-level parallelism
and reducing bank conflicts among memory requests. Private
bank schemes are also used [30][36][20], which remove the
bank conflicts across requestors.

High-Performance. In these systems, the objective of the
MMS is to increase bank level parallelism and exploit row
buffer locality in order to increase memory bandwidth. To
that end, high-performance designs [31][17][24] implement
shared bank schemes in which blocks of sequential addresses
are map into the same row together with open-page policy,
and also these blocks are mapped into different banks, which
allows requests from different or the same contender to
access simultaneously different banks, increasing memory
bandwidth. The use of open-page policy becomes fundamen-
tal in order to allow multiple memory requests to access the
same row, exploiting spatial locality.

C. Memory Scheduler

Real-Time. To bound the impact of interferences among
memory requests coming from different cores, the scheduler
is based on the core the request has been issued using
CCSP [5], TDMA [11][10][30] or round-robin [25] arbi-
tration policies. All these techniques allow deriving the

Table II: List of memory controllers. RT stands for real time and
HP for high performance.

Type Ref RBP MMS Scheduler

RT

[5] Close-page Intrlvd CCSP
[11] Close-page Intrlvd Reconfig. TDMA
[10] Cons. open-page Intrlvd TDMA
[27] Close-page Intrlvd Round-Robin
[30] Close-page Private TDMA

[36] [20] Open-page Private FIFO
[18] Open-page Private FR-FCFS

HP [31] Open-page Shared FR-FCFS
[24] Open-page Shared PAR-BS

maximum delay a memory request may suffer due to inter-
ferences. In [18], authors derive bounds on the interference
with FR-FCFS [31] and in [36] they use a FIFO policy
instead of FR-FCFS, removing the reordering effect in
order to be able to derive tighter bounds on the request
latency. In [20], they reduce write-to-read and read-to-write
interference in [36] by switching between several ranks.

High-Performance. The main objective of the memory
scheduler is to maintain all banks occupied in order to
improve the overall memory bandwidth. This is the case
of the FR-FCFS [31][17], in which the intra-bank scheduler
prioritizes requests with the row already open, and the inter-
bank scheduler prioritizes ready DRAM commands. Another
interesting work is [24] (PAR-BS) in which authors improve
the FR-FCFS algorithm using request-batching to provide
fairness and freedom of starvation and also use a scheduling
mechanism aware of the thread parallelism that tries to
maintain the bank-level parallelism and row-buffer locality
when threads are interfering across them.

D. Summary
Table II summarizes the row-buffer policy, MMS and

memory scheduler used by the related works on memory
controllers. We observe that real-time systems obtain pre-
dictable latencies by using scheduling techniques that allow
to minimize the effect of interferences. On the other hand,
high-performance systems try to maximize the Row Buffer
Locality and the Bank Level Parallelism using complex
scheduling techniques to increase bandwidth.

For dual-criticality systems, the memory controller has
to provide predictability for real-time applications, i.e.,
bounded latencies, and bandwidth for high-performance ap-
plications. As we have seen, both goals can be opposing, es-
pecially regarding memory scheduling policies. Any solution
based on a single policy that tries to cover both will end up
in a trade-off between predictability and bandwidth. DCmc
aims at bringing the best of both worlds (real-time memory
controllers and high-performance memory controllers) by
using different policies for real-time and high-performance
applications, so that interference that the latter generates on
the former is reduced, thus obtaining tight bounds on the
memory latency, and high bandwidth for applications that
do not require bounds on the latency.

VII. CONCLUSIONS

In the space domain, on-board software will comprise
two criticality levels: control applications, which require
real-time execution and are designed to meet requirements



in the worst-case; and payload applications that are high-
performance driven. Consolidating applications of both types
on the same multicore hardware is of paramount importance
to reduce Size, Weight and Power. Contention in the use of
the memory bandwidth has a large impact on applications’
execution time and WCET estimates, reducing the benefits of
using multicores in the space domain. DCmc mitigates this
effect by dividing memory banks into real-time and high-
performance, providing a different request scheduler policy
to each bank type. DCmc provides tight bounds for memory
access latency of control applications regardless of the load
that payload ones put on the memory controller. DCmc
prevents real-time applications to impact high-performance
ones when the former have no memory requests. Our analy-
sis with a space case study shows that DCmc achieves both
goals, worst-case memory access latency bounds up to 3.9x
smaller than with FR-FCFS with minimum impact on the
average performance of payload tasks.
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ANNEX I
This Annex presents several figures to support the formu-

lation presented in Section III:
Same bank ACT-to-ACT timing. Figure 6 shows the ACT-
to-ACT timing for a Read(CAS) requests, when both ACTs
target the same bank. In this case we need to take into
consideration the row cycle constraint, tRC , which is defined
as the activate to precharge time, tRAS , and the precharge
time, tRP . Also the read to precharge constraint, tRTP ,
needs to be considered.

Figure 6: ACT-to-ACT timing for a READ request.

In case the request is a Write(CWD) request, we need
to consider also the write recovery time, tWR, that defines
the minimum write burst to precharge time, as shown in
Figure 7.

Figure 7: ACT-to-ACT timing for a WRITE.

Overall, the ACT-to-ACT timing, which matches ∆close,
can be expressed as stated on Equation 7.

Different bank CAS-to-CWD and CWD-to-CAS tim-
ing. Figure 8 shows the CWD-to-CAS timing for a
Read(CAS) request following a Write(CWD) request, both
targeting different banks. In this case we need to consider
the write to read constraint, tWTR, that defines the minimum
interval between the end of a write burst and the start of a
CAS command.

Figure 8: Write-to-Read timing targeting different bank.

In case of a CAS-to-CWD situation, when a Write(CWD)
request follows a Read(CAS) request, we need to consider
the bus switching time to change the data direction, tRTRS ,
as shown in Figure 9.

Figure 9: Read-to-Write timing targeting different bank.
The interference between column commands going to dif-

ferent banks, τCAS/CWD, can be expressed as Equation 12.

ANNEX II
Table III defines the most relevant timing constraints for a

DDR2/DDR3 memory [14] used on this paper. A complete
list of the timing parameters can be found in [1].

Table III: Most relevant timing parameters for DDR2/DDR3
access protocol [14].

Parameter Description
tBURST Data burst duration.
tCAS Column Access Strobe latency. Time interval between

CAS command and the start of data return.
tCMD Command transport duration. Time to transport a com-

mand on the command bus.
tCWD Column Write Delay. Time interval between CWD com-

mand and the placement of the data.
tFAW Four Activation Window. Time-frame in which a maxi-

mum of four bank activations can be made to limit peak
current.

tRAS Row Access Strobe. Minimum time interval between
ACT and PRE commands.

tRC Row Cycle. Time interval between accesses to different
rows in a bank. tRC = tRAS + tRP

tRCD Row to Column command Delay. Time interval between
ACT command and column commands.

tRP Row Precharge. Time that takes to precharge a row.
tRRD Row activation to Row activation Delay. Minimum time

interval between two ACT commands to the same DRAM
device.

tRTP Read to Precharge. Time interval between a CAS and a
PRE command.

tRTRS Rank-to-Rank switching time.
tWR Write Recovery time. Time interval between the end of

a write burst and a PRE command.
tWTR Write to Read delay time. Time interval between the end

of a write data burst and the start of a CAS command.


