
A Scalable and Adaptive Distributed Service Discovery  
Mechanism in SOC Environments 

Xiao Zheng, Junzhou Luo and Aibo Song 
 

School of Computer Science and Engineering, Southeast University, 
210096 Nanjing, P. R. China 

{xzheng, jluo, absong}@seu.edu.cn 

Abstract. Current researches on service discovery mainly pursue fast response 
and high recall, but little work focuses on scalability and adaptability of large-
scale distributed service registries in SOC. This paper proposes a solution using 
an agent based distributed service discovery mechanism. Firstly an unstructured 
P2P based registry system is proposed in which each peer is an autonomous 
registry center and services are organized and managed according to domain 
ontology within these registry centers. Secondly, an ant-like multi-agent service 
discovery method is proposed. Search agents and guide agents cooperate to 
discover services. Search agents simulate the behaviors of ants to travel the 
network and discover services. Guide agents are responsible to manage a 
service routing table consisting of pheromone and hop count, instructing search 
agents’ routing. Experimental results show that the suggested mechanism is 
scalable and adaptive in a large-scale dynamic SOC environment.   

Keywords: multi-agent system, P2P network, service discovery, ant algorithm 

1 Introduction 

In Service-Oriented Computing (SOC), in order to discover and locate a target service 
efficiently, services should be published to a service registry. The registry stores 
metadata documents of Web services, including functions, parameters and providers. 
The service registry is a bridge between service consumers and service providers.  

Currently used services registries, for example those based on UDDI standard, 
often adopt a centralized or hierarchical architecture, which are not suitable for very 
large SOC environments for their intrinsic poor scalability features. The design of 
decentralized registry systems is therefore urgent. Recent UDDI v3 [1] introduces a 
mechanism of registry affiliation. Affiliated registries could share data with each 
other in a controlled environment. Peer-to-peer(P2P) based registry is also 
suggested[2-6] to support distributed service discovery. The P2P registry architectural 
style has no centralized registry to store the metadata of services. Each peer in the 
P2P registry is a registry center that maintains data independently, and data can be 
shared among peers. Recent researches almost focus on data partition and 
management among peers, and designing a high efficient service discovery algorithm. 
Little work considers scalability and adaptability of the registry system when 



thousands of peers exist in it. However, the problem of scalability and adaptability 
must be solved for distributed computing.  

Under an environment consisting of thousands of registries, service discovery 
would involve locating the correct registry in the first place and then locating the 
appropriate service within that registry. This paper focuses on solving the first 
challenge of finding appropriate registries. We propose an adaptive distributed 
services discovery mechanism for large-scale dynamic SOC environments. The main 
contributions in this paper are: 

(1) We propose an agent based distributed service registry system, which is based 
on unstructured P2P architecture. Moreover, domain ontology is adopted to partition 
and manage services in registry centers.  

(2) We examine a decentralized and self-organizing approach inspired by ant 
behaviors. According to dynamic variable pheromone level, agents can adapt to the 
changes of registry topology and registered services. 

2 Related Work 

Distributed service publication and discovery models have been extensively studied in 
previous work. Many researches [2-6] suggest using P2P network as the infrastructure 
of service registries. Current P2P systems can be classified into two types, namely 
unstructured and structured. Structured designs are likely to be less resilient in the 
face of a very transient user population, precisely because the structure required for 
routing is hard to maintain when nodes joining and leaving at a high rate. In contrast, 
the unstructured networks are ad-hoc and the placement of data is completely 
unrelated to the overlay topology. The advantage of such systems is that they can 
easily accommodate a highly transient node population. In addition, unstructured 
networks support many desirable properties such as simplicity, robustness, low 
requirement for network topology and supporting semantic searching. 

METEOR-S [2] is a scalable P2P infrastructure of registries for semantic 
publication and discovery of Web services. This work uses an ontology-based 
approach to organize registries into domains, enabling domain based classification of 
all Web services. The mapping between UDDI registry and ontology is used to 
organize a P2P network. Under this mechanism, the content of the registry is tightly 
coupled with the topology of P2P network, which leads to their synchronization and 
less flexibility. Reference [3] suggests a P2P and semantic web based service 
discovery mechanism where deployment and publication of a Web service are bound 
together. This mechanism omits obvious publication process of services, and could 
get dynamic various QoS of services in time. However, due to lacking registry, the 
response time of service discovery certainly delays, and its efficiency must lower. 
Reference [4] proposes a P2P based service discovery mechanism by creating an 
agent called P2P Registry as a middleware within DNS and peers. Each peer is able to 
register and discover desirable services automatically through current DNS within a 
short duration. In this scheme, centralized DNS is used to locate the target, which is 
similar to the super node in hybrid P2P systems.  



3 A P2P-based Distributed Service Registry System 

In order to support dynamic adaptive service discovery, an agent based unstructured 
P2P registry system is introduced, which is illustrated in figure 1. The whole registry 
system is composed of numerous self-organized registry centers that are 
interconnected through unstructured P2P network style. Three types of agents are 
used to manage registry centers and discovery services, namely registry agent, search 
agent and guide agent (RA, SA, GA for short respectively). RA, resided in registry 
centers, is responsible for registering and indexing service metadata, etc.. SA is a kind 
of mobile agent, accepting discovery task and responsible for searching target 
services over the registry system. GA, also resided in a registry center, is a guide who 
helps SA to select a best route. GA maintains a service routing table which records 
routes from the local registry to service domains. 

Domain Next hop Pheromone

...

Service  Routing Table

Registry Center (Registry Agent)

Dj

Di

Di

Search Agent

Guide Agent

Rk

Rj

Ri phi

phj

phk

Domain Web Service

Web Services in Registry

Dj

Di

WSji

WSik

WSij

Hop count

Hi

Hj

Hk

  
Fig. 1. An overview of the distributed service registry system 

Widely adoptive UDDI standard only supports keyword-based search. However, 
the accepted view is that semantic organization and management should be supported 
in near future, which should guarantee the accuracy of search result and offer 
foundation to automatic service composition based on semantics. Our suggested 
registry center adopts a domain ontology based two-level structure.  

Domain ontology could support the common understanding about domain 
knowledge, and eliminate different meanings of the same word or sentence [8]. In 
SOC, a service always belongs to one or more particular domains. For example, car 
rental services belong to a traffic and transport domain, and hotel booking services 
belong to a travel domain. Consequently, registered services can be categorized in 
terms of which domain them belong to. Each registry center manages and clusters 
services by means of domain ontology. 

A service can be defined as WS = (I, O). I is a set of inputs, and O is a set of 
outputs. For WSi(Ii,Oi), if Ii and Oi belong to domain Di semantically, WSi will be 
registered in Di. Once the registry center does not contain such Di , a new domain Di 
will be added. As illustrated in figure 1, registered services are organized as a 
directory tree. When querying a service WSij, a conclusion can be drawn rapidly 
through judging whether it belongs to one domain of the registry center or not. 
Consequently, the query process can be divided into two stages. At the first stage, 
which domain the target service belonging to should be judged; at the second stage, 



the service could be queried within its domain. Index technique can be used to 
improve the speed of query. Semantic technique can be used to judge similarity 
between a service and a domain. All of these techniques can be referred in the study 
of information retrieval and semantic web, which will not be studied in this paper.  

4 Agent-based Ant-like Service Discovery 

Ant algorithm, based on behaviors of the real ant, is initially applied to find the 
shortest paths in a graph [7] and, later on, successfully applied to combinatorial 
problems [9] or network routing [10]. The principle of this class of artificial ant 
algorithm is to translate into algorithmic models some of the real ants’ biological 
principles. They use pheromone remaining in paths to indirectly exchange the path 
information between ants, whereas former ants passing by the path, which represents 
some experience knowledge, deposit such pheromone. In ant algorithm, the positive 
feedback of global updating reduces the search scope, and the hidden negative 
feedback retains the scope.  

Our work also follows these thoughts. For each query request, n SAs are generated 
which emulate ants to execute a query task. In distributed service registry 
architecture, different service providers usually register many services with the same 
functions but different QoS properties. Service consumers do not generally find one 
particular service, but a number of services belonging to a given service class, so that 
they can subsequently select the service which is the best suited for their applications. 
A service class can be seen as a set of services satisfying a given set of syntactic and 
semantic constraints on the values of service metadata parameters. The objective of 
SAs is therefore to find target services as many as possible under particular 
constraints.  

4.1 Behaviors of Agents  

SA roams over the P2P network and queries the services belonging to its own 
ontology domain. Each SA carries some property information including a target 
service, TTL(Time to live), hop count and Tabu (tabu table). TTL records the life-span 
of SA, and hop count is the number of nodes (registry centers) that a SA has passed 
after discovering the latest target service. Tabu contains all nodes having been visited. 
SA’s behaviors are described as follows. Corresponding algorithms will be introduced 
in section 4.2.  

(1) Roam. In order to find target services, SA moves among nodes by a predefined 
routing policy. Each node maintains a service routing table that directs SA to select 
next hop. As illustrated in figure 1, a service routing table includes four fields, namely 
target domain, next hop, hop count and pheromone. The first record in service routing 
table showed in figure 1 represents that if target services belong to domain Di, Ri will 
be the next hop where the distance from local to the node having Di is hop count Hi, 
and the amount of pheromone on this exit is phi. In order to avoid visiting the same 
node again, SA records the visited nodes in its Tabu. At last the hop count is updated. 

(2) Querying services. SA queries target services at the visited node. The two stage 



query approach has been simply introduced above. 
(3) Generating and sending pheromone updating messages. A message includes 

service domain and hop count. There are two different kinds of updating messages. If 
SAs having found successfully, the massage of reporting a target service registered in 
this node is going to be flooded to all its neighbors. In addition, if SA’s hop count is 
not equal to zero, a message containing this hop count will be sent to the local GA.  

(4) Life-span control. SA has a life-span, which could control the number of SAs 
roaming in the network and insure there are no more SAs moving ceaselessly after a 
query is over. When a SA is created, its TTL is set to an initial life value. After this, 
TTL will be updated by a particular rule. The number of SAs roaming over the 
network can therefore be controlled. In addition, by adjusting the initial life value, 
SA’s searching radius can be increased or decreased. Because SA can destroy itself 
after its TTL is decreased to zero, its life-span could be managed by itself.   

GA mainly maintains the service routing table. Its behaviors are described as 
follows: 

(1) Listening and receiving updating messages. GA always listens in pheromone 
updating messages from SAs or neighbor nodes’ GAs.  

(2) Managing service routing table. Updating messages are accepted and analyzed. 
If the service domain specified in the message could be found in the routing table, 
pheromone and hop count in the corresponding item will be updated. Conversely, if 
the domain does not exist, a new item will be added. Hop count contained in the 
accepted updating message will replace the hop count in the current item. Due to the 
dynamic variety of service availability, pheromone is always decreased periodically. 
The pheromone, which does not increase after a long time, would be given out at last. 
It denotes that no service exists in the corresponding routing, or no requirements 
about searching this kind of services exist. If an item’s pheromone is zero, it will be 
deleted from the table. 

(3) Diffusion of pheromone updating message. When resided node joins a network, 
or a new service is registered successfully, GA floods messages to all its neighbors 
with hop count equal to 1.  

4.2 Ant-like Service Discovery Approach 

4.2.1 Search Agent Routing Policy  
When SA queries the current service routing table, two cases would appear. The first 
case is that target services do not belong to any service domains in the table. In such 
situation, SA would select a neighbor randomly. The second case is that one or more 
domains can match the target services. Here SA would make a decision in terms of 
the amount of pheromone and hop count in corresponding items. The amount of 
pheromone denotes the number of ever-successful search along the route, and hop 
count denotes the distance to target services. SA moving to the neighbor with more 
pheromone may get higher success rate, and selecting less hop count may get shorter 
response time. Therefore, two factors should be considered together. Because 
pheromone represents rather a probability than certain knowledge, a roulette wheel 
selection algorithm [11] is used to select a neighbor. After adopting this method, the 



path with fewer pheromones also has the chance to be chosen, even if the probability 
is smaller. 

In the second case, the probability of SA k at node i choosing to move to neighbor j 
is defined as 

)(}][][{

,0

,
)),(/1)(,(

)),(/1)(,(

),(

kTabuDomaintsRTtNexthoptNlet

Nj

Nj
uihopsuiph

jihopsjiph

jip

i

Nuk

−∈∧∈=

⎪
⎪
⎩

⎪⎪
⎨

⎧

∉

∈
= ∑

∈

λ

λ

 

 

(1) 

where ph(i,j) denotes the amount of pheromone from node i to node j, hops(i,j) 
denotes the hop count which is the distance to target service domain while selecting j 
as the next hop, and 0>λ  is a parameter which determines the relative importance 
of pheromone versus distance. s denotes the target service, RTi denotes the service 
routing table in node i, t[Domain] denotes the projection on field Domain, t[Nexthop] 
denotes the projection on field Nexthop. Tabu(k) is the Tabu of SA k. 

4.2.2 Pheromone Generation and Updating 
Pheromone, which directs SA to select routing, plays an important role in SA routing. 
Thus, how to generate and update pheromone is a key to influence algorithm 
performance. In the following cases, pheromone will be generated or updated.  

(1) SA will deposit pheromone on the path passed by if it has discovered a target 
service. Its generated new pheromone will be added to the pheromone remained on 
the path previously. Assume that SA enters local node i from neighbor n, and let 
ph(i,n) denotes the pheromone amount on the path from local node i to neighbor n, a 
updating rule is give by formula (2) 

1)1(),(),( pniphniph Δ−+⋅= αα  (2) 

where )1,0(∈α  and 1pΔ  is a constant. 
(2) When having found a target service at node n, SA would diffusion pheromone 

to all neighbors. Receiving a message of pheromone updating, GA positioned on its 
neighbor would update pheromone in the corresponding item of its service routing 
table by formula (3). 

)(,)1(),(),( 2 nJmpnmphnmph ∈Δ−+⋅= ββ  (3) 

where )1,0(∈β  and 2pΔ  is a constant. m is a element of the set of node n’s 
neighbors. J(n) is the set of node n’s neighbors. 

(3) For each item of the service routing table, an update process will be done in 
period by formula (4). 

),(),( niphniph ⋅= ρ  (4) 

where )1,0(∈ρ is pheromone decay parameter. Thus if a neighbor is always not be 
visited, its pheromone level will be closer to zero.  

(4) If a new node enters the P2P network or new services have been registered in a 



node, the local GA will send update messages to all its neighbors. In this situation, 
neighbors’ service routing tables will be updated by formula (3). 

4.2.3 SA’s Hop Count Updating 
When SA searches a target service, it records the hop count from latest discovered 
service to current position. The initial value of SA’s hop count is zero, which 
represents it has not discovered any target services. When SA finds a target for the 
first time, it will set hop count to 1. Hereafter, once discovering a target service at a 
node, SA will reset hop count to 1; otherwise add 1 to current hop count. Such hop 
count is contained in pheromone updating messages and is used to update service 
routing table. Hop count HCk  is updated by (5) 

⎪
⎩

⎪
⎨

⎧

∉∧>+
∈

∉∧=
=

)(0,1
)(,1

)(0,0

iCsHCHC
iCs

iCsHC
HC

kkk

k

kk

k  

 

(5) 

where sk denotes the target service of SA k, and C(i) denotes the service set of node i. 

4.2.4 Life-span Control  
Our algorithm uses TTL to control SA’s life-span. When a SA is created, its TTL will 
be set to an initial value. Hereafter at each visiting node, the SA’s TTL will be 
updated. If SA does not find target services, its TTL will be decreased; otherwise it 
will not be changed so that the SA can visit more nodes. If all neighbors are in the 
Tabu, the SA’s TTL will be set to zero. Such SA will not move any more and be 
killed. When SA k at node i, the update rule of its TTLk is: 

⎪
⎩

⎪
⎨

⎧

⊆
∈
∉−

=
)()(,0

)(
)(,1

kTabuiJ
iCsTTL
iCsTTL

TTL kk

kk

k ，  

 

(6) 

where the meanings of sk and C(i) are similar to formula (5). 
Based on discussion above, the routing selection algorithm is described as follows. 
Algorithm 1. Routing selection algorithm. SA runs this algorithm at each node. 
1:  Input Seach Agent SA, target servies WS, local node 
lnode, pheromone increment ph1 and ph2;  
2:  SendUpdatePheromoneMessage to lnode with SA.HopCount 
and ph1;  
3:  SA.UpdateHopCount; 
4:  SA.Tabu.Add(lnode); 
5:  IF Other SAs having the same task had arrived THEN  
6:      SA.TTL--; 
7:  ELSE    
8:      SA.Query(WS);  
9:      IF (NoFound) THEN 
10:  SA.TTL--; 
11:     ELSE 
12:        FOREACH nodei IN lnode.neighbour  



13:          SendUpdatePheromoneMessage to nodei with 
msg.hc=1 and ph2;  
14:     END IF 
15:  END IF 
16:  IF All lnode.neighbour in SA.Tabu THEN 
17:     SA.TTL=0;  
18:  ELSE 
19:     SA.Nexthop =RouletteSelect(lnode);  
20:  END IF 

5 Simulation and Performance Analysis 

This section evaluates performance of our approach. For the sake of focusing on SA’s 
search performance over the P2P based registry, assume that once SA reaches a node 
owning target services, it could discover all of them. 

Repast 3(REursive Porus Agent Simulation Toolkit) [12] is a multi-agent 
simulation platform for large-scale systems. Our simulation program is based on 
Repast and implemented in C#. Simulated network topology is a Power-law random 
graph[13]. Each registry center has at most 20 kinds of service domains, and each 
domain has at most 50 kinds of services. 200 services are randomly generated and 
registered in each registry center. The class of ant-based algorithms often uses a 
number of tuning parameters. Unfortunately, these parameters are not directed by 
scientific rigor theory until now [14]. According to repeating experimentation and 
guidelines in reference [15], the parameters are set as α=0.9,β=0.85,ρ=0.95,Δp1=0.25, 
and Δp2=0.35 in our algorithm. Parameter λ determines whether pheromone or hop 
count more affects routing selection. In a static environment, where network topology 
and metadata of registered services are generally stable, hop count could truly reflect 
the position of registered services. In contrast, the mechanism of updating pheromone 
plays an important role for adapting the algorithm to dynamic environments. 
Therefore, in static simulations, λ is set to 0.5, in order to magnify the effect of hop 
count, but λ=2 in dynamic simulations. The simulation is based on a discrete time 
model and all events are executed in discrete time steps, called tick.  

Two groups of experiments are designed to evaluate our algorithm roundly. The 
first group examines the performance of the algorithm, and how the number of SAs 
and TTLs affect its performance. The second compares our algorithm to two classical 
resource discovery algorithms in P2P systems. 

We focus on scalability and adaptability in a large-scale dynamic environment, and 
use the following metrics： 
z Recall is the ratio of the number of discovered target services to the total 

number of target services, which shows the algorithm’s search capability. 
z Search performance-price ratio is average number of target services 

discovered by a search agent or query message. It is calculated as (number of 
discovered target services)/(number of query messages or SAs). 



5.1 Performance Analysis 

First experiments run in a static system in which the number of registry center, 
network topology, and the kind and number of services are invariable. Figure 2 shows 
a scenario, in which there lacks pheromone initially, and SAs repeatedly search a 
same target service later. There are 175 target services randomly distributed in the 
system of 1000 registry centers. 15 SAs with initial TTL=20 are generated to search 
target services. A search round is the span from the generation to death of all SAs for 
the same target. Figure 2(a) is a real-time statistic graph, which shows the trend of the 
number of SAs and discovered services along with running time. At the first search 
round, recall is very low and reaches 26%. However from the second round, a higher 
recall can be reached in few time steps. At the tenth round, a recall of about 83% can 
be reached. This is because at the beginning there is no pheromone in the service 
routing table, so SA blindly selects routing. After several rounds, pheromone has 
accumulated which could direct SA to search the registry with higher probability of 
owning target services. Summing up the data in figure 2(a), figure 2(b) shows the 
comparison between recalls of different rounds. Because Figure 2 illustrates that a fast 
convergence and a high recall can be reach in a short time in our algorithm.  

Figure 3 shows how different system size affects the recall. As the number of 
registry centers increasing, recall decreases slowly. Because the number and initial 
TTL of SAs do not change, the degressive trend is rational. Figure 4 shows how the 
number and initial TTL of SAs affect the recall when the number of registry centers is 
4000. Increasing the number of SAs can improve search scope, and increasing initial 
TTL can increase search radius. One of approaches of improving recall is therefore to 
increase the number and initial TTL of SAs, especially when the system size 
increases. Figure 2, 3, and 4 show that our algorithm is feasible for large-scale service 
discovery systems. 

0 10 20 30 40 50 60 70 80 90 100 110

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

R
ec

al
l (

%
)

Time (tick)

 round 1
 round 2
 round 3
 round 9

 
(a)                                    (b) 

Fig.2. Results of repeated running. (a) Trend of the number of discovered services and SAs. (b) 
Comparison between recalls of different rounds. 

 



0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

90

100

R
ec

al
l (

%
)

Num. of registry centers

 Num. of  SAs=15
         Initial value of  SAs=20
         rounds of search <10

10 15 20 25 30 35 40 45 50 55
30

35

40

45

50

55

60

65

70

75

80

85

90

95

R
ec

al
l (

%
)

Num. of SAs

 Init val of SA=15
 Init val of SA=20
 Init val of SA=25
 Init val of SA=30

  
Fig.3. Recall versus the number of registry centers.  Fig.4. Recall versus the number of SAs. 

  
(a)                                   (b)  

Fig.5. Experiments in a dynamic environment. (a) Process of multi-round search. (b) Trend of 
recall.  

In order to examine the performance of our algorithm in dynamic environments, 
the experiment simulates a dynamic system where the number of registry centers is 
varying. For the sake of getting stable statistic, assume that there are no changes 
during a search round and randomly increase or decrease 10% registry centers 
between search rounds. Figure 5 is a dynamic output graph of the simulation program 
when the number of registry centers is 500. It shows the changing number of 
discovered services and total services after 10% registry centers having been 
increased. Figure 5(b) shows that the recall decreases to 85%, but is back to former 
90% after 3 rounds. Obviously, our algorithm is adaptable to the change of the system 
scale.  

5.2 Comparison with Classical Algorithms 

Gnutella[16] and Random Walks[17] are classical resource discovery algorithms, 
which are often used to P2P based service discovery model. Figure 6(a) shows the 
comparison of search performance-price ratio under different system scales. Since 
Gnutella’s flooding style generate many new SAs at each node, and k-Random Walks 
generate k-1 new SAs, numerous SAs will be generated in order to get high recall. As 



a result, their search performance-price ratio is very low. Conversely, as our algorithm 
does not generate new SAs during the process of searching, a high search 
performance-price ratio is easily gained.  

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

S
ea

rc
h 

pe
rfo

rm
an

ce
-p

ric
e 

ra
tio

Num. of registry centers

 Our algorithm
 Gnutella-like
 2-Random walk

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 R
ec

al
l

Visited-total registries ratio

Our algorithm
 Gnutella-like
 2-Random walk

 
(a)                                       (b) 

Fig.6. Comparison between three algorithms. (a)Search performance-price ratio versus the 
number of registry centers. (b) Recall versus the visited to total ratio of registry centers. 

Again, as showed in Figure 6(b), through the pheromone-based instruction, our 
algorithm can obtains high recall after visiting about 30% registry centers. However, 
the other two algorithms’ recall is geometric proportion to visited registry centers. 
This is because our algorithm has the knowledge about which registry probably 
having target services. The other algorithms only depend on magnifying search scope 
to improve recall.  

6 Conclusions and Future Work 

This paper proposes an agent based distributed service discovery mechanism for a 
P2P based registry. Under this model, search agents and guide agents cooperate to 
discover services. Search agent simulates the behaviors of ant to travel the network 
and discover services. Guide agent is responsible to manage a service routing table. 
The self-organizing and decentralized nature of the involved algorithms, along with 
the analysis of performance results obtained with variable system sizes, shows that the 
proposed mechanism is scalable and adaptive and can be adopted in a large-scale 
dynamic computing environment. 

Recently some two layered and virtual domain based P2P models have been 
suggested to construct a distributed registry, which try to organize and manage 
services more efficiently. A service discovery approach under such infrastructure will 
be studied and implemented in near future. 

 
Acknowledgments. This work is supported by National Natural Science Foundation 
of China under Grants No. 90604004 and 60773103, Jiangsu Provincial Natural 
Science Foundation of China under Grants No. BK2007708, Jiangsu Provincial Key 
Laboratory of Network and Information Security under Grants No. BM2003201 and 



Key Laboratory of Computer Network and Information Integration (Southeast 
University), Ministry of Education under Grants No. 93K-9. 

References 

1. Clement, L., Hately, A., Riegen, C.V., Rogers, T.: Universal Description Discovery & 
Integration (UDDI) 3.0.2. 2004. http://uddi.org/ pubs/uddi_v3.htm  

2. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller J.:METEOR-S 
WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discovery 
of Web Services. Journal of Information Technology and Management,6,1,17--39(2005) 

3. Chen, D.W., Xu, B.C., Yue, R., Li, J.Z.: A P2P Based Web Service Discovery Mechanism 
with Bounding Deployment and Publication. Chinese Journal Of Computers, 28, 4, 615--
626(2005) 

4. Chen, C.W, Gan, P.S., Yang, C.H.: A Service Discovery Mechanism with Load Balance 
Issue in Decentralized Peer-to-peer Network. In: 11th International Conference on Parallel 
and Distributed System(ICPADS’05), pp.592--598. IEEE Press, New York (2005) 

5. Liu, Z.Z., Wang, H.M., Zhou, B.: A Two Layered P2P Model for Semantic Service 
Discovery, Journal of Software,18,8,1922--1932(2007) 

6. Guo, D.K., Ren, Y., Chen, H.H., Luo, X.S.: A QoS-Guaranteed and Distributed Model 
forWeb Service Discovery, Journal of software, 17,11,2324--2334(2006) 

7. Dorigo, M. , Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to 
the Traveling Salesman Problem. IEEE Trans. on Evolutionary Computation,1,53--66(1997) 

8. Arpinar, I.B., Zhang, R.Y., Aleman-Meza, B., et al.: Ontology-Driven Web Service 
Composition Platform. In: Proc. of the Int’l Conf. on E-Commerce Technology. San Diego, 
pp.146--152, IEEE Press, New York (2004) 

9. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial 
Systems. Oxford University Press, New York(1999) 

10. Caro, G.D., Dorigo, M.: Antnet: Distributed Stigmergetic Control for Communications 
Network. Journal of Artificial Intelligence Research, 9, 317--365(1998) 

11. Baker, J. E.: Reducing Bias and Inefficiency in the Selection Algorithm. In: the Second 
International Conference on Genetic Algorithms and their Application, pp. 14--21(1987) 

12. North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the 
Repast Agent Modeling Toolkit. ACM Trans. on Modeling and Computer Simulation, 1,1--
25(2006) 

13. Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in Power Law 
Networks. Phys. Rev. E64, 46135--46143(2001) 

14. Ridge, E., Curry, E.: A Roadmap of Nature-inspired Systems Research and Development. 
Multiagent and Grid Systems, 3,3--8(2007) 

15. Parunak, H.V.D., Brueckner, S.A., Matthews, R., Sauter, J.: Pheromone Learning for Self-
Organizing Agents. IEEE Trans. on Systems, Man, and Cybernetics-Part A: Systems and 
Humans, 35, 3, 316--326(2005) 

16. Gnutella website. http://www.gnutella.com 
17. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured 

Peer-to-peer Networks. In: the Int’l Conf. on Measurements and Modeling of Computer 
Systems, pp.84--95 (2002) 


