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Abstract

We study the following two graph modification problems: given a
graph G and an integer k, decide whether G can be transformed into a
tree or into a path, respectively, using at most k edge contractions. These
problems, which we call Tree Contraction and Path Contraction,
respectively, are known to be NP-complete in general. We show that on
chordal graphs these problems can be solved in O(n + m) and O(nm)
time, respectively. As a contrast, both problems remain NP-complete
when restricted to bipartite input graphs.

1 Introduction

Graph modification problems play a central role in algorithmic graph theory,
not in the least because they can be used to model many graph theoretical prob-
lems that appear in practical applications [15, 16, 17]. The input of a graph
modification problem is an n-vertex graph G and an integer k, and the question
is whether G can be modified in such a way that it satisfies some prescribed
property, using at most k operations of a given type. Famous examples of graph
modification problems where only vertex deletion is allowed include Feedback
Vertex Set, Odd Cycle Transversal, and Chordal Deletion. In prob-
lems such as Minimum Fill-In and Interval Completion, the only allowed
operation is edge addition, while in Cluster Editing both edge additions and
edge deletions are allowed.

Many classical problems in graph theory, such as Clique, Independent
Set and Longest Induced Path, take as input a graph G and an integer
k, and ask whether G contains a vertex set of size at least k that satisfies a
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certain property. Many of these problems can be formulated as graph modifi-
cation problems: for example, asking whether an n-vertex graph G contains an
independent set of size at least k is equivalent to asking whether there exists a
set of at most n−k vertices in G whose deletion yields an edgeless graph. Some
important and well studied graph modification problems ask whether a graph
can be modified into an acyclic graph or into a path, using at most k operations.
If the only allowed operation is vertex deletion, these problems are widely known
as Feedback Vertex Set and Longest Induced Path, respectively. The
problem Longest Path can be interpreted as the problem of deciding whether
a graph G can be turned into a path by deleting edges and isolated vertices,
performing at most k deletions in total. All three problems are known to be
NP-complete on general graphs [7].

We study two graph modification problems in which the only allowed oper-
ation is edge contraction. The edge contraction operation plays a key role in
graph minor theory, and it also has applications in Hamiltonian graph theory,
computer graphics, and cluster analysis [13]. The problem of contracting an
input graph G to a fixed target graph H has recently attracted a considerable
amount of interest, and several results exist for this problem when G or H be-
long to special graph classes [2, 3, 4, 11, 12, 13, 14]. The two problems we study
in this paper, which we call Tree Contraction and Path Contraction,
take as input an n-vertex graph G and an integer k, and the question is whether
G can be contracted to a tree or to a path, respectively, using at most k edge
contractions. Since the number of connected components of a graph does not
change when we contract edges, the answer to both problems is “no” when the
input graph is disconnected. We therefore tacitly assume throughout the paper
that all input graphs are connected. Note that contracting a connected graph to
a tree is equivalent to contracting it to an acyclic graph. Previous results easily
imply that both problems are NP-complete in general [1, 4]. Very recently, it
has been shown that Path Contraction and Tree Contraction can be
solved in time 2k+o(k) + nO(1) and 4.98k · nO(1), respectively [9].

We show that the problems Tree Contraction and Path Contraction
can be solved on chordal graphs in O(n + m) and O(nm) time, respectively.
It is known that Tree Contraction is NP-complete on bipartite graphs [9],
and we show that the same holds for Path Contraction. To relate our
results to previous work, we would like to mention that Feedback Vertex
Set and Longest Induced Path can be solved in polynomial time on chordal
graphs [5, 19]. However, it is easy to find examples that show that the set of
trees and paths that can be obtained from a chordal graph G by at most k
edge contractions might be completely different from the set of trees and paths
that can be obtained from G by at most k vertex deletions. As an interesting
contrast, Longest path remains NP-complete on chordal graphs [8].
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2 Definitions and Notation

All the graphs considered in this paper are undirected, finite and simple. We
use n and m to denote the number of vertices and edges of the input graph of
the problem or the algorithm under consideration. Given a graph G, we denote
its vertex set by V (G) and its edge set by E(G). The (open) neighborhood of a
vertex v in G is the set NG(v) = {w ∈ V (G) | vw ∈ E(G)} of neighbors of v
in G. The degree of a vertex v in G, denoted by dG(v), is |NG(v)|. The closed
neighborhood of v is the set NG[v] = NG(v) ∪ {v}. For any set S ⊆ V (G), we
write NG(S) = ∪v∈SNG(v) \ S and NG[S] = NG(S)∪ S. A subset S ⊆ V (G) is
called a clique of G if all the vertices in S are pairwise adjacent. A vertex v is
called simplicial if the set NG[v] is a clique. For any set of vertices S ⊆ V (G),
we write G[S] to denote the subgraph of G induced by S. If the graph G[S]
is connected, then the set S is said to be connected. We say that two disjoint
sets S, S′ ⊆ V (G) are adjacent if there exist vertices s ∈ S and s′ ∈ S′ such
that ss′ ∈ E(G). For any set S ⊆ V (G), we write G − S to denote the graph
obtained from G by removing all the vertices in S and their incident edges. If
S = {s}, we simply write G− s instead of G− {s}.

The contraction of edge e = uv in G removes u and v from G, and replaces
them by a new vertex, which is made adjacent to precisely those vertices that
were adjacent to at least one of the vertices u and v. Instead of speaking of the
contraction of edge uv, we sometimes say that a vertex u is contracted on v, in
which case we use v to denote the new vertex resulting from the contraction.
Let S ⊆ V (G) be a connected set. If we repeatedly contract a vertex of G[S] on
one of its neighbors in G[S] until only one vertex of G[S] remains, we say that
we contract S into a single vertex. We say that a graph G can be k-contracted
to a graph H, with k ≤ n− 1, if H can be obtained from G by a sequence of k
edge contractions. Note that if G can be k-contracted to H, then H has exactly
k fewer vertices than G has. We simply say that a graph G can be contracted
to H if it can be k-contracted to H for some k ≥ 0. Let H be a graph with
vertex set {h1, . . . , h|V (H)|}. Saying that a graph G can be contracted to H
is equivalent to saying that G has a so-called H-witness structure W, which
is a partition of V (G) into witness sets W (h1), . . . ,W (h|V (H)|) such that each
witness set is connected, and such that for every two hi, hj ∈ V (H), witness
sets W (hi) and W (hj) are adjacent in G if and only if hi and hj are adjacent
in H. By contracting each of the witness sets into a single vertex, which can be
done due to the connectivity of the witness sets, we obtain the graph H. An
H-witness structure of G is, in general, not uniquely defined (see Fig. 1).

Figure 1: Two P4-witness structures of a chordal graph.
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If H is a subgraph of G and v ∈ NG(V (H)), then we refer to the vertices
in NG(v) ∩ V (H) as the H-neighbors of v. The distance dG(u, v) between two
vertices u and v in G is the number of edges in a shortest path between u and
v, and diam(G) = maxu,v∈V (G) dG(u, v). For any two vertices u and v of a path
P in G, we write uPv to denote the subpath of P from u to v in G. We use
P` to denote the graph isomorphic to a path on ` vertices, i.e., P` is the graph
with ordered vertex set {p1, p2, p3, . . . , p`} and edge set {p1p2, p2p3, . . . , p`−1p`}.
Similarly, C` denotes the graph that is isomorphic to a cycle on ` vertices, i.e.,
C` is the graph with ordered vertex set {c1, c2, c3, . . . , c`} and edge set {c1c2,
c2c3, . . . , c`−1c`, c`c1}. A graph is chordal if it does not contain a chordless cycle
on at least four vertices as an induced subgraph.

3 Contracting Chordal Graphs

In this section we show that Tree Contraction and Path Contraction
can be solved in polynomial time on chordal graphs. It is easy to see that
the class of chordal graphs is closed under edge contractions, and we use this
observation throughout this section.

We first consider Tree Contraction. We say that a tree T is optimal
for G if G can be contracted to T , but cannot be contracted to any tree with
strictly more vertices than T . A leaf of a tree T is a vertex that has degree 1
in T .

Lemma 1 Let G be a connected graph on at least 2 vertices. If v has a simplicial
vertex v, then G has a T -witness structureW for some optimal tree T , such that
W (x) = {v} for some leaf x of T .

Proof. Suppose G has a simplicial vertex v. Let T be an optimal tree for G,
and letW be a T -witness structure of G. Since |V (G)| ≥ 2 and every connected
graph on at least two vertices can be contracted to P2, we know that T contains
at least two vertices; note that T also has at least two leaves. Let x be the
vertex of T such that v ∈W (x).

First suppose that W (x) = {v}. Since T is a tree on at least two vertices
and NG[v] is a clique in G, all vertices of NG(v) must be contained in a single
witness set W (y) that is adjacent to W (x). This means that y is the unique
neighbor of x in T , implying that x is a leaf of T .

Now suppose v is not the only vertex in W (x). Then W (x) must contain at
least one neighbor of v, since every witness set induces a connected subgraph of
G. Since the set NG[v] is a clique of G, the vertices of NG[v] either all belong
to W (x), or belong to two witness sets W (x) and W (y), where y is a neighbor
of x in T . In the first case, G can also be contracted to the tree T ′, obtained
from T by adding a new vertex x′ and an edge x′x to T ; we can define a T ′-
witness structure W ′ of G by setting W ′(x′) = {v}, W ′(x) = W (x) \ {v}, and
W ′(w) = W (w) for every w ∈ V (T ′) \ {x, x′}. Since T ′ has one more vertex
than T , this contradicts the assumption that T is an optimal tree. Hence we
must have the second case, i.e., the vertices of NG[v] belong to two witness sets
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W (x) and W (y) for two adjacent vertices x and y of T . Let T ′′ be the tree
obtained from T by contracting x on y and by adding a vertex y′ and an edge
y′y. We can define a T ′′-witness structure W ′′ of G by setting W ′′(y′) = {v},
W ′′(y) = (W (x)∪W (y))\{v}, andW ′′(w) = W (w) for every w ∈ V (T ′′)\{y, y′}.
Since |V (T ′′)| = |V (T )|, we conclude that T ′′ is an optimal tree of G.

Before we present our algorithm for Tree Contraction on chordal graphs
in Theorem 1 below, we recall a useful characterization of chordal graphs via
vertex orderings. For a given graph G and an ordering σ = 〈v1, v2, . . . , vn〉 of its
vertices, we denote by Gi the graph G[{vi, vi+1, . . . , vn}]. Such an ordering σ of
the vertices in V (G) is called a perfect elimination ordering (peo) of G if vi is
simplicial in Gi, for 1 ≤ i ≤ n. A graph is chordal if and only if it has a peo [6].
Chordal graphs can be recognized in linear time and a peo can be computed in
linear time as well [18]. We denote by σ−vi the ordering which is obtained by
simply removing vi from σ and keeping the ordering of all other vertices, and
we define σ−S analogously for a vertex set S. The following lemma will allow
us to implement our algorithm for Tree Contraction on chordal graphs in
linear time.

Lemma 2 Let G be a chordal graph with peo σ = 〈v1, v2, . . . , vn〉. Let vivj be
an edge of G such that i < j. Let G′ be the graph obtained from G by contracting
vi on vj. Then σ−vi is a peo of G′.

Proof. It suffices to show that vp is simplicial in G′p, for 1 ≤ p ≤ n and
p 6= i. Observe first that, since vi is simplicial in Gi and is adjacent to vj , every
neighbor of vi in Gi is also a neighbor of vj in Gi. Consequently, for every
vertex vp such that p > i, NGp

(vp) = NG′
p
(vp), and vp is simplicial in G′p, since

it is simplicial in Gp. Let us consider p < i. Since vp is simplicial in Gp, its
neighborhood in Gp is a clique. If vp is not adjacent to vi, or it is adjacent
to both vi and vj , then it clearly remains simplicial in G′p. If vp is adjacent
to vi and not to vj in G, then its neighborhood in G′p is the same as in Gp,
with the exception that vj replaces vi. Since vj inherits all neighbors of vi, the
neighborhood of vp is a clique in G′p, and hence vp is simplicial in G′p.

Theorem 1 Tree Contraction can be solved in O(n+m) time on chordal
graphs.

Proof. Before presenting our algorithm for Tree Contraction, we first make
some observations. Let v be a simplicial vertex of a chordal graph G on at least
2 vertices. Let G′ denote the graph obtained from G by first contracting NG(v)
into a single vertex w, and then removing v from the graph. Note that G′ is
chordal. Let T ′ be an optimal tree for G′, and let W ′ be a T ′-witness structure
of G′. Let W ′(x) ∈ W ′ be the witness set containing vertex w for some vertex
x ∈ V (T ′). Let T be the tree obtained from T ′ by adding a new vertex y and
an edge xy to T ′. We claim that T is an optimal tree for G.
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By Lemma 1, G has an optimal tree T ∗ and a T ∗-witness structureW∗ such
that v is the only vertex in some witness set W ∗(a) of W∗ for some leaf a of
T ∗. It is clear that all the neighbors of v must belong to the witness set W ∗(b)
of W∗, where b is the unique neighbor of a in T ∗. This means that G′ can be
contracted to the tree T ∗ − a. Since T ′ is an optimal tree of G′, this implies
that |V (T ′)| ≤ |V (T ∗−a)| = |V (T ∗)|−1, or equivalently |V (T ∗)| ≥ |V (T ′)|+1.
Since |V (T )| = |V (T ′)|+ 1, we have that |V (T ∗)| ≥ |V (T )|. On the other hand,
since G can be contracted to T as well as to T ∗, and T ∗ is an optimal tree for
G, we have |V (T ∗)| ≤ |V (T )|. Hence |V (T ∗)| = |V (T )|, which implies that T is
an optimal tree for G.

The above arguments yield an algorithm for contracting a chordal graph to
an optimal tree. Let G be a chordal input graph. If |V (G)| = 1, then the unique
optimal tree that G can be contracted to consists of a single vertex. Suppose
|V (G)| ≥ 2. We repeatedly find a simplicial vertex v, contract its neighborhood
into a single vertex, and remove v from the graph. We continue this process
until we have removed all vertices. By applying all the edge contractions that
have been performed during this procedure to the original graph G, we find an
optimal tree for G. Let σ = 〈v1, v2, . . . , vn〉 be a peo of G, and let vj be the
neighbor of v1 with the largest index. We pick v1 to be the simplical vertex we
start with, and we choose vj to be the vertex on which every vertex of NG(v1)
is contracted. Let G′ be the resulting graph after this operation. By repeatedly
applying Lemma 2, we find that σ′ = σ−(NG(v1) \ {vj}) is a peo of G′. Hence
the first vertex in σ′−v1 is a simplicial vertex of G′−v1. Consequently, we can
pick this vertex as our next simplicial vertex, and repeat the process.

For the running time of the algorithm, consider the following implementa-
tion. First we compute a peo σ = 〈v1, v2, . . . , vn〉 of G in O(n+m) time. Then
we mark all vertices in NG(v1) \ {vj}, where vj is the vertex of NG(v1) with the
largest index. We now iterate over all values of i from 2 to n− 1, and proceed
at each iteration i as follows. If vi is marked, then we continue with the next
iteration i+ 1. If vi is not marked, then we mark all neighbors of vi in Gi, ex-
cept the neighbor with the highest index. If the neighbor with the highest index
is already marked, then all neighbors of vi in Gi will become marked. In the
end, the unmarked vertices are the ones that become the vertices of the optimal
tree resulting from the algorithm above. Hence it suffices to check whether we
have at least n− k unmarked vertices. Since there are O(n) iterations and each
iteration i requires O(dG(vi)) steps, the running time follows.

Note that the problem of contracting a chordal graph to a tree is equivalent to
the problem of contracting a chordal graph to a bipartite graph. The “reverse”
problem of contracting a bipartite graph to a chordal graph is equivalent to
the problem of contracting a bipartite graph to a tree. It turns out that this
problem is NP-complete, as we will see in the next section.

We now turn our attention to Path Contraction on chordal graphs. The
following observation is due to Levin, Paulusma and Woeginger [13].
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Observation 1 ([13]) Let W be an H-witness structure of a graph G. Let
u and v be two vertices of G and let x and y be two vertices of H such that
u ∈W (x) and v ∈W (y). Then dG(u, v) ≥ dH(x, y).

Observation 1 immediately implies that a graph G cannot be contracted to
a chordless path of length more than diam(G). We show that if G is chordal,
then G can be contracted to a chordless path of length diam(G). Note that this
is not the case for every graph: for example, the graph C` has diameter b`/2c,
but cannot be contracted to a chordless path of length more than 1.

Theorem 2 Every connected chordal graph G can be contracted to a chordless
path of length diam(G).

Proof. Let u and v be two vertices of a connected chordal graph G such that
dG(u, v) = diam(G), and let P be a shortest path from u to v. We show that
G can be contracted to P . Since G is chordal, it has a simplicial vertex w. If
w /∈ V (P ), then we contract w on one of its neighbors. Since the neighborhood
of w is a clique, this is equivalent to deleting w. Observe that a simplicial vertex
cannot belong to a shortest path between two other vertices. Hence no shortest
path between u and v contains w, and thus all shortest paths between u and v
are unchanged after this operation. If w ∈ V (P ), then w is either u or v, as all
other vertices on P have two non-adjacent neighbors on P , and are therefore
not simplicial. Since NG(w) is a clique in G, any shortest path between u and v
contains exactly one vertex of NG(w). Let x be the only vertex in NG(w)∩V (P ).
We contract every vertex of NG(w) on x. After this operation, all shortest paths
between w and the other endpoint of P are preserved. After the contraction of
NG(w), we delete w from G. In each of the described two cases, the resulting
graph G′ is chordal and has at most n − 1 vertices. We can thus repeat this
procedure until the graph is empty. Applying the edge contractions that are
defined by this procedure on the original graph G will result in P , as no vertex
of P is ever contracted on another vertex, and no chords are formed between
non-consecutive vertices of P .

Corollary 1 Path Contraction can be solved in O(nm) time on chordal
graphs.

Proof. Theorem 2 implies that a connected chordal graphG can be k-contracted
to a chordless path if and only if k ≥ n − diam(G). Hence, in order to solve
Path Contraction, we only need to determine the diameter of G. Unfor-
tunately, no faster algorithm for computing the diameter is known for chordal
graphs compared to arbitrary graphs. Hence we resort to the straightforward
algorithm of running a breadth first search n times, each time from a different
vertex of G. As breadth first search has a running time of O(n+m), we get a
total O(nm) running time.
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4 Contracting Bipartite Graphs

In this section we show that Path Contraction is NP-complete when re-
stricted to the class of bipartite graphs. We first show how previous work
implies that the same holds for Tree Contraction.

The Red-Blue Domination problem takes as input a bipartite graph
G = (A,B,E) and an integer t, and asks whether there exists a subset of at most
t vertices in B that dominates A. This problem is equivalent to Set Cover
and Hitting Set, and is therefore NP-complete [7]. Heggernes et al. [9] give a
polynomial-time reduction from Red-Blue Domination to Tree Contrac-
tion. Since the graph G′ in the constructed instance of Tree Contraction
is bipartite, they implicitly proved the following result.

Theorem 3 Tree Contraction is NP-complete on bipartite graphs.

We now show that Path Contraction also remains NP-complete when
restricted to bipartite graphs.

Theorem 4 Path Contraction is NP-complete on bipartite graphs.

Proof. We first introduce some additional terminology. A hypergraph H is
a pair (Q,S) consisting of a set Q = {q1, . . . , qn}, called the vertices of H,
and a set S = {S1, . . . , Sm} of nonempty subsets of Q, called the hyperedges
of H. A 2-coloring of a hypergraph H = (Q,S) is a partition (Q1, Q2) of Q
such that Q1 ∩ Sj 6= ∅ and Q2 ∩ Sj 6= ∅ for j = 1, . . . ,m. The Hypergraph
2-Colorability problem is to decide whether a given hypergraph has a 2-
coloring. This problem, also known as Set Splitting, is NP-complete, and it
remains NP-complete when we assume that H has at least two hyperedges and
Q ∈ S (see for example [4]).

We now prove that the problem of contracting a bipartite graph to P6 is NP-
complete, using a reduction from Hypergraph 2-Colorability. Let H =
(Q,S) be a hypergraph with Q = {q1, . . . , qn} and S = {S1, . . . , Sm}, and
assume that |S| ≥ 2 and Sm = Q. The incidence graph of H is the bipartite
graph with vertex set Q ∪ S and an edge between a vertex q ∈ Q and S ∈ S
if and only if q ∈ S; note that every vertex of the incidence graph is labeled
with the name of the vertex or hyperedge of H it corresponds to. We create
a graph G from the incidence graph of H as follows. First we add four new
vertices s1, s2, s′1, s

′
2 and a copy S ′ = {S′1, . . . , S′m} of S, such that S′i = Si for

every 1 ≤ i ≤ m. Then we add the following edges:

• S′iqj if and only if qj ∈ Si;
• SiS

′
j for every 1 ≤ i, j ≤ m;

• s2Si for every 1 ≤ i ≤ m;
• s′2S′i for every 1 ≤ i ≤ m;
• s1s2 and s′1s

′
2.

Finally, for every Si ∈ S and qj ∈ Q we subdivide the edge Siqj by replacing it
with a path Siti,jqj . Let T = {ti,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
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The constructed graph G is bipartite, as assigning color 1 to the vertices in
{s1, s′2} ∪ S ∪Q and color 2 to the vertices in {s2, s′1} ∪ T ∪ S ′ yields a proper
2-coloring of G.

We claim that H has a 2-coloring if and only if G can be contracted to P6.
Suppose H has a 2-coloring, and let (Q1, Q2) be a 2-coloring of H. We define
a P6-witness structure W of G as follows. Let W (p1) = {s1}, W (p2) = {s2},
W (p3) = S ∪ T ∪ Q1, W (p4) = S ′ ∪ Q2, W (p5) = s′2, and W (p6) = s′1. Since
(Q1, Q2) is a 2-coloring of H, every vertex Si ∈ S has at least one neighbor ti,k
which is adjacent to some qk ∈ Q1, and at least one neighbor ti,` adjacent to
some q` ∈ Q2. Since S ′ is a copy of S, every vertex in S ′ has at least one neighbor
in Q1 and at least one neighbor in Q2. This, together with the observation that
the sets Sm ∪ {tm,j | 1 ≤ j ≤ n} ∪Q1 ⊂W (p3) and S′m ∪Q2 ⊂W (p4) are both
connected, implies that the witness sets W (p3) and W (p4) are connected. It is
clear that contracting each of the witness sets W (pi) into a single vertex yields
the graph P6.

To prove the converse statement, assume that G can be contracted to P6, and
let W be a P6-witness structure of G. The vertices s1 and s′1 are the only two
vertices ofG that have distance at least 5. Hence, as a result of Observation 1, we
must have W (p1) ∪W (p6) = {s1, s′1}. Without loss of generality, let W (p1) =
{s1} and W (p6) = {s′1}. Again by Observation 1 and by the definition of
a witness structure, we also know that W (p2) = {s2}, W (p5) = {s′2}, and
S ⊆ W (p3) and S ′ ⊆ W (p4). Let Q1 = W (p3) ∩ Q and Q2 = W (p4) ∩ Q.
Since the witness set W (p4) is connected by definition, every vertex in S ′ must
be adjacent to at least one vertex in Q2. Similarly, the fact that W (p3) is
connected implies that, for every vertex Si ∈ S, there must be a vertex qj ∈ Q1

such that both ti,j and qj are in W (p3). As S ′ is a copy of S, this implies that
(Q1, Q2) is a 2-coloring of H.

Recall thatG is bipartite. Hence we have proved that the problem of deciding
whether a bipartite graph can be contracted to a chordless path on 6 vertices is
NP-complete. For any fixed ` > 6, we can prove that the problem of contracting
a bipartite graph to P` is NP-complete by adding a path of length `− 6 to the
graph G, making exactly one of its end vertices adjacent to the vertex s1 in
G, and slightly modifying the arguments accordingly. This, together with the
observation that a graph G can be k-contracted to a path if and only if G can
be contracted to Pn−k, proves the theorem.

5 Concluding Remarks

In the introduction, we mentioned the relationship between the problems Tree
Contraction and Path Contraction and their vertex-deletion variants
Feedback Vertex Set and Longest Induced Path. We would like to
point out that the minimum number of edges that needs to be contracted to
contract a graph G to a tree or a path might differ considerably from the min-
imum number of vertices or edges that needs to be deleted to obtain this goal.
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In order to see this, let G` be the graph obtained from P` by adding a vertex x
and making this vertex adjacent to all the vertices of the path, for any ` ≥ 2.
Observe that G` can be transformed into a tree or a path by deleting just one
vertex, namely x. The minimum number of edges that needs to be deleted to
transform G` into a tree or a path is ` − 1. The longest path G` can be con-
tracted to is P2, and it takes `− 1 edge contractions to contract G` into P2. On
the other hand, G` can be transformed into a star (with centre x) by contracting
no more than b`/2c edges.

The class of interval graphs is a well known and intensively studied subclass
of chordal graphs, with numerous applications in different fields. What is the
computational complexity of the problem of deciding whether or not a chordal
graph can be contracted to an interval graph using at most k edge contractions?
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