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Abstract

Penalized regression is an attractive framework for variable selection problems. Often, vari-
ables possess a grouping structure, and the relevant selection problem is that of selecting groups,
not individual variables. The group lasso has been proposed as a way of extending the ideas of
the lasso to the problem of group selection. Nonconvex penalties such as SCAD and MCP have
been proposed and shown to have several advantages over the lasso; these penalties may also
be extended to the group selection problem, giving rise to group SCAD and group MCP meth-
ods. Here, we describe algorithms for fitting these models stably and efficiently. In addition,
we present simulation results and real data examples comparing and contrasting the statistical
properties of these methods.

1 Introduction

In regression modeling, explanatory variables can often be thought of as grouped. To represent
a categorical variable, we may introduce a group of indicator functions. To allow flexible modeling
of the effect of a continuous variable, we may introduce a series of basis functions. Or the variables
may simply be grouped because the analyst considers them to be similar in some way, or because a
scientific understanding of the problem implies that a group of covariates will have similar effects.

Taking this grouping information into account in the modeling process should improve both the
interpretability and the accuracy of the model. These gains are likely to be particularly important
in high-dimensional settings where sparsity and variable selection play important roles in estimation
accuracy.

Penalized likelihood methods for coefficient estimation and variable selection have become
widespread since the original proposal of the lasso (Tibshirani, 1996). Building off of earlier work
by Bakin (1999), Yuan and Lin (2006) extended the ideas of penalized regression to the prob-
lem of grouped covariates. Rather than penalizing individual covariates, Yuan and Lin proposed
penalizing norms of groups of coefficients, and called their method the group lasso.

The group lasso, however, suffers from the same drawbacks as the lasso. Namely, it generally
does not have the selection consistency property and tends to over-shrink large coefficients. This
is because the rate of penalization of the group lasso does not change with the magnitude of the
group coefficients, which leads to biased estimates of large coefficients. To compensate for the
over-shrinkage, the group lasso tends to include spurious coefficients into the model.
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The smoothly clipped absolute deviation (SCAD) penalty and the minimax concave penalty
(MCP) were developed in an effort to achieve what the lasso could not: simultaneously selection
consistency and asymptotic unbiasedness (Fan and Li, 2001; Zhang, 2010). This achievement
is known as the oracle property, so named because it implies that the model is asymptotically
equivalent to the fit of a maximum likelihood model in which the identities of the truly nonzero
coefficients are known in advance. These properties extend to group SCAD and group MCP models,
as shown in Wang et al. (2008) and Huang et al. (2012).

However, group SCAD and group MCP have not been widely used or studied in comparison with
the group lasso, largely due to a lack of efficient and publicly available algorithms for fitting these
models. Published articles on the group SCAD (Wang et al., 2007, 2008) have used a local quadratic
approximation for fitting these models. The local quadratic approximation was originally proposed
by Fan and Li (2001) to fit SCAD models. However, by relying on a quadratic approximation, the
approach is incapable of producing naturally sparse estimates, and therefore cannot take advantage
of the computational benefits provided by sparsity. This, combined with the fact that solving the
local quadratic approximation problem requires the repeated factorization of large matrices, makes
the algorithm very inefficient for fitting large regression problems. Zou and Li (2008) proposed
a local linear approximation for fitting SCAD models and demonstrated its superior efficiency to
local quadratic approximations. This algorithm was further improved upon by Breheny and Huang
(2011), who demonstrated how a coordinate descent approach may used to fit SCAD and MCP
models in a very efficient manner capable of scaling up to deal with very large problems.

Here, we show how the approach of Breheny and Huang (2011) may be extended to fit group
SCAD and group MCP models. We demonstrate that this algorithm is very fast and stable, and we
provide a publicly available implementation in the grpreg package (http://cran.r-project.org/
web/packages/grpreg/index.html. In addition, we provide examples involving both simulated
and real data which demonstrate the potential advantages of group SCAD and group MCP over
the group lasso.

2 Group descent algorithms

We consider models in which the relationship between the outcome and the explanatory variables
is specified in terms of a linear predictor η:

η = β0 +
J∑
j=1

Xjβj , (2.1)

where Xj is the portion of the design matrix formed by the predictors in the jth group and the vector
βj consists of the associated regression coefficients. Letting Kj denote the number of members in
group j, Xj is an n×Kj matrix with elements (xijk), the value of kth covariate in the jth group
for the ith subject. Covariates that do not belong to any group may be thought of as a group of
one.

The problem of interest involves estimating a vector of coefficients β using a loss function
L which quantifies the discrepancy between yi and ηi combined with a penalty that encourages
sparsity and prevents overfitting; specifically, we estimate β by minimizing

Q(β) = L(β|y,X) +
J∑
j=1

pλ
(∥∥βj∥∥) , (2.2)
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where p(·) is a penalty function applied to the Euclidean norm (L2 norm) of βj . The penalty is
indexed by a regularization parameter λ, which controls the tradeoff between loss and penalty. It
is not necessary for λ to be the same for each group; i.e., we may consider a collection of regularity
parameters {λj}. For example, in practice there are often variables known to be related to the
outcome and therefore which we do not wish to include in selection or penalization. The above
framework and algorithms which follow may be easily extended to include such variables by setting
λj = 0.

In this section, we primarily focus on linear regression, where E(y) = η and L is the least
squares loss function, but take up the issue of logistic regression in Section 2.4, where L arises from
the binomial likelihood. To ensure that the penalty is invariant to scale, covariates are standardized
prior to fitting such that

∑
i xijk = 0 and n−1

∑
i x

2
ijk = 1. As emphasized in Simon and Tibshirani

(2011), this standardization is just as important for the group lasso as it is for the lasso, and is a
separate issue from that of orthogonalization (discussed in Section 2.1). We assume without loss
of generality that the covariates are standardized in this way during the model fitting process and
then transformed back to the original scale once all models have been fit. For linear regression,
we also assume, again without loss of generality, that the response has been centered such that∑

i yi = 0; in this case β̂0 = 0 and may be ignored.

2.1 Orthogonalization

The algorithm for fitting group lasso models originally proposed by Yuan and Lin (2006) requires
the groups Xj to be orthonormal, as does the extension to logistic regression proposed in Meier et al.
(2008). It is somewhat unclear from these papers, however, whether orthogonality is a necessary
aspect of problems that can be solved by the group lasso, or whether it may be introduced without
loss of generality for the sake of model fitting.

We attempt to clarify the issue of orthonormality here, and demonstrate that groups may be
made orthonormal to aid in model fitting without any loss of generality, an issue is also discussed in
Simon and Tibshirani (2011). This considerably extends the range of designs that can be analyzed
with the group lasso. For example, a group of indicator variables is orthonormal only under a
balanced design having an equal number of observations in each category. Our approach requires
no such balance, however.

In this article, we develop algorithms dealing with the common scenario where the analyst (a)
does not necessarily have orthogonal groups {Xj}, (b) wants solutions on the scale and units of
the original explanatory variables, and (c) does not wish to deal with or think about any issues of
orthonormality in fitting the model. In this section, we show that these goals may be accomplished
by orthogonalizing Xj using a singular value decomposition, fitting the model, and then using the
decomposition to transform the solution back to the original scale.

Taking the singular value decomposition of the Gram matrix of the jth group, we have

1

n
XT
j Xj = QjΛjQ

T
j ,

where Λj is a diagonal matrix containing the eigenvalues of n−1XT
j Xj and Qj is an orthonormal

matrix of its eigenvectors. Now, we may construct a linear transformation X̃j = XjQjΛ
−1/2
j with
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the following properties:

1

n
X̃T
j X̃j = I (2.3)

X̃jβ̃j = Xj(QjΛ
−1/2
j β̃j), (2.4)

where I is the identity matrix and β̃j is the solution to (2.2) on the orthogonalized scale. In
other words, if we have the solution to the orthogonalized problem, we may easily transform back

to the original problem with βj = QjΛ
−1/2
j β̃j . This procedure is not terribly expensive from a

computational standpoint, as the decompositions are being applied only to the groups, not the
entire design matrix, and the inverses are of course trivial to compute because ΛJ is diagonal.
Furthermore, the decompositions need only be computed once initially, not with every iteration.

Note that this procedure may be applied even when Xj is not full-rank by omitting the zero
eigenvalues and their associated eigenvectors. In this case, Qj is a Kj × rj matrix and Λ is an
rj × rj matrix, where rj denotes the rank of Xj . Given these modifications, Λ is invertible and

X̃j = XjQjΛ
−1/2
j still possesses properties (2.3) and (2.4). Note, however, that X̃j now contains

only rj columns and by extension, β̃j contains only rj elements. Thus, we avoid the problem of
incomplete rank by fitting the model in a lower-dimensional parameter space, then transforming
back to the original dimensions (note that applying the reverse transformation results in a βj
with appropriate dimension Kj). In the special case where two members of a group are identical,
xjk = xj`, this approach ensures that their coefficients, βjk and βj`, will be equal for all values of
λ.

For the remainder of this article, we will assume that this process has been applied and that
the model fitting algorithms we describe are being applied to orthogonal groups, and we will drop
the tildes on X̃ and β̃ in the rest of the article. It is worth clarifying that by “orthogonal groups”,
we mean groups for which n−1XT

j Xj = I, not that groups Xj and Xk are orthogonal to each other.
Again, we note that this orthonormalization may be accomplished without loss of generality:

we are still solving the original minimization problem, simply with a change of variables to aid in
the model fitting process. Furthermore, the issue of orthogonalization is entirely separate from the
issue of standardization (requiring that n−1

∑
i x

2
ijk = 1). Both standardized and unstandardized

groups Xj may be orthogonalized with the approach described above. Unlike orthonormalization,
standardization does change the minimization problem and results in different estimates of β.
However, the standardized solution, being equivariant to changes of scale, is preferred.

2.2 Group lasso

In this section, we describe the group lasso and algorithms for fitting group lasso models. The
group lasso estimator, originally proposed by Yuan and Lin (2006), is defined as the value β̂ that
minimizes

Q(β) =
1

2n
‖y −Xβ‖2 + λ

∑
j

√
Kj

∥∥βj∥∥ . (2.5)

The idea behind the penalty is to apply a lasso penalty to the Euclidean (L2) norm of each group,
thereby encouraging sparsity and variable selection at the group level. The solution β̂ has the
property that if group j is selected, then βjk 6= 0 for all k, otherwise βjk = 0 for all k. The
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Figure 1: The impact of orthogonalization on the solution to the group lasso. Contour lines for
the likelihood (least squares) surface are drawn, centered around the OLS solution, as well as the
solution path for the group lasso as λ goes from 0 to∞. Left: Non-orthogonal X. Right: Orthogonal
X.

magnitude of
∥∥βj∥∥ will tend to be larger if βj has more elements; the presence of the

√
Kj term

counteracts this tendency, thereby normalizing for group size. As discussed in Simon and Tibshirani
(2011), this results in variable selection which is roughly equivalent to the uniformly most powerful
invariant test for inclusion of the jth group. In what follows, we will absorb the

√
Kj term into λ

and use λj = λ
√
Kj .

Yuan and Lin (2006) also propose an algorithm which they base on the “shooting algorithm”
of Fu (1998). Here, we refer to this type of algorithm as a “group descent” algorithm. The idea
behind the algorithm is the same as that of coordinate descent algorithms (Friedman et al., 2007;
Wu and Lange, 2008), with the modification that the optimization of (2.5) takes place repeatedly
with respect to a group βj rather than an individual coordinate βj .

Below, we present the group descent algorithm for solving (2.5) to obtain the group lasso
estimator. The algorithm is essentially the same as Yuan and Lin’s, although (a) we have generalized
it to the case of non-orthogonal groups using the approach described in Section 2.1, (b) we restate
the algorithm to more clearly illustrate the connections with coordinate descent algorithms, and (c)
we employ techniques developed in the coordinate descent literature to speed up the implementation
of the algorithm considerably. As we will see, this presentation of the algorithm also makes clear
how to easily extend it to fit group SCAD and group MCP models in the following sections.

We begin by noting that the subdifferential (Bertsekas, 1999) of Q with respect to βj is given
by

∂Q(βj) = −zj + βj + λjsβj/
∥∥βj∥∥ , (2.6)

where zj = XT
j (y−X−jβ−j) is the least squares solution, X−j is the portion of the design matrix

that remains after Xj has been excluded, β−j are its associated regression coefficients, and s = 1
for βj 6= 0 and s ∈ [−1, 1] otherwise. The main implication of (2.6) is that, by orthogonalizing the
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groups, Xj drops out of the equation and the multivariate problem of optimizing with respect to
βj is reduced to a univariate problem, as the solution must lie on the line segment joining 0 and zj .
The geometry of this problem is illustrated in Figure 1. As the figure illustrates, orthogonalization
renders the direction of β̂j invariant with respect to λ, thereby enabling us to break the solution
down into two components: determining the direction of βj and determining its length.

Furthermore, determining the length of βj is equivalent to solving a one-dimensional lasso
problem, which has a simple, closed-form solution given by the soft-thresholding operator (Donoho
and Johnstone, 1994):

S(z, λ) =


z − λ if z > λ

0 if |z| ≤ λ
z + λ if z < −λ.

(2.7)

With a slight abuse of notation, we extend this definition to a vector-valued argument z as follows:

S(z, λ) = S(‖z‖ , λ)
z

‖z‖
, (2.8)

where z/ ‖z‖ is the unit vector in the direction of z. In other words, S(z, λ) acts on a vector z by
shortening it towards 0 by an amount λ, and if the length of z is less than λ, the vector is shortened
all the way to 0.

The multivariate soft-thresholding operator is the solution to the single-group group lasso, just
as the univariate soft-thresholding operator is the solution to the single-variable lasso problem.
This leads to Algorithm 1, which is exactly the same as the coordinate descent algorithm described
in Friedman et al. (2010b) for fitting lasso-penalized regression models, only with multivariate
soft-thresholding replacing univariate soft-thresholding. Both algorithms are essentially modified
backfitting algorithms, with soft-thresholding replacing the usual least squares updating.

Algorithm 1 Group descent algorithm for the group lasso
repeat

for j = 1, 2, . . . , J
zj = XT

j r + βj
β′j ← S (zj , λj)

r′ ← r−XT
j (β′j − βj)

until convergence

In Algorithm 1, βj refers to the current (i.e., most recently updated) value of coefficients in the
jth group prior to the execution of the for loop; during the loop, βj is updated to β′j . The same
notation is applied to r, where r refers to the residuals: r = y −

∑
j Xjβj . The “←” refers to the

fact that βj and r are being continually updated; at convergence, β̂ consists of the final updates

{βj}. The expression zj = XT
j r + βj is derived from

zj = XT
j (y −X−jβ−j) = XT

j r + βj ; (2.9)

the algorithm is implemented in this manner because it is more efficient computationally to update
r than to repeatedly calculate the partial residuals y −X−jβ−j , especially in high dimensions.
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The computational efficiency of Algorithm 1 is clear: no complicated numerical optimization
steps or matrix factorizations or inversions are required, only a small number of simple arithmetic
operations. This efficiency is possible only because the groups {Xj} are made to be orthogonal prior
to model fitting. Without this initial orthogonalization, we cannot obtain the simple closed-form
solution (2.8), and the updating steps required to fit the group lasso become considerably more
complicated, as in Friedman et al. (2010a) and Foygel and Drton (2010).

2.3 Group MCP and group SCAD

We have just seen how the group lasso may be viewed as applying the lasso/soft-thresholding
operator to the length of each group. Not only does this formulation lead to a very efficient
algorithm, it also makes it clear how to extend other univariate penalties to the group setting.
Here, we focus on two popular alternative univariate penalties to the lasso: SCAD, the smoothly
clipped absolute deviation penalty (Fan and Li, 2001) and MCP, the minimax concave penalty
(Zhang, 2010).

The two penalties are similar in motivation, definition, and performance. The penalties are
defined on [0,∞) for λ > 0 as follows, and plotted on the left side of Figure 2:

SCAD: pλ,γ(θ) =


λθ if θ ≤ λ
γλθ−0.5(θ2+λ2)

γ−1 if λ < θ ≤ γλ
λ2(γ2−1)
2(γ−1) if θ > γλ

(2.10)

MCP: pλ,γ(θ) =

{
λθ − θ2

2γ if θ ≤ γλ
1
2γλ

2 if θ > γλ
. (2.11)

To have a well-defined minimum, we must have γ > 1 for MCP and γ > 2 for SCAD. Although
originally proposed for univariate penalized regression, these penalties may be extended to the
grouped-variable selection problem by substituting (2.10) and (2.11) into (2.2), as has been proposed
in Wang et al. (2007) and discussed in Huang et al. (2012). We refer to these penalized regression
models as the Group SCAD and Group MCP methods, respectively.

The rationale behind the penalties can be understood by considering their derivatives, which
appear in the middle panel of Figure 2. MCP and SCAD begin by applying the same rate of
penalization as the lasso, but continuously relax that penalization until the point at which θ = γλ,
where the rate of penalization has fallen all the way to 0. The aim of both penalties is to achieve
the variable selection properties of the lasso, but to introduce less bias towards zero among the
true nonzero coefficients. The only difference between the two is that MCP reduces the rate of
penalization immediately, while SCAD remains flat for a while before moving towards zero.

The rationale behind the penalties can also be understood by considering their univariate so-
lutions. Consider the simple linear regression of y upon x, with unpenalized least squares solution
z = n−1xTy. For this simple linear regression problem, the MCP and SCAD estimators have the
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Figure 2: Lasso, SCAD, and MCP penalty functions, derivatives, and univariate solutions. The
panel on the left plots the penalties themselves, the middle panel plots the first derivative of
the penalty, and the right panel plots the univariate solutions as a function of the ordinary least
squares estimate. The light gray line in the rightmost plot is the identity line. Note that none of
the penalties are differentiable at βj = 0.

following closed forms:

β̂ = F (z, λ, γ) =

{
S(z,λ)
1−1/γ if |z| ≤ γλ
z if |z| > γλ,

(2.12)

β̂ = FS(z, λ, γ) =


S(z, λ) if |z| ≤ 2λ
S(z,γλ/(γ−1))
1−1/(γ−1) if 2λ < |z| ≤ γλ

z if |z| > γλ.

(2.13)

Noting that S(z, λ) is the univariate solution to the lasso, we can observe by comparison that MCP
and SCAD scale the lasso solution upwards toward the unpenalized solution by an amount that
depends on γ. For both MCP and SCAD, when |z| > γλ, the solution is scaled up fully to the
unpenalized least squares solution. These solutions are plotted in the right panel of Figure 2; the
figure illustrates how the solutions, as a function of z, make a smooth transition between the lasso
and least squares solutions. This transition is essential to the oracle property described in the
introduction.

As γ → ∞, the MCP and lasso solutions are identical. As γ → 1, the MCP solution becomes
the hard thresholding estimate zI|z|>λ. Thus, in the univariate sense, the MCP produces the “firm
shrinkage” estimator of Gao and Bruce (1997); hence the F (·) notation. The SCAD solutions
are similar, of course, but not identical, and thus involve a “SCAD-modified firm thresholding”
operator which we denote FS(·). In particular, the SCAD solutions also have soft-thresholding as
the limiting case when γ →∞, but do not have hard thresholding as the limiting case when γ → 2.

We extend these two firm-thresholding operators to multivariate arguments as in (2.8), with F (·)
or FS(·) taking the place of S(·), and note that F (zj , λ, γ) and FS(zj , λ, γ) optimize the objective
functions for Group MCP and Group SCAD, respectively, with respect to βj . An illustration of
the nature of these estimators is given in Figure 3. We note the following: (1) All estimators carry
out group selection, in the sense that, for any value of λ, the coefficients belonging to a group are
either wholly included or wholly excluded from the model. (2) The group MCP and group SCAD
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Figure 3: Representative solution paths for the group lasso, group MCP, and group SCAD methods.
In the generating model, groups A and B have nonzero coefficients and while those belonging to
group C are zero.

methods eliminate some of the bias towards zero introduced by the group lasso. In particular, at
λ ≈ 0.2, they produce the same estimates as a least squares regression model including only the
nonzero covariates (the “oracle” model). (3) Group MCP makes a smoother transition from 0 to
the unpenalized solutions than group SCAD. This is the “minimax” aspect of the penalty. Any
other penalty that makes the transition between these two extremes must have some region (e.g.
λ ∈ [0.7, 0.5] for group SCAD) in which its solutions are changing more abruptly than those of
group MCP.

It is straightforward to extend Algorithm 1 to fit Group SCAD and Group MCP models; all
that is needed is to replace the multivariate soft-thresholding update with a multivariate firm-
thresholding update. The group updates for all three methods are listed below:

Group lasso : βj ← S(zj , λ) = S(‖zj‖ , λ)
zj
‖zj‖

Group MCP : βj ← F (zj , λ, γ) = F (‖zj‖ , λ, γ)
zj
‖zj‖

Group SCAD : βj ← F (zj , λ, γ) = FS(‖zj‖ , λ, γ)
zj
‖zj‖

Note that all three updates are simple, closed-form expressions. Furthermore, as each update
minimizes the objective function with respect to βj , the algorithms possess the descent property,
meaning that they decrease the objective function with every iteration and are therefore guaranteed
to converge, a fact which we now state formally.

Proposition 1. Let β(m) denote the value of the fitted regression coefficient at the end of iteration
m. At every iteration of the proposed group descent algorithms for linear regression models involving
group lasso, group MCP, or group SCAD penalties,

Q(β(m+1)) ≤ Q(β(m)).

Furthermore, the sequence {β(1),β(2), . . .} is guaranteed to converge to a stationary point of Q.
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For the group lasso penalty, the objective function being minimized is convex, and thus the
above proposition establishes convergence to the global minimum. For group MCP and group
SCAD, whose objective function is a sum of convex and nonconvex components, convergence to a
local minimum is possible.

It is worth pointing out that a similar algorithm was explored in She (2012), who proposed
the same updating steps as above, although without an initial orthogonalization. Interestingly,
She showed that even without orthogonalization, the updating steps still produce a sequence β(m)

converging to a stationary point of the objective function. Unlike our approach, however, these
updates are not exact group-wise solutions. In other words, in the single-group case, our approach
produces exact solutions in one step, whereas the approach in She (2012) requires multiple iterations
to converge to the same solution. This leads to a considerable loss of efficiency, as we will see in
Section 3.

In conclusion, the algorithms we present here for fitting group lasso, group MCP, and group
SCAD models are both fast and stable. We examine the empirical running time of these algorithms
in Section 3.

2.4 Logistic regression

It is possible to extend the algorithms described above to fit group-penalized logistic regression
models as well, where the loss function is the negative log-likelihood of a binomial distribution:

L(η) =
1

n

∑
i

Li(ηi) = − 1

n

∑
i

logP(yi|ηi).

Recall, however, that the simple, closed form solutions of the previous sections were possible only
with orthogonalization. The iteratively reweighted least squares (IRLS) algorithm typically used to
fit generalized linear models (GLMs) introduces a n−1XTWX term into the score equation (2.6),
where W is an n× n diagonal matrix of weights. Because n−1XTWX 6= I, the group lasso, group
MCP, and group SCAD solutions will lack the simple closed forms of the previous section.

However, we may preserve the sphericity of the likelihood surface (Figure 1) through the ap-
plication of a majorization-minimization (MM) approach (Lange et al., 2000; Hunter and Lange,
2004). In the context of penalized logistic regression, this approach was proposed by Krishnapuram
et al. (2005), who referred to it as a bound optimization algorithm. The application of the method
depends on the ability to bound the Hessian of the loss function with respect to the linear predictor
η. Let v = maxi supη{∇2Li(η)}, so that vI−∇2L(η) is a positive semidefinite matrix at all points
η. For logistic regression, where

πi = P(Yi = 1|ηi) =
eηi

1 + eηi
,

we may easily obtain v = 1/4, since ∇2Li(η) = π(1− π).
Bounding the loss function in this manner allows us to define

L̃(η|η∗) = L(η∗) + (η − η∗)T∇L(η∗) +
v

2
(η − η∗)T (η − η∗)

such that the function L̃(η|η∗) has the following two properties:

L̃(η∗|η∗) = L(η∗)

L̃(η|η∗) ≥ L(η).
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Thus, L̃(η|η∗) is a majorizing function of L(η). The theory underlying MM algorithms then ensures
that Algorithm 2, which consists of alternately executing the majorizing step and the minimization
steps, will retain the descent property of the previous sections, which we formally state below.

Proposition 2. Let β(m) denote the value of the fitted regression coefficient at the end of iteration
m. At every iteration of the proposed group descent algorithms for logistic regression involving
group lasso, group MCP, or group SCAD penalties,

Q(β(m+1)) ≤ Q(β(m)).

Furthermore, provided that no elements of β tend to ±∞, the sequence {β(1),β(2), . . .} is guaranteed
to converge to a stationary point of Q.

As with linear regression, this result implies convergence to a global minimum for the group
lasso, but allows convergence to local minima for group MCP and group SCAD. Note, however, that
unlike linear regression, in logistic regression maximum likelihood estimates can occur at ±∞ (this
is often referred to as complete separation). In practice, this is not a concern for large values of λ,
but saturation of the model will certainly occur when p > n and λ is small. Our implementation in
grpreg terminates the path-fitting algorithm if saturation is detected, based on a check of whether
> 99% of the null deviance has been explained by the model.

Writing L̃(η|η∗) in terms of β, we have

L̃(β) ∝ v

2n
(ỹ −Xβ)T (ỹ −Xβ),

where ỹ = η∗+(y−π)/v is the pseudo-response vector. Thus, the gradient of L̃(η|η∗) with respect
to βj is given by

∇L̃(βj) = −vzj + vβj , (2.14)

where, as before, zj = XT
j (ỹ −X−jβ−j) is the vector of partial (pseudo-) residuals for βj .

Algorithm 2 Group descent algorithm for logistic regression with a group lasso penalty
repeat

η ← Xβ
π ← {eηi/(1 + eηi)}ni=1

r̃← (y − π)/v
for j = 1, 2, . . . , J

zj = XT
j r̃ + βj

β′j ← S (vzj , λj) /v

r̃′ ← r̃−XT
j (β′j − βj)

until convergence

The presence of the scalar v in the score equations affects the updating equations; however, as
the majorized loss function remains spherical with respect to β, the updating equations still have
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simple, closed form solutions:

Group lasso : βj ←
1

v
S(vzj , λ) =

1

v
S(v ‖zj‖ , λ)

zj
‖zj‖

Group MCP : βj ←
1

v
F (vzj , λ, γ) =

1

v
F (v ‖zj‖ , λ, γ)

zj
‖zj‖

Group SCAD : βj ←
1

v
F (vzj , λ, γ) =

1

v
FS(v ‖zj‖ , λ, γ)

zj
‖zj‖

Algorithm 2 is presented for the group lasso, but is easily modified to fit group MCP and group
SCAD models by substituting the appropriate expression into the updating step for βj .

Note that Proposition 2 does not necessarily follow for other generalized linear models, as the
Hessian matrices for other exponential families are typically unbounded. One possibility is to set
v ← maxi{∇2Li(η

∗
i )} at the beginning of each iteration as a pseudo-upper bound. As this is not

an actual upper bound, an algorithm based on it is not guaranteed to possess the descent property.
Still, this approach would seem likely to provide adequate performance in practice, although the
authors have not examined the proposal in depth.

2.5 Path-fitting algorithm

The above algorithms are presented from the perspective of fitting a penalized regression model
for a single value of λ. Usually, we are interested in obtaining β̂ for a range of λ values, and then
choosing among those models using either cross-validation or some form of information criterion.
The regularization parameter λ may vary from a maximum value λmax at which all penalized
coefficients are 0 down to λ = 0 or to a minimum value λmin beyond which the model becomes
excessively large. When the objective function is strictly convex, the estimated coefficients vary
continuously with λ ∈ [λmin, λmax] and produce a path of solutions regularized by λ. An examples
of such a path may be seen in Figure 3.

Algorithms 1 and 2 are iterative and require initial values; the fact that β̂ = 0 at λmax provides
an efficient approach to choosing those initial values. Group lasso, group MCP, and group SCAD
all have the same value of λmax; namely, λmax = maxj{‖zj‖} for linear regression or λmax =
maxj{v ‖zj‖} for logistic regression, where the {zj} are computed with respect to the intercept-
only model (or, if unpenalized covariates are present, with respect to the residuals of the fitted
model including all of the unpenalized covariates). Thus, by starting at λmax where β̂ = 0 is
available in closed form and proceeding towards λmin, using β̂ from the previous value of λ as the
initial value for the next value of λ, we can ensure that the initial values will never be far from the
solution, a helpful property often referred to as “warm starts” in the path-fitting literature.

3 Algorithm efficiency

Here, we briefly comment on the efficiency of the proposed algorithms. Regardless of the penalty
chosen, the most computationally intensive steps in Algorithm 1 are the calculation of the inner
products XT

j r and XT
j (β′j − βj), each of which requires O(nKj) operations. Thus, one full pass

over all the groups requires O(2np) operations. The fact that this approach scales linearly in p
allows it to be efficiently applied to high-dimensional problems.
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Table 1: Comparison of (grpreg) with other publicly available group lasso packages. Times are
in seconds required to fit the entire solution path over a grid of 100 λ values, averaged over 100
independent data sets. Each group consisted of 10 variables; thus p ranges over {10, 100, 1000}
across the columns.

n=50 n=500 n=5000
J=1 J=10 J=100

Linear grpreg Group lasso 0.01 0.07 18.42
regression grpreg Group MCP 0.01 0.05 10.66

grpreg Group SCAD 0.01 0.05 11.04
grplasso Group lasso 0.16 1.91 60.96
standGL Group lasso 0.04 1.27 150.99

Logistic grpreg Group lasso 0.01 0.21 107.90
regression grpreg Group MCP 0.01 0.13 46.26

grpreg Group SCAD 0.01 0.14 83.08
grplasso Group lasso 1.20 5.15 203.22
standGL Group lasso 0.43 6.40 399.42

Of course, the entire time required to fit the model depends on the number of iterations, which
in turn depends on the data and on λ. Broadly speaking, the dominant factor influencing the
number of iterations is the number of nonzero groups at that value of λ, since no iteration is
required to solve for groups that remain fixed at zero. Consequently, when fitting a regularized
path, a disproportionate amount of time is spent at the least sparse end of the path, where λ is
small.

Table 1 compares our implementation (grpreg) with two other publicly available R packages
for fitting group lasso models over increasingly large data sets: the grplasso package (Meier
et al., 2008) and the standGL package (Simon and Tibshirani, 2011). We note that (a) the grpreg

implementation appears uniformly more efficient than the others, and (b) that group MCP and
group SCAD tend to be slightly faster than group lasso. Presumably, this is caused by the fact
that their solution paths tend to be more sparse.

It is worth noting that all three of these packages can handle p > n problems; however, for the
purposes of timing, we chose to restrict our attention to problems in which the entire path can
be computed. Otherwise, different implementations may terminate the fitting process at different
points along the path, which would prevent a fair comparison of computing times.

Finally, let us compare these results to those presented in She (2012). For the algorithm
presented in that paper, the author reports an average time of 32 minutes to estimate the group
SCAD regression coefficients when n = 100 and p = 500. For the same size problem, our approach
required a mere 0.35 seconds.

4 Simulation studies

In this section, we compare the performance of group lasso, group MCP, and group SCAD
using simulated data. First, a relatively basic setting is used to illustrate the primary advantages
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of group MCP and group SCAD over group lasso. We then attempt to mimic two settings in which
the methodology might be used: to allow flexible semiparametric modeling of continuous variables
and in genetic association studies, which involve large numbers of categorical variables. We use the
term “null predictor” to refer to a covariate whose associated regression coefficient is zero in the
true model.

In all of the studies, five-fold cross-validation was used to choose the regularization parameter
λ. Group SCAD and group MCP have an additional tuning parameter, γ. In principle, one may
attempt to select optimal values of γ using, for example, cross-validation over a two-dimensional
grid or using an information criterion approach. Here, we fix γ = 3 for group MCP and γ = 4 for
group SCAD, roughly in line with the default recommendations suggested in Fan and Li (2001)
and Zhang (2010) in the non-grouped case.

In Section 4.1, we evaluate model accuracy by root mean squared error (RMSE):

RMSE =

√
1

p

∑
j,k

(βjk − β̂jk)2.

In Sections 4.2 and 4.3, because the model fit to the data is not always the same as the generating
model, we focus on root model error (RME) instead:

RME =

√
1

n

∑
i

(µi − µ̂i)2,

where µi and µ̂i denote the true and estimated mean of observation i given xi. Note that the model
error, which is also discussed in Fan and Li (2001), is equal in expected value to the prediction error
minus the irreducible error σ2. In all simulations, results are averaged over 1,000 independently
generated data sets.

4.1 Basic

We begin with a very straightforward study designed to illustrate the basic shortcomings of the
group lasso in comparison with group MCP and group SCAD. The design matrix consists of 100
groups, each with 4 elements. In five of these groups, the coefficients are ±β; in the others, the
true regression coefficients are zero. Covariate values and errors were generated from the standard
normal distribution. We fixed the sample size at 100 (i.e., n=100, p=400) and varied |β|. In
principle, group lasso should struggle when |β| is large, as it cannot alleviate the problem of bias
towards zero for large coefficients without lowering λ and thereby allowing null predictors to enter
the model. Indeed, as Figure 4 illustrates, this is exactly what occurs.

For small values of the regression coefficients, all three group regularization methods perform
similarly. As we increase the magnitude of these coefficients, however, group MCP and group
SCAD begin to estimate β with an error approaching the theoretically optimal value, while group
lasso performs increasingly poorly. Furthermore, group MCP and group SCAD select much smaller
models and approach the true model size much faster than group lasso, which selects far too many
variables.

Comparing group MCP and group SCAD, the two are nearly identical in terms of estimation
accuracy. However, group MCP selects a considerably more sparse model, and has better variable
selection properties. Thus, although the two methods behave similarly in an asymptotic setting,
group MCP seems to have somewhat better finite-sample properties.
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Figure 4: The impact of increasing coefficient magnitude on group regularization methods. Model
size is given in terms of number of groups (i.e., the number of variables in the model is four times
the amount shown). The faint gray line on the left is the theoretically optimal RMSE than can be
achieved in this setting. The faint gray line on the right is the true model size.

In the left panel of Figure 4, we include an “oracle” RMSE for reference; we now clarify what
exactly we mean by this. An oracle model (one which knows in advance which coefficients are
zero and which are nonzero) would be able to achieve a mean squared error of zero for the zero-
coefficient variables and a total MSE of tr{(XTX)−1} for the nonzero variables. In our simulation X
was random, with E(XXT ) = I. Thus, the total MSE of the oracle model is approximately tr(I0/n)
where I0 is the identity matrix with dimension equal to that of the nonzero coefficients, with RMSE√
s/n, where s is the sparsity fraction (i.e., the fraction of coefficients that are nonzero). Note that

in any finite sample, the columns of X will be correlated, so even the oracle model cannot achieve
this RMSE for finite sample sizes; the gray line in Figure 4 is thus the optimal RMSE that could
be theoretically be achieved in this setting.

4.2 Semiparametric regression

Our next simulation involves groups of covariates constructed by taking basis expansions of
continuous variables to allow for flexible covariate effects in semiparametric modeling. The sample
size was 200 and the data consisted of 100 variables, each of which were generated as independent
uniform (0,1) variates. The first six variables had potentially nonlinear effects given by the following
equations:

f1(x) = 2(e−10x − e−10)/(1− e−10)− 1

f2(x) = −2(e−10x − e−10)/(1− e−10) + 1

f3(x) = 2x− 1

f4(x) = −2x+ 1

f5(x) = 8(x− 0.5)2 − 1

f6(x) = −8(x− 0.5)2 + 1;
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the other 94 had no effect on the outcome. The scaling of the functions is to ensure that each
variable attains a minimum and maximum of (−1, 1) over the domain of x and thus that the
effects of all six variables are roughly comparable. Visually the effect of the six nonzero variables
is illustrated below:

x1 x2 x3 x4 x5 x6

For model fitting, each variable was represented using a 6-term B-spline basis expansion (i.e., X
had dimensions n = 200, p = 600). In addition to the three group selection methods, models were
also fit using the lasso (i.e., ignoring grouping). Results are given in Table 2.

Table 2: Prediction and variable selection accuracy for the semiparametric regression simulation.

Group Group Group
Lasso Lasso MCP SCAD

RME 0.73 0.59 0.50 0.52
Variables selected 31.5 29.3 10.4 23.1

Certainly, all three group selection approaches greatly outperform the lasso here. However, as in
the previous section, group MCP and group SCAD are able to achieve superior prediction accuracy
which selecting more parsimonious models. Also as in the previous simulation, group MCP and
group SCAD perform similarly as far as prediction accuracy, but group MCP is seen to have better
finite-sample variable selection properties — recall that the true number of variables in the model
is only 6.

4.3 Genetic association study

Finally, we carry out a simulation designed to mimic a small genetic association study involving
single nucleotide polymorphisms (SNPs). Briefly, a SNP is a point on the genome in which multiple
versions (alleles) may be present. A SNP may take on three values {0, 1, 2}, depending on the
number of minor alleles present. The effect is not necessarily linear — for example, if the allele has
a recessive effect, the phenotype associated with x = 0 and x = 1 are identical, while the phenotype
associated with x = 2 is different. In such studies, it is desirable to have a method which is robust
to different mechanisms of action, yet powerful enough to actually detect important SNPs, as the
number of SNPs is typically rather large.

We simulated data involving 250 subjects and 500 SNPs, each of which was represented with 2
indicator functions (i.e., n=250, p=1,000). Three of the variables had an effect on the phenotype
(one dominant effect, one recessive effect, one additive effect); the other 497 did not. In addition
to the three group selection methods, we included for comparison two versions of the lasso: one
applied to all p = 1, 000 variables and ignoring grouping, the other assuming an additive effect for
each genotype. Note that for the second approach, p = 500 as we estimate only a single coefficient
for each SNP. The results of this simulation are given in Table 3.
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Table 3: Prediction and variable selection accuracy for the genetic association study simulation.
True discoveries are selected variables that have a truly nonzero effect; false discoveries are selected
SNPs that have no effect on the phenotype.

Additive Group Group Group
Lasso Lasso Lasso MCP SCAD

RME 0.38 0.37 0.34 0.25 0.27
True discoveries 2.6 2.2 2.6 2.4 2.5
False discoveries 21.1 16.3 15.5 4.0 12.5

The same broad conclusions may be reached here as in the previous simulations. In particular,
we note that (1) The group selection methods outperform the variable selection methods that
either do not account for grouping or that attempt to incorporate grouping in an ad-hoc fashion.
(2) Group MCP and group SCAD outperform the group lasso both in terms of prediction accuracy
as well as the number of false discoveries. (3) Although group MCP and group SCAD are similar
in terms of prediction accuracy, group MCP has significantly better variable selection properties,
producing only four false discoveries compared to group SCAD’s 12.5.

5 Real data

We give two examples of applying grouped variable selection methods to real data. The first
is a gene expression study in rats to determine genes associated with Bardet-Biedl syndrome.
The second is a genetic association study to determine SNPs associated with age-related macular
degeneration. As in the previous section, we fix γ = 3 for group MCP, γ = 4 for group SCAD, and
select λ via cross-validation.

5.1 Bardet-Biedl syndrome gene expression study

The data we analyze here is discussed more fully in Scheetz et al. (2006). Briefly, the data
set consists of normalized microarray gene expression data harvested from the eye tissue of 120
twelve-week-old male rats. The outcome of interest is the expression of TRIM32, a gene which
has been shown to cause Bardet-Biedl syndrome (Chiang et al., 2006). Bardet-Biedl syndrome is a
genetic disease of multiple organ systems including the retina.

Following the approach in Scheetz et al. (2006), 18,976 of the 31,042 probe sets on the array
“exhibited sufficient signal for reliable analysis and at least 2-fold variation in expression.” These
probe sets include TRIM32 and 18,975 other genes that potentially influence its expression. We
further restricted our attention to the 5,000 genes with the largest variances in expression (on the
log scale) and considered a three-term natural cubic spline basis expansion of those genes, resulting
in a grouped regression problem with n = 120 and p = 15, 000. The models selected by group lasso,
group MCP, and group SCAD are described in Table 4.

This is an interesting case study in that group MCP selects a very different model from the
other two approaches. In particular, group lasso and group SCAD each select a fairly large number
of genes, while shrinking each gene’s group of coefficients nearly to zero. Group MCP, on the other
hand, selects a single gene and returns a fit nearly the same as the least-squares fit for that gene

17



Table 4: Genes selected by group lasso/SCAD/MCP, along with the Euclidean norm of the coeffi-
cients for each gene’s basis expansion.

Group norm
Probe Gene Group Group Group
Set Symbol Lasso MCP SCAD

1374131 at 0.11 0.13
1383110 at Klhl24 0.10 0.08
1383749 at Phospho1 0.02 0.04
1376267 at 0.22 0.23
1377791 at 0.13 0.12
1376747 at 0.28 0.24
1390539 at 0.11 0.12
1384470 at 0.05 0.07
1386032 at Prkd3 0.03 0.06
1393231 at Ppp4r2 0.01 0.03
1385798 at 0.03
1383730 at Ttc9c 0.02 0.06
1368476 at Nr3c2 0.05 0.01
1384860 at Zfp84 0.03 0.07
1372928 at 0.22 1.83 0.20
1381902 at Zfp292 0.16 0.18
1390574 at 0.02 0.01
1384940 at Zfp518a 0.10 0.10

alone. The relationship between probe set 1372928 at and TRIM32 estimated by each model is
plotted in Figure 5.

The most important aspect of Figure 5 to note is that the outcome, TRIM32, has a large outlying
value almost 10 standard deviations below the mean of the rest of the points. This observation
has a large impact on the fit: for all of the genes in Table 4, this subject is also responsible for the
lowest/highest or second-lowest/highest value of that gene, and the median absolute correlation
for the genes in the table is 0.62. Many of the scatterplots of those genes versus TRIM32 look
qualitatively similar to the one in Figure 5.

Faced with this set of genes, group MCP selects a single gene and fits a model that explains
65% of the variance in TRIM32 expression. Group SCAD and group lasso select an ensemble of
correlated genes, downweighting the contribution of each gene considerably. Each approach has
advantages, depending on the goal of the analysis. The group SCAD/lasso approaches avoid a
possibly arbitrary selection of one gene from a highly correlated set, and produce a model with
somewhat better predictive ability (cross-validation error of 0.0085± 0.001 versus 0.0098± 0.002),
although all three approaches are within random variability of each other. Group MCP, on the
other hand, produces a highly parsimonious model capable of predicting just as well as the group
lasso/SCAD models despite using only a single gene. This is potentially a valuable property if the
goal is, say, to develop a diagnostic assay and each gene that need to be measured adds cost to the
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Figure 5: Estimated relationship between probe set 1372928 at and TRIM32 estimated by group
lasso, group MCP, and group SCAD. Estimates are superimposed on top of a scatterplot and
restricted to pass through the mean expression for each probe set.

assay.
Finally, it should be noted that although group MCP is behaving in a rather greedy fashion in

this example, this is not an inherent aspect of the method. By adjusting the γ parameter, group
MCP can be made to resemble the group lasso and group SCAD solutions as well – recall that
group lasso can be considered a special case of group MCP with γ = ∞. Group SCAD, on the
other hand, cannot be made to resemble group MCP and is incapable in this case of selecting a
highly parsimonious model. Group MCP is considerably more flexible, although of course to pursue
this flexibility, proper selection of tuning parameters becomes an important issue. The selection
of additional tuning parameters is an important area for further study in both the grouped and
non-grouped application of the MC penalty.

5.2 Age-related macular degeneration genetic association study

We analyze data from a case-control study of age-related macular degeneration consisting of
400 cases and 400 controls. We confine our analysis to 532 SNPs that previous biological studies
have suggested may be related to the disease. As in Section 4.3, we represent each SNP as a three-
level factor depending on the number of minor alleles the individual carries at that locus. This
requires the expansion of each SNP into a group of two indicator functions; our design matrix for
this example thus has n = 800 and p = 1, 064. Group regularized logistic regression models were
then fit to the data; as before, λ was selected via cross-validation. The results are presented in
Table 5.

Although the three group regularization approaches are equivalent in terms of out-of-sample
prediction accuracy in this example, it is worth noting the following: (1) All three approaches
represent significant improvements over the baseline (intercept-only) cross-validation error, and
(2) again, the group MCP approach offers a considerably more parsimonious model with no loss in
prediction accuracy. Compared with the gene expression example of the previous section, parsimony
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Table 5: Application of group regularized methods to age-related macular degeneration study. The
number of SNPs selected by the method, cross-validation error, and associated standard error are
reported. For comparison, the intercept-only model is also listed (“Baseline”).

SNPs CV Error SE

Baseline 0.250 0.0002
grLasso 45 0.237 0.004
grMCP 13 0.237 0.004
grSCAD 35 0.237 0.004

is both more desirable and more believable in this example. Unlike the gene expression case, the
SNPs selected here by the group lasso are not highly correlated (median absolute correlation is
only 0.03) and thus more likely to represent independent causes than dependent manifestations of
a separate underlying cause such as up-regulation of a pathway.

6 Conclusion

Group MCP and group SCAD models are powerful alternatives to the group lasso in problems
involving grouped variable selection. However, application and study of these approaches has been
limited, especially in high-dimensional problems, due to a lack of efficient algorithms and a lack
of publicly available software for fitting these models. In this article, we attempt to remedy this,
describing the development of efficient algorithms and proving an implementation via the R package
grpreg.
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Appendix

Before proving Proposition 1, we establish the groupwise convexity of all the objective functions
under consideration. Note that for group SCAD and group MCP, although they contain nonconvex
components and are not necessarily convex overall, the objective functions are still convex with
respect to the variables in a single group.

Lemma 1. The objective function Q(βj) for regularized linear regression is a strictly convex func-
tion with respect to βj for the group lasso, for group SCAD with γ > 2, and for group MCP with
γ > 1.

Proof. Although Q(βj) is not differentiable, it is directionally twice differentiable everywhere. Let
∇2

dQ(βj) denote the second derivative of Q(βj) in the direction d. Then the strict convexity of
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Q(βj) follows if ∇2
dQ(βj) is positive definite at all βj and for all d. Let ξ∗ denote the infimum

over βj and d of the minimum eigenvalue of ∇2
dQ(βj). Then, after some algebra, we obtain

ξ∗ = 1 Group lasso

ξ∗ = 1− 1

γ − 1
Group SCAD

ξ∗ = 1− 1

γ
Group MCP,

These quantities are positive under the conditions specified in the lemma.

We now proceed to the proof of Proposition 1.

Proof of Proposition 1. The descent property is a direct consequence of the fact that each updating
step consists of minimizing Q(β) with respect to βj . Lemma 1, along with the fact that the least
squares loss function is continuously differentiable and coercive, provide sufficient conditions to
apply Theorem 4.1 of Tseng (2001), thereby establishing convergence to a stationary point of
Q(β).

For Proposition 2, involving logistic regression, we proceed similarly, letting R(β|β̃) denote the
majorizing approximation to Q(β) at β̃.

Lemma 2. The majorizing approximation R(βj |β̃) for regularized logistic regression is a strictly

convex function with respect to βj at all β̃ for the group lasso, for group SCAD with γ > 8, and
for group MCP with γ > 4.

Proof. Proceeding as in the previous lemma, and letting ξ∗ denote the infimum over β̃, βj and d
of the minimum eigenvalue of ∇2

dQ(βj), we obtain

ξ∗ =
1

4
Group lasso

ξ∗ =
1

4
− 1

γ − 1
Group SCAD

ξ∗ =
1

4
− 1

γ
Group MCP,

These quantities are positive under the conditions specified in the lemma.

Proof of Proposition 2. The proposition makes two claims: descent with every iteration and guar-
anteed convergence to a stationary point. To establish descent for logistic regression, we note that
because L is twice differentiable, for any point η there exists a vector η∗∗ on the line segment
joining η and η∗ such that

L(η) = L(η∗) + (η − η∗)T∇L(η∗) +
1

2
(η − η∗)T∇2L(η∗∗)(η − η∗)

≤ L̃(η|η∗)

where the inequality follows from the fact that vI − ∇2L(η∗∗) is a positive semidefinite matrix.
Descent now follows from the descent property of MM algorithms (Lange et al., 2000) coupled with
the fact that each updating step consists of minimizing R(βj |β̃).
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To establish convergence to a stationary point, we note that if no elements of β tend to ±∞,
then the descent property of the algorithm ensures that the sequence β(k) stays within a compact
set and therefore possesses a limit point β̃. Then, as in the proof of Proposition 1, Lemma 2
allows us to apply the results of Tseng (2001) and conclude that β̃ must be a stationary point of
R(β|β̃). Furthermore, because R(β|β̃) is tangent to Q(β) at β̃, β̃ must also be a stationary point
of Q(β).

References

Bakin, S. (1999). Adaptive regression and model selection in data mining problems. Ph.D. thesis,
Australian National University.

Bertsekas, D. (1999). Nonlinear Programming. 2nd ed. Athena Scientific.

Breheny, P. and Huang, J. (2011). Coordinate descent algorithms for nonconvex penalized
regression, with applications to biological feature selection. Annals of Applied Statistics, 5 232–
253.

Chiang, A., Beck, J., Yen, H., Tayeh, M., Scheetz, T., Swiderski, R., Nishimura, D.,
Braun, T., Kim, K., Huang, J. et al. (2006). Homozygosity mapping with snp arrays
identifies trim32, an e3 ubiquitin ligase, as a bardet–biedl syndrome gene (bbs11). Proceedings
of the National Academy of Sciences, 103 6287–6292.

Donoho, D. and Johnstone, J. (1994). Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81 425–455.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96 1348–1360.

Foygel, R. and Drton, M. (2010). Exact block-wise optimization in group lasso and sparse
group lasso for linear regression. Arxiv preprint arXiv:1010.3320.
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