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aDepartamento de Matemática Aplicada, ESCET, Universidad Rey Juan Carlos,
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bDipartimento di Matematica, Università di Trento, Via Sommarive 14, I-38123, Povo
(Trento), Italy.

Abstract

We classify rank two Fano bundles over the Grassmannian of lines G(1, 4).
In particular we show that the only non-split rank two Fano bundle over
G(1, 4) is, up to a twist, the universal quotient bundle Q. This completes
the classification of rank two Fano bundles over Grassmannians of lines.
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1. Introduction

The problem of classifying low rank vector bundles on grassmannians
appears naturally in the framework of Hartshorne’s Conjecture.

On one hand one may consider finite morphisms from the grassmannian
to the projective space and take pull-backs of vector bundles via these mor-
phisms. Simple computations on Chern classes discriminate whether a vector
bundle on the grassmannian may appear as a pull-back of one on a projective
space, relating both classifications: that of low rank vector bundles on the
grassmannian and that of low rank vector bundles on the corresponding pro-
jective space. Let us focus on the codimension two case where Hartshorne’s
conjecture can be stated as follows: any rank two vector bundle on P6 de-
composes as the direct sum of two line bundles. By the previous ideas this
conjecture would follow from the fact that any rank two vector bundle on
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the grassmannian of lines in P4, G(1, 4), either decomposes as a sum of line
bundles or is, up to a twist, isomorphic to the universal quotient bundle Q.
This path has been followed in a number of papers, see for instance [2], [3],
[10], [12] and [14], where the authors study extensions to G(1, 4) of Horrocks
decomposability criterion, that had been previously shown to work on projec-
tive spaces ([7]) and quadrics ([11]). In the case of G(1, 4) these results show
essentially how the vanishing of certain cohomology groups characterizes de-
composable bundles and twists of the universal quotient bundle Q. Note that
a straightforward computation of Chern classes shows that no bundle on P6

may be pulled-back to Q or its twists.
On the other hand one may consider the problem of classifying low rank

vector bundles on other Fano manifolds of Picard number one and, in par-
ticular, on grassmannians, as a natural extension of the decomposability
question on vector bundles on the projective space. In this setting, it is
known that some partial results may be achieved under certain positivity
conditions: for instance, rank two Fano bundles over projective spaces and
quadrics are completely classified (see [16, 17, 15, 1]). Furthermore, it has
been noted by Malaspina in [11] that this classification provides precisely the
complete list of rank two bundles on projective spaces and quadrics satisfying
the decomposability criteria that we have referred to above.

In our recent paper [13] we classified rank two Fano bundles over G(1, n)
with n ≥ 5, proving that they are twists of the universal quotient bundle Q
or sums of line bundles ([13, Corollary 5.17]). Our proof relied on showing
that the restriction of a Fano bundle E on G(1, n) to a Pn−1 ⊂ G(1, n),
representing lines through a fixed point, is a sum of line bundles; this allows
us to conclude by using a classification of uniform (i.e, whose restriction to
every line is the same) vector bundles on grassmannians (see [5, Théorème
1] or [13, Theorem 4.1]). Note that the restriction of E to a Pn−1 is not
necessarily Fano; however it yet satisfies a weaker positivity condition, that
we call 1-Fano (see [13, Definition 5.1]), from which we infer the splitting ([13,
Theorem 5.15]) for n ≥ 5. Unfortunately there are well known examples of
indecomposable 1-Fano bundles on P3, including the null-correlation bundle
(c1 = 0, c2 = 1) and the stable bundles with c1 = 0, c2 = 2 ([6, Rem. 9.4.1]).
This prevents our arguments for G(1, n) from working in the case n = 4. Note
also that the cases n = 2, 3 follow from the classification of Fano bundles on
projective spaces and quadrics, so that, at this point, the only grassmannian
of lines that could eventually support a different Fano bundle was G(1, 4).
In this note we prove the following:
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Theorem 1.1. Let E be a rank two Fano bundle on G(1, 4); then E is either
a twist of the universal quotient bundle or a direct sum of two line bundles.

Note that a vector bundle O(a) ⊕ O(b) on G(1, n) is Fano if and only
if |a − b| < n + 1, hence, up to a twist with a line bundle, the list of Fano
bundles on G(1, n) is finite for all n. In the case n = 4, split Fano bundles
are twists of one of the following:

O⊕2, O(−1)⊕O(1), O(−2)⊕O(2), O(−1)⊕O, O(−2)⊕O(1).

Our proof of Theorem 1.1 does not involve a classification of 1-Fano
bundles on P3, which to our best knowledge is still unknown. We rather
consider the restriction of E to additional subvarieties in different cohomol-
ogy classes and use the techniques of [13] (positivity of Schur polynomials,
Schwarzenberger conditions, Riemann-Roch combined with vanishing theo-
rems) to compute a manageable list of possible Chern classes of E|P3 (with
the help of the Maple package Schubert [8]). At this point a case by case
analysis of E|P3 finishes the proof.

1.1. Notation

Along this paper G(1, 4) will denote the Grassmann variety parametrizing
lines in the complex projective space of dimension 4, and we will consider
vector bundles E of rank two on G(1, 4). Given an integer j, we will denote
by E(j) the twist of E with the j-th tensor power of the ample generator of
Pic(G(1, 4)).

Given integers i, j such that 0 ≤ i < j ≤ 4, we will denote by Ω(i, j)
the cohomology class of the subscheme of G(1, 4) parameterizing lines con-
tained in a linear subspace Pj ⊂ P4 of dimension j and meeting a linear
subspace Pi ⊂ Pj of dimension i. Since H2(G(1, 4),Z) ' Z〈Ω(2, 4)〉 and
H4(G(1, 4),Z) = Z〈Ω(1, 4)〉 ⊕ Z〈Ω(2, 3)〉 we will denote by e and by (a, b)
the first and second Chern class of E, respectively. That is to say

c1(E) = eΩ(2, 4) and c2(E) = aΩ(1, 4) + bΩ(2, 3). (1)

Let us recall that the only way of embedding P3 in G(1, 4) linearly is as an
element in Ω(0, 4) that from now on will be called a linear P3 ⊂ G(1, 4).

We will always assume, up to twist with a line bundle, that E is normal-
ized, i.e. that e = 0,−1.
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Let X := P(E) be the projectivization of E, that is

P(E) = Proj

(⊕
k≥0

SkE

)
,

with projection π : X → G(1, 4). Denote by H the pullback of the ample
generator of Pic(G(1, 4)) and by L the class of the tautological line bundle
O(1) of X. The anticanonical bundle of X is given by

O(−KX) = O(2L+ (5− e)H).

We will assume that E is Fano, i.e. that −KX is ample. Equivalently, the
Q-twisted bundle E((5− e)/2) is ample.

2. Existence of sections and splitting

Let ` be a line in G(1, 4). By the ampleness of −KX we have that the
possible splitting types of E on ` are

(−2, 2), (−1, 1), (0, 0) if e = 0, and (−2, 1), (−1, 0) if e = −1. (2)

In particular we obtain lower bounds for the set {k ∈ Z|H0(G(1, 4), E(k)) 6= 0}.
Later on we will make use of the following statement:

Lemma 2.1. If H0(G(1, 4), E(−2)) 6= 0 then E splits as O(−2)⊕O(2). The
same is true if the condition is fulfilled by the restriction of E to a general
linear P3 ⊂ G(1, 4).

Proof. Since H0(`, E(−2)|`) = 0 for every line ` on which E has splitting type
different from (−2, 2), the existence of a non-zero global section of E(−2)
implies that (−2, 2) is the splitting type of E on the general line of G(1, 4).
But then semicontinuity, together with (2) above, tells us that this is in fact
the splitting type of E on every line of the Grassmannian. Then E is uniform
and its splitting follows from [5, Théorème 1] or [13, Theorem 4.1].

Note that, by (2) the uniformity follows if we had that the splitting type
of E at a general line is (−2, 2). Then the same proof works if we assume
that H0(P3, E|P3(−2)) 6= 0 for a general P3.

Now we will translate the effectiveness of c2(E(j)) into some numerical
conditions which the integers e, a, b, defined in (1), must satisfy:
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Lemma 2.2. Assume that for some integer j

H0(G(1, 4), E(j − 1)) = 0 and H0(G(1, 4), E(j)) 6= 0. (3)

Then a + j(e + j) ≥ 0 and b + j(e + j) ≥ 0, and E ∼= O(−j) ⊕ O(e + j) if
and only if a+ j(e+ j) = b+ j(e+ j) = 0.
Moreover if condition (3) is fulfilled by the restriction of E to a linear P3 ⊂
G(1, 4) then a+ j(e+ j) ≥ 0, and equality holds if and only if the restriction
of E to such P3 splits as OP3(−j)⊕OP3(e+ j).

Proof. Let σ be a section of E(j) and let Z := {σ = 0} be its zero set. Since
H0(G(1, 4), E(j − 1)) = 0, then Z is either empty or a codimension two
subvariety of G(1, 4) in the cohomology class (a+j(e+j))Ω(1, 4)+(b+j(e+
j))Ω(2, 3). In particular a+j(e+j), b+j(e+j) ≥ 0 and equalities hold if and
only if Z is empty. If Z is empty, then the cokernel Lσ of σ : OG(1,4) → E(j)
is a line bundle and, since extensions of line bundles on G(1, 4) are trivial,
we have an isomorphism

E(j) ∼= OG(1,4) ⊕ Lσ.

Conversely, if E(j) has a direct summand OG(1,4), then the inclusion of this
subbundle into E provides a section of E(j) with empty zero set.
The statement on the restriction is proved in the same way taking into ac-
count that the cohomology class of P3 is Ω(0, 4) and the vanishing of the
intersection product Ω(2, 3)Ω(0, 4) = 0.

The next trivial lemma will be useful later:

Lemma 2.3. Consider a linear P3 ⊂ G(1, 4) such that E|P3 splits as OP3(k)⊕
OP3(r). The pair (k, r) is completely determined by e and a. In particular,
if for every linear P3 ⊂ G(1, 4) the restricion E|P3 is a direct sum of line
bundles, then E is uniform.

Proof. If E|P3
∼= OP3(k)⊕OP3(r), then

k + r = c1(E|P3) = c1(E)Ω(0, 4) = e, kr = c2(E|P3) = c2(E)Ω(0, 4) = a.

Then k and r are the only solutions of the equation x2 − ex + a = 0, hence
they are determined by e and a.
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Corollary 2.4. If H0(P3, E|P3(−1)) 6= 0 and H0(P3, E|P3(−2)) = 0 for the
general P3 ⊂ G(1, 4), then a ≥ e−1 and equality holds if and only if E splits
as a sum of line bundles O(1)⊕O(e− 1).

Proof. The first assertion follows directly from Lemma 2.2. Assume that
a = e − 1. By Lemma 2.2 again, it follows that the restriction of E to
a general P3 splits as OP3(1) ⊕ OP3(e − 1). If this were the case for every
P3, then E would be uniform and we could conclude the splitting of E ([5,
Théorème 1], [13, Theorem 4.1]). Thus we may assume that there exists a
P3 for which H0(P3, E|P3(−2)) 6= 0. Arguing as in Lemma 2.1, we get that
E|P3 splits as OP3(2)⊕OP3(−2), contradicting Lemma 2.3.

In order to actually get the existence of sections of a suitable twist of E
we will apply Le Potier vanishing Theorem as in the following

Lemma 2.5. If j ≥ −2 then h0(G(1, 4), E(j)) ≥ χ(G(1, 4), E(j)). The same
is true if j ≥ −1 for the restriction of E to a linear P3 ⊂ G(1, 4).

Proof. Notice that E is Fano, hence E(3) is ample and applying Le Potier
vanishing Theorem [9, II, Thm. 7.3.5] we get that

χ(E(j)) = h0(G(1, 4), E(j))− h1(G(1, 4), E(j)), for j ≥ −2.

The second part of the statement is analogous.

3. Proof of Theorem 1.1

Step 1: Reduction of the set of possible Chern classes of E
Let us denote m = (5− e)/2. By hypothesis the Q-twist E(m) is ample

and, in particular the restrictions of the Q-bundle E(m) to a P3 in the class
Ω(0, 4) and to a P2 in the class Ω(1, 2) have positive Chern classes (see [4]),
i.e. a + me + m2 > 0 and b + me + m2 > 0. Therefore we get a, b ≥ −6 if
e = 0 and a, b > −6 if e = −1.
By the positivity of the third Schur polynomial (c21 − 2c2, see. [9, 8.3]) of
E(m) against the cycles Ω(0, 4) and Ω(1, 3) we get a ≤ 6, b ≤ 12− a if e = 0
and a ≤ 6, b ≤ 13− a if e = −1.
Now (with the help of the Maple Schubert package) we use the Riemann-
Roch formula to compute χ(E(k)), k ∈ Z, for all possible values left of a
and b, and we exclude those for which the result is not an integer for some k.
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This is the analogue of the Schwarzenberger’s conditions on the projective
space. We are left with the following cases:

e = 0 e = −1
(a, b) (−4,−4) (6, 6)
(a, b) (−4, 12) (−2,−2)
(a, b) (−1,−1) (−2, 7)
(a, b) (−1, 3) (0, 1)
(a, b) (0, 0) (0, 0)

Furthermore, for a = b = 6 the Riemann-Roch formula gives us χ(E(5)) =
−935. On the other hand, Griffiths vanishing Theorem [9, II, Thm. 7.3.1]
provides H i(G(1, 4), E(5)) = 0 for i > 0, a contradiction.

Step 2: Characterizing the case E ∼= O(−2)⊕O(2)
By Lemma 2.1, if H0(P3, E|P3(−2)) 6= 0 for the general P3 in the class

Ω(0, 4) then E ' O(−2) ⊕ O(2), and in particular a = b = −4. Con-
versely, if (a, b) = (−4,−4) then, by Riemann-Roch and Lemma 2.5, we get
H0(G(1, 4), E(−2)) 6= 0 and E ' O(−2)⊕O(2) by Lemma 2.1.

As a consequence, we may assume, in the remaining cases, that

H0(P3, E|P3(−2)) = 0, for the general P3 in Ω(0, 4). (4)

Step 3: The case a 6= 0
In this case Riemann-Roch formula for E|P3 provides:

(e, a, b) χ(E|P3(−1))
(0,−4, 12) 4
(0,−1,−1) 1
(0,−1, 3) 1

(−1,−2,−2) 1
(−1,−2, 7) 1

and, in particular, by Lemma 2.5, H0(P3, E|P3(−1)) 6= 0 for the general linear
P3 ⊂ G(1, 4). Then, using the assumption (4) together with Corollary 2.4,
we obtain that the case (0,−4, 12) is not possible and that E splits in the
rest of the cases. It follows that the only possibilities are, either:

• (e, a, b) = (0,−1,−1) and E ∼= O(−1)⊕O(1), or

• (e, a, b) = (−1,−2,−2) and E ∼= O(−2)⊕O(1).
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Step 4: The case a = 0
Note first that in this case H0(P3, E|P3(−2)) = 0 for every P3 in Ω(0, 4).

In fact, if the restriction of E(−2) to some P3 had sections, then, arguing
as in Lemma 2.1, E|P3 would split as O(−2) ⊕ O(2) and Lemma 2.3 would
imply that a = −4 (recall that a = c2(E|P3)).

We claim that, moreover, H0(P3, E|P3(−1)) = 0 for every P3. Assume that
this is not the case for some P3 and let Z be the set of zeroes of a non-zero
global section σ of E|P3(−1), which is, by the vanishing of H0(P3, E|P3(−2)),
a curve of degree c2(E|P3(−1)). If e = 0, then Z is a line, contradicting the
adjunction formula KZ = (KP3 +c1(E(−1)))|Z = (OP3(−6))|Z . If else e = −1,
let ` be a line meeting Z. The possible splittings of E(−1) on ` are (−3, 0)
or (−2,−1) (see (2)), so σ cannot vanish on any point of `, a contradiction.

Finally the Riemann-Roch formula, together with Lemma 2.5, tells us
that H0(P3, E|P3) 6= 0 for every P3 in Ω(0, 4), hence E|P3 splits and E is
uniform, necessarily of type (0, 0) or (0,−1), by Lemma 2.3 . This allows us
to conclude (using [5, Théorème 1], [13, Theorem 4.1]) that E is isomorphic
either to O⊕2, or to O ⊕O(−1), or to the universal bundle Q. This finishes
the proof.
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