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An extension of the Kratzer-Fues approach to analytical calculation of
the rotation-vibration energy of diatomic molecules is proposed. The eigen

-values from this approach are applied in calculation of the rotational and
rovibrational energies and in evaluation of molecular constants of selected
diatomic molecules, resulting in satisfactory reproduction of experimental
frequencies over a wide range of rotational states. In contrast to our previ-
ous proposition the rotational dependence of vibration energy is taken into
account. An additional set of fitted parameters which include equilibrium
distance and dissociation constant was also employed.
PACS numbers: 33.10.Cs, 33.10.Jz

1. Introduction

The analysis of rotational-vibrational transitions in diatomic molecules is
based on the Schrödinger equation

where q denotes the internuclear separation, m — the reduced mass and U(q)
is the isnternuclear potential energy function. The above equation can be solved
analytically for the harmonic [1, 2] and Morse potential [3] using the parabolic
expansion of the rotational term in (1), as well as for the Kratzer-Fues potential
[4, 5] given in the slightly modified form [6-8] as

*This research was supported by the Committee for Scientiflc Research grant 2 0663 91 01.

(927)



928 M. Molski, J. Konarski

where q0 is an equilibrium distance and D0 is a constant related to the dissociation
energy of a molecule. The potential (2) has been recently intensively studied [6-14],
as it gives exact analytical solutions which permit a straightforward evaluation of
the integrals necessary for investigation of various rovibrational properties, or can
be used in the perturbation treatment of higher-order potential terms. Moreover,
the potential energy function (2) provides the possibility to include the centrifugal
distortion effect [2] occurring in the systems with a rotational degree of freedom
[15], in the most direct and natural manner.

Recently, a simple extension of the Kratzer—Fues approach has been proposed
in which the set of external semi-empirical parameters is introduced leading to the
expansion of the rotational energy of two-atom systems into a continued fraction
[16]. The derived formula has been applied in calculation of the rotational energy
of rigid, semi-rigid and van der Waals type molecules, giving a quite satisfactory
reproduction of molecular spectra.

The main purpose of this paper is to employ the above method in extension
of Kratzer-Fues approach to analytical calculation of rovibrational energy and
corresponding wave function of diatomic molecules. The modifled eigenvalues will
be applied in reproduction of rotational and rovibrational spectra of selected di-
atomic systems. In contrast to our previous proposition the rotational dependence
of vibration energy is taken into account, as well as another set of fitted parameters
including equilibrium distance and dissociation constant has been employed.

2. Me :hod and applications

As was shown in our previous work, the solutions of the Schrödinger equation
(1) for rotation-vibration diatomic systems endowed with internuclear potential (2)
can be easily modified [16], assuming that the dissociation constant D0 depends
on the rotational quantum number J, and has the continued fraction form

where {x, y , z} is a set of semi-empirical parameters. Having substituted D0 —4

D(J) in the original equations, one obtains the modified Kratzer—Fues formulae
for the rovibrational energy and the corresponding wave functions of diatomic
systems

composed of quantities defined in Ref. [16]. In this work we propose to consider
the modifled formula (4), without neglect of the first term describing rotational



Modified Kratzer—Fues Formula ... 929

dependence of the vibration energy, in reproduction of the energy of rotational
transitions (υ = 0) of 12C16O, H3 5Cl,, 40 Αr2 , HF molecules, as well as rovibra-
tional spectra of 13C16O, 12C18O and 13C18O molecules. In order to realize this
purpose the set of parameters {q 0 , D0 , x, y , z...}, including equilibrium distance,
dissociation constant and the additional semi-empirical parameters occurring in
(3), will be evaluated by the fitting procedure and used for the calculation of the
energy of rotational transitions.

The best values of the molecular parameters will be determined by the linear
least squares routine in which the statistical weights, proportional to the inverse
of experimental uncertainties, are taken as equal to one. The fitted parameters
are presented with their standard errors in Table I which reports also standard
deviation σ of the N-parametric fit, and molecular constants calculated from

In the case of the HF molecule the calculated frequencies are compared with those
obtained from the N-parametric Dunham expansion (N = 3, 4, 5):

and the simplified fraction continued formula considered in our previous work [16]:

The results of the calculations are collected in Table H. Moreover, the correlation
matrices for HF molecular parameters are presented in Tables III and IV. For
13C16O, 12 C 13 O and 13C18O molecules the frequencies are calculated from:

(i) The original Kratzer-Fues two-parametric equation (D(J) = D0 ).
(ii) The modifled Kratzer-Fues formula (4) containing at the most two molec-

ular and one semi-empirical parameters {q0 , D0, x}, for all the molecules
considered.

(iii) The Dunham expansion [17] ΕvJ = Σk,l Υkl(υ + 1/2) k J l (J + 1) l , including
the comparable number of fitted parameters.
The parameters {q0, D0, x}, and the Dunham parameters YvJ evaluated by

the fitting procedure and used for the calculation of the energy of rovibrational
transitions (υ = 0 —^ 1) are collected in Table V, which also includes the σ stan-
dard deviation of the fit, as well as molecular constants {ω, B, D} calculated from
{ q0, D0} and the formulae (6a—c). The experimental frequencies are taken after
Refs. [18-21] in the order corresponding to the sequence of the molecules consid-
ered.

3. Discussion

The obtained results indicate that the modified Kratzer-Fues formula (4) for
rovibrational energy of diatomic systems gives the same quality of reproduction

of the energy of rotational transitions of 12C16O and 40 Ar2 molecules as the
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simplified one (8), considered in Ref. [16]. Only in the case of H3 5Cl the accuracy
of calculations is slightly improved due to a small correction connected with the
rotational dependence of the vibrational term occurring in (4). It may be expected
that for highly excited vibrational states the corrections will play an important
role, therefore only for low vibrationally excited molecules (as was suggested in
our previous work [16]) the simplified continued fraction formula may be applied
as an expansion of rotational energy alternative to the Dunham proposal.

Inspection of the data of Table II shows that the rotational spectra of the
HF molecule are better reproduced by the Dunham formula (for N = 4, 5) than
by the continued fraction including the same number of fitted parameters. It is
interesting that the application of the fifth continued fraction parameter leads to
large deterioration of the accuracy of calculations, therefore only the 4-parametric
formula seems to be a physically well-supported equation. However, it is worth
noting that the 4-parametric continued fraction, at the comparable standard devi-
ation of the fit obtained using the 5-parametric Dunham expansion, gives a better
reproduction of the rotational transitions for high rotational states.

In the case of rovibrational transitions the performed calculations indicate
that the modified Kratzer-Fues formula (4), including two molecular and one
semi-empirical parameters {q0, D0, x}, gives very good reproduction of the ob-
served frequencies and molecular constants for the three isotopic species of CO,
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over a wide range of rotational states. Application of the 3rd parameter x im-
proves the accuracy of calculations, σ, by about two orders of magnitude relative
to the equation based on the original Kratzer—Fues formula, and leads to bet-
ter results than those obtained from 3-parametric Dunham expansions. Only the
4-parametric Dunham formula reproduces slightly better rovibrational transitions
than the modified Kratzer-Fues equation does.

It is worth mentioning here that the application of the 2nd and the following
semi-empirical parameters lowers the accuracy of calculations for isotopic species
of CO, therefore only the modified formula containing one additional parameter
x, seems to be a physically well-supported equation.

It is well known that a simple analysis of molecular rovibrational spectra has
been realized in the framework of the potential or the Dunham approach. In the
potential approach, energy levels are obtained by solving the Schrödinger equation
with the interatomic potential expanded in terms of interatomic variables, and the
potential coefficients are obtained either by a fit to the experimental energy levels
or, if available, by a fit to a theoretically calculated potential. In the above method
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the solution of the Schrödinger equation provides wave functions. In the Dunham
approach the rovibrational energy is expanded in terms of vibrational and rota-
tional quantum numbers, and unknown semi-empirical parameters are obtained by
a fit to the experimental energy levels. The disadvantage of the Dunham approach
is that a power series describing rovibrational energy has a poor convergence, and
that Dunham expansion does not provide any information about the wave function
of individual states of a molecule. The modification of the analytic Kratzer—Fues
formula, by including a set of external semi-empirical parameters, appears to be the
third method combining the potential and the Dunham approach, thus permitting
the derivation of analytical eigenvalues and eigenfunctions indispensable in a more
sophisticated analysis of molecular spectra, and furthermore, allowing the calcula-
tion of the matrix elements of quantum-mechanical operators, the Franck-Condon
faction and transition intensities [23], which is not possible within the standard
Dunham approach.

In our previous work [16], we interpreted . the semi-empirical parameter x as
an indicator of molecular susceptibility to rotational dissociation. Inspection of
Tables I and V reveals that parameter x diminishes with the rigidity of molecules,
therefore the above interpretation also holds tue for parameters obtained in the
presented approach.

Abbreviations for Table V:
• Parameter x is dimensionless.
b Parameters calculated from original Kratzer-Fues formula.

• Parameters calculated from modified Kratzer—Fues formula (4).

d Parameters calculated from 3-parametric Dunham expansion
Ev J = ω(υ + 1/2) +- [B - α (υ + 1/2)]J(J +- 1).

e Parameters calculated from 3-parametric Dunham expansion
= ω(υ + - 1/2) + [B - DJ(J + 1)]J(J + 1).

f Parameters calculated from 4-parametric Dunham expansion
= ω(υ + 1/2) + [B - α(υ + 1/2)]J(J + 1) — D[J(J + 1)] 2 .

9 Data obtained in Ref. [21] on the basis of the 15-parametric Dunham expan-
sion and 163 (13C16O) , 95 (12C18O) and 40 ( 13 C 18 O) experimental
frequencies.
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