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Abstract: The objective of this paper is to develop statistical methodology for non-
inferiority hypotheses to censored, exponentially distributed time to event endpoints.
Motivated by a recent clinical trial in depression, we consider a gold standard design
where a test group is compared to an active reference and to a placebo group. The test
problem is formulated in terms of a retention of effect hypothesis. Thus, the proposed
Wald-type test procedure assures that the effect of the test group is better than a
pre-specified proportion ∆ of the treatment effect of the reference group compared to
the placebo group. A sample size allocation rule to achieve optimal power is presented,
which only depends on the pre-specified ∆ and the probabilities for the occurrence of
censoring. In addition, a pretest is presented for either the reference or the test group
to ensure assay sensitivity in the complete test procedure. The actual type I error
and the sample size formula of the proposed tests is explored asymptotically and by
means of a simulation study showing good small sample characteristics. To illustrate
the procedure a randomized, double blind clinical trial in depression is evaluated. An
R-package for implementation of the proposed tests and for sample size determination
accompanies this paper on the author’s web page.

Keywords and phrases: censored data, exponential data, gold standard design, non-
inferiority, optimal allocation, retention of effect.

1. INTRODUCTION

Recently, non-inferiority trials have gained in importance supported by the declaration of
Helsinki [1] and a vigorous discussion on designing and evaluating such trials is ongoing.
For a selective list of fundamental references see Jones et al. [2], Röhmel [3], D’Agostino
et al. [4] and Senn [5]. In active controlled non-inferiority trials without a placebo arm the
assay sensitivity, i.e. the ability of a study to distinguish between effective, less effective,
and ineffective therapies (ICH 2000 [6]), is based on results from historical trials. In this
manner the constancy condition is presumed, i.e. the active control effects in the active
control trial patient population and the historical trial patient population are assumed to be
equal. This assumption is not directly verifiable and its violation could result in statistical
uncontrolled errors. Actually, for the treatment of depression there exists evidence that the
placebo response is substantial (Dworkin [7]) and that it is increasing over time (Walsh [8]).
The mentioned problems of active controlled trials are discussed by Rothmann et al. [9] and
by Temple & Ellenberg [10] with regard to the declaration of Helsinki. They recommend
the inclusion of a concurrent placebo group due to the problems of assay sensitivity if the
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Fig 1. Three-arm study for treatment of depression: Kaplan-Meier curves with marks for censoring times
and fitted exponential survival curves for the endpoint ”time to first response”, test treatment (red), reference
treatment (blue), and placebo (green).

patients are not harmed by deferral of therapy and are fully informed about alternatives.
Such a study design with reference, test treatment, and placebo group, which is called a gold
standard design (Koch and Röhmel [11]), can be used to demonstrate superiority of either
the reference or the test treatment to placebo as well as non-inferiority of the test treatment
compared to the reference.

Pigeot et al. [12] as well as Koch & Röhmel [11] consider the gold standard design with
normal endpoints and homogeneity of the variances. In both papers the non-inferiority test
problem is based on the differences in means. In the case of binary endpoints we refer to
Tang & Tang [13] and Kieser & Friede [14].

As emphasized above, the gold standard design is recommended in clinical studies which
investigate the treatment of depression. In the therapy of depression, achieving remission
is the clinically desired goal (Nierenberg & Wright [15]) whereas remission is defined as
maintaining the Hamilton Rating Scale of Depression (HAM-D) total score at ≤ 7. Kieser &
Friede [14] provide the statistical methodology to examine remission as binary endpoint or
to be more precisely, the question whether the patient does achieve remission after treatment
of acute symptoms or not. However, Yadid et al. [16] point out that in addition to remission
the fast onset of action and the prevention of relapse are important and thus are the major
goals of the present research. The primary endpoint time to first remission incorporates this
issue. The occurrence of remission can be investigated over the complete time interval of
the study. In the present, we analyze a randomized, double blind clinical trial on major
depression where a new antidepressant is compared to a standard antidepressant, known
for having a fast onset of action, and to placebo. The data representing the time to first
remission are displayed in Figure 1. The time points are discretized due to weekly visit
intervals, which are sufficient to monitor the occurrence of remission over the entire study
period. In this paper, we assume that the time points to first remission are i.i.d. right
censored, exponentially distributed in each group. The PP-plots in Figure 2 indicate a quite
good fit of this model. We mention, however, that our method could also be generalized to
different models such as Weibull or Gamma distributed endpoints.
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Fig 2. PP-Plots for fitted exponential model vs. Kaplan-Meier.

As statistical methods for showing non-inferiority have been mainly developed for binary
or normal endpoints, the problem of assessing non-inferiority, where the primary variable
is a survival time, has been far less investigated. Freitag [17] presents a review of existing
approaches for the two-sample case. In contrast, the objective of this paper is to develop
the statistical methodology for planning and assessing non-inferiority in a gold standard
design, which the CPMP [18] recommends for clinical investigation of medicinal products
for the treatment of depression. The endpoints are assumed to be censored, exponentially
distributed. The presented analysis to show non-inferiority is based on a retention of effect
hypothesis and on the resulting Wald-type test, which relies on the asymptotic normality
of the maximum likelihood estimator. Throughout the paper, the resulting test is denoted
as RET (Retention of Effect Test). The hypothesis and the RET are presented in Section
2. In Section 3, a sample size formula to determine the required sample sizes to obtain a
desired power is derived. This can be used to find the optimal allocation of the samples
in terms of maximizing the power and minimizing the total sample size for given type II
error, respectively. As a special case, we investigate the case of homogeneous censoring
probabilities in all groups, where it turns out that the optimal allocation and the estimation
of the asymptotic variance become particularly simple and only depend on ∆, the non-
inferiority margin. In Section 4, we incorporate the retention of effect test in a complete two
step test procedure which ensures assay sensitivity via a pretest for superiority of either the
reference or the test treatment to placebo. Moreover, the matter of sample size adjustment
for the complete test procedure is discussed. A major finding is that for the commonly used
alternative of equal effects for the new and the reference treatment no correction of sample
size is necessary to obtain a power of 1−β for the complete test procedure when the sample
size is determined via the formula of the RET presented in Section 3. In particular, this
result is valid independent of the considered active control effect. In Section 5, the results of a
simulation study to investigate the finite sample behavior of the test decisions are presented.
In Section 6, we revisit the clinical trial in major depression, introduced above, and apply
our procedures. The new treatment turns out to be non-inferior to the reference. Finally,
we comment on our software for analysis and planning of the introduced test procedures in
Section 7 and conclude with a discussion in Section 8. All proof are deferred to a technical
report [19] in order to keep the paper short and concise.
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2. MODEL, HYPOTHESIS AND WALD-TYPE TEST

2.1. Model and Hypothesis

Let Tki for i = 1, . . . , nk be independent, exponentially distributed survival times with
expectation E[Tki] = λk, k = R, T, P , where R, T , and P abbreviates reference, treatment,
and placebo group, respectively, in a three-arm clinical trial. Further, let the corresponding
censoring times Uki be independent distributed according to Gk where Uki is independent
of Tki for i = 1, . . . , nk and k = R, T, P . The observations consist of pairs (Xki, δki), where
Xki = min{Tki, Uki} are the observed survival times and δki = 1{Tki≤Uki}, i = 1, . . . , nk,
k = R, T, P , are the corresponding censoring indicators. Hence, δki = 1 stands for an
uncensored observation. Moreover, none of the groups should asymptotically vanish, i.e. for
k = R, T, P and n = nR + nT + np

nk

n
−→ wk

holds for nR, nT , np → ∞ and some wk ∈ (0, 1). Further, we assume that the probabilities
for an uncensored observation should be positive, i.e.

pk := P (δki = 1) > 0

for k = R, T, P . We emphasize that no assumptions on the censoring distribution Gk are
made and that we only have to incorporate the probabilities pk in the following modeling
process.

Furthermore, we assume that small values for the observations Xki are associated with
higher efficacy of the treatment, e.g. we observe the time which elapses until healing, or
in general until a positive impact occurs. Therefore, small values of λT are desirable. The
hazard ratio, which is in the case of exponentially distributed endpoints just the ratio of
the λ’s, is the usual way of comparing time to event endpoints. Therefore, we consider the
retention of a control effect on the log relative risk scale, which yields the following test
problem

vs.
HN

0 : log λT − log λP ≥ ∆(log λR − log λP )
KN

0 : log λT − log λP < ∆(log λR − log λP ) ,
(1)

with ∆ ∈ [0,∞). The alternative KN
0 means that the test treatment T achieves more than

∆× 100% of the active control effect, where both are compared to placebo and the effect is
measured via the log relative risk (cf. Rothmann et al. [9]). Note that the hypothesis can be
equivalently formulated as

HN
0 :

λT

λP

≥
(

λR

λP

)∆

.

Testing for efficacy of the test treatment over placebo corresponds to a choice of ∆ = 0.
Setting ∆ = 1 or even ∆ > 1 implies testing for superiority of the test over the reference
treatment and substantial superiority, respectively. The main focus in this paper is on the
case ∆ ∈ (0, 1), which corresponds to showing non-inferiority of the test treatment to the
reference and superiority of the test treatment to placebo. To this end, a non-inferiority
margin ∆ has to be determined in advance which represents a clinically irrelevant relative
deviation between treatment and active control. This choice of ∆ highly depends on the
application and a general recommendation is difficult. We do not want to pursue this topic
in detail, however, we refer to Lange & Freitag [20], who give a systematic review of 332
published clinical non-inferiority studies, especially addressing the methods applied to choose
the equivalence margin. They point out that it is mostly recommended to set the margin ∆
at least to 0.5, yielding an effect of the test treatment that is more closely located to the
standard than to placebo. We have evaluated our data example in Section 6 according to
this recommendation. Finally, note that our results are formulated such that they cover also
the assessment of superiority, i.e. where ∆ ≥ 1.
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2.2. Wald-type test

In order to test problem (1), it is convenient to rewrite the hypothesis as

HN
0 : log λT − ∆log λR + (∆ − 1) log λP ≥ 0,

which allows to consider the contrast η = log λT −∆log λR +(∆− 1) log λP . The maximum
likelihood (ML) estimator for η is given by

η̂ = log λ̂T − ∆log λ̂R + (∆ − 1) log λ̂P , (2)

with the MLE for λk

λ̂k =
Xk

δk

, (3)

for k = R, T, P with Xk =
∑nk

i=1 Xki and δk =
∑nk

i=1 δki. Note that the distribution
of (Xk, δk) can be represented as a full exponential family and hence the ML-estimator√

n (η̂ − η) is asymptotically normal with variance (confer Theorem A.1, Mielke et al. [19])

σ2 =
1

wT pT

+
∆2

wR pR

+
(∆ − 1)2

wP pP

. (4)

With p̂k = δk/nk and wk = nk/n we obtain a surprisingly simple estimator for σ2 as

σ̂2 = n

(

1

δT

+
∆2

δR

+
(∆ − 1)2

δP

)

. (5)

Note that only the total number of uncensored observations δk, the total sample size n, and
the non-inferiority margin ∆ are required for computation of σ̂2. In particular, this estimator
is independent of the observed survival times.

Hence, we obtain as the test-statistic

T =
√

n
η̂

σ̂
=

log λ̂T − ∆log λ̂R + (∆ − 1) log λ̂P
√

1
δT

+ ∆2

δR
+ (∆−1)2

δP

, (6)

which is asymptotically standard normally distributed for η = 0, i.e. if log λT − log λP =
∆(log λR − log λP ) in (1). Thus, for a given level of significance α the hypothesis HN

0 will
be rejected and non-inferiority can be claimed if

T < zα , (7)

where zα denotes the α-quantile of the standard normal distribution. In the following, we
will call the test in (7) RET (Retention of Effect Test).

Remark. Alternatively, the retention of effect hypothesis from (1) could be defined in the
ratio of differences in means, i.e. through HN∗

0 : (λP − λT ) ≤ ∆∗(λP − λR), (Hung et
al. [21]). Our methods can be easily extended to a Wald-type test for HN∗

0 . However, a
straight forward calculation shows that in this case the asymptotic variance will depend
on the parameters λk, k = R, T, P . In contrast for the RET in (7) for the hypothesis (1),
the asymptotic variance σ2 in (4) is independent of the parameters λk, k = R, T, P . That
has the advantage that the variance can be estimated unrestricted, see (5), in contrast to
most situations where retention of effect hypothesis are tested by a Wald-type test (Kieser
& Friede [14]).
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Fig 3. Comparison of asymptotic variances for optimal allocation (solid line), balanced allocation (dashed
line), and 2:2:1 allocation (dotted line), p = 0.5.

3. OPTIMAL ALLOCATION AND SAMPLE SIZE DETERMINATION

The ML-estimator η̂ in (2) is asymptotically normally distributed for general η = log λT −
∆log λR+(∆−1) log λP (see Theorem A.1, Mielke et al. [19]). Thus, the asymptotic power of
the Wald-type test can be approximately calculated for specified λk, pk, and nk, k = R, T, P ,
given ∆, and significance level α (see Section 2.2) as

1 − β = P (T ≤ zα) = P

(

T −
√

n η

σ
≤ zα −

√
n η

σ

)

≈ Φ

(

zα −
√

n η

σ

)

, (8)

where Φ denotes the cumulative distribution function of the standard normal distribution,
wk = nk/n in the asymptotic variance σ2 from (4).

In planning a clinical trial, it is a crucial step to determine the required sample size to
achieve a given power 1−β for a specified parameter constellation η in the alternative K0. By
(8) the requirement of achieving at least a given power of 1−β is asymptotically equivalent
to

z1−β ≤ zα −
√

n η

σ
.

This is equivalent to

n ≥ σ2

η2
(zα − z1−β)

2
(9)

for η ∈ K0, i.e. η < 0. Note that each term on the right hand side other than σ2 is fixed in
planning a clinical trial. The variance σ2 depends through wk, k = R, T, P , on the allocation,
which is under control of the investigator [12]. Therefore, it could be chosen optimal in terms
of minimizing σ2 and therewith the required sample size in order to achieve a given power
1 − β.

Substituting wT = 1 − wR − wP yields

σ2 =
1

(1 − wR − wP ) pT

+
∆2

wR pR

+
(1 − ∆)2

wP pP

. (10)
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Fig 4. Optimal allocation for given ∆ under the assumption of homogeneous censoring probabilities.

Minimizing σ2 as a function of wR and wP w.r.t. the constraint wR + wP ≤ 1 gives (see for
details Theorem A.2, Mielke et al. [19])

w∗
R =

∆ p−1
R

p−1
T + ∆ p−1

R + |1 − ∆| p−1
P

and w∗
P =

|1 − ∆| p−1
P

p−1
T + ∆ p−1

R + |1 − ∆| p−1
P

.

Thus, the optimal allocation of the samples is given by

n∗
T : n∗

R : n∗
P = 1 : ∆

√

pT /pR : |1 − ∆|
√

pT /pP , (11)

which yields a minimal total required sample size of

n∗ =

(

1√
pT

+
∆√
pR

+
|1 − ∆|√

pP

)2 (

zα − z1−β

η

)2

. (12)

From (12) we see that the total required sample size is a monotone decreasing function in
each pk, k = T,R, P , and it is minimal in the case of uncensored observations, i.e. pT = pR =
pP = 1. Further, the monotonicity provides a worst case scenario for sample size planning by
means of presuming homogeneous censoring probabilities in the three groups, k = T,R, P ,
and setting the common censoring probability to the smallest value, i.e. p = min{pT , pR, pP }.
In planning a clinical trial, one would expect pT , pR > pP and hence pP = min{pT , pR, pP }
because the reference and the test treatment are expected to be efficient, i.e. λT , λR < λP ,
which implies under identically censoring variables Uk in the groups that reference and test
treatment are less affected by censoring than placebo. Hence, a conservative recommendation
for planning the trial is to assume that all censoring probabilities equal pP . This simplifies
the optimal allocation rule significantly, as we will see below. In particular, it accentuates
that the optimal allocation coincides with the case of normal endpoints by Pigeot et al. [12]
and Schwartz & Denne [22].

The assumption of homogeneous censoring probabilities and ∆ ∈ [0, 1) simplifies the
optimal allocation (11) to

n∗
T : n∗

R : n∗
P = 1 : ∆ : (1 − ∆).
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Fig 5. Reduction in total sample size when optimal allocation is used instead of balanced allocation (left
figure), and instead of 2:2:1 allocation (right figure).

This yields with a minimal asymptotic variance of σ2
opt = 4/p the required sample sizes in

groups T,R, and P as

(n∗
T , n∗

R, n∗
P ) = n∗ (w∗

T , w∗
R, w∗

P ) =
2

p

(

zα − z1−β

η

)2

(1 , ∆ , 1 − ∆) . (13)

Hence, in the case of homogeneous censoring probabilities and ∆ ∈ [0, 1) the first half
of the total samples should always be assigned to the test group, the other half allocated
in a ratio nR : nP = 1 : (1 − ∆)/∆ (see Figure 4) to the reference, and the placebo
group independent of the censoring probability p. Hence, it is also valid for the non-censored
case. The comparison in Figure 3 of the optimal asymptotic variance with the asymptotic
variance, when a balanced and 2 : 2 : 1 allocation, respectively, is used, points out the
capability of reduction of the asymptotic variance by reallocating. The condition (9) yields
that the reduction in the asymptotic variance from (10) is equivalent to the reduction in
required total sample size. This is illustrated in Figure 5, where the reduction for using the
optimal allocation instead of a balanced and 2 : 2 : 1 allocation, respectively, is presented.
For the balanced design a reduction of at least 10% is always possible and even more than
30% for ∆ close to zero or one. The allocation 2 : 2 : 1 is more appropriate for ∆ ∈
[0.5, 1), but a reduction up to 20% is still possible by reallocating to the optimal allocation.
Figure 6 presents the total required sample size for p = 0.5, and different values of ∆ =
0.5, 0.7, 0.8, 0.85 in dependence of the active control effect λP /λR for the alternative λT =
λR, significance level α = 0.05, and a desired power of 1 − β = 0.8.

In the case of homogeneous censoring probabilities and assessing superiority, ∆ ≥ 1, the
optimal allocation from (11) becomes n∗

T : n∗
R : n∗

P = 1 : ∆ : (∆−1). Hence, in contrast to
the case of assessing non-inferiority, ∆ < 1, the first half of the total samples should always
be assigned to the reference and not to the test treatment group, the other half allocated in
a ratio nT : nP = 1 : (∆ − 1) to the test treatment and the placebo group.

4. COMPLETE TEST PROCEDURE

The test problem considered so far is to show non-inferiority of the test treatment to the
reference. The inclusion of a placebo group makes it possible to directly demonstrate the
effectiveness of a therapy and therewith ensures assay sensitivity of the test procedure.
Pigeot et al. [12] carry out a pretest for superiority of the reference treatment to placebo,
which provides internal evidence of assay sensitivity. Though, Koch [23] points out that this
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Fig 6. Total required sample size for p = 0.5 and ∆ = 0.5, 0.7, 0.8, 0.85 in dependence of the active control
effect λP /λR for the alternative λT = λR, significance level α = 0.05, and a desired power of 1 − β = 0.8.

procedure would blame a test treatment that has shown to be superior to placebo and non-
inferior to the reference for the fact that reference could not beat placebo. Therefore, Koch
& Röhmel [11] perform a pretest for superiority of the test treatment to placebo instead. It
is not the objective of this paper to take up this discussion. But we state that in any case
a two-step test procedure must be conducted to establish non-inferiority and effectiveness
of the test treatment, where in a first step a pretest for superiority of either the reference
or the test treatment to placebo is performed, and in a second step the non-inferiority is
investigated. The pretest for superiority of a treatment to placebo coincides with rejecting
the null hypothesis HS

0,j : λj ≥ λP either for the reference treatment (j = R) or for the test
treatment (j = T ). Thus, the overall hypothesis is given by

H0 : HN
0 ∪ HS

0,j = {log λT − log λP ≥ ∆(log λR − log λP )} ∪ {λj ≥ λP } ,

where H0 is rejected if the sub-tests for HN
0 and HS

0,j can be rejected. In order to avoid a

misunderstanding, note that H0 either includes HS
0,R or HS

0,T and not both at once. Due to
the principles of intersection-union-tests, this test decision for H0 does not exceed a level α
if HN

0 and HS
0,j are tested the level α, respectively. Therefore, the power for rejecting H0 is

reduced compared to simple testing HN
0 . However, in section 4.2 it will turn out that this

reduction is negligible for the commonly used alternative λT = λR < λP . Similar results were
obtained by Pigeot et al. [12] and Kieser & Friede [14] for normal and binomial endpoints,
respectively.

4.1. Two-sample Wald-type test for superiority

The ML-estimators ϑ̂j for ϑj := log λj − log λP are obtained as in Section 2.2 by plugging
in the ML-estimators given in (3) for λk, k = R, T, P . Moreover, these estimators can be
shown to be asymptotically normal in the same way as η̂,

√

nj + nP (ϑ̂j − ϑj)
D−→ N (0, σ2

j )
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∆

HS
0,R HS

0,T

λT :λR:λP 0.5 0.7 0.8 0.9 0.5 0.7 0.8 0.9

0.8:1:1.1 15.24 15.04 13.76 11.26 77.11 68.87 59.59 42.32

0.8:1:1.2 26.60 27.85 25.56 19.82 83.50 79.40 72.48 55.41

0.8:1:1.5 51.16 59.88 59.08 49.09 91.18 92.43 90.68 81.13

0.8:1:2 68.94 82.80 85.32 80.38 94.74 97.42 97.68 95.32

0.8:1:3 80.39 94.04 96.74 96.68 96.63 99.17 99.59 99.48

0.8:1:5 86.61 97.88 99.39 99.72 97.59 99.69 99.93 99.97

0.9:1:1.1 29.13 30.91 28.52 22.07 84.56 81.21 74.87 58.20

0.9:1:1.2 49.45 57.56 56.49 46.47 90.78 91.79 89.74 79.48

0.9:1:1.5 74.83 89.13 92.13 90.09 95.74 98.45 98.89 98.06

0.9:1:2 85.35 97.26 99.06 99.45 97.39 99.61 99.89 99.93

0.9:1:3 90.42 99.24 99.91 99.99 98.16 99.88 99.99 100.00

0.9:1:5 92.85 99.71 99.99 100.00 98.54 99.95 100.00 100.00

1.1:1:1.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

λT = λR 96.94 99.99 100.00 100.00 99.21 100.00 100.00 100.00

Table 1

Approximated power of the pretests for HS
0,R

and HS
0,T

in percent for α = 0.05, and a desired power of

1 − β = 0.8 for the RET under optimal allocation. Values less than 95% are bold.

with

σ2
j = (wj + wP )

(

1

wj pj

+
1

wP pP

)

, j = R, T.

Therefore, one rejects HS
0,j at level α, i.e. one concludes superiority of the reference or the

test treatment to placebo, respectively, if
√

nj + nP ϑ̂j/σ̂j ≤ zα holds with

σ̂2
j = (nj + nP )(1/δj + 1/δP ),

and zα the α-quantile of the standard normal distribution.

4.2. Sample size adjustment for the complete test procedure

In Section 3, we derived for the three-sample non-inferiority RET, the optimal sample size
allocation in terms of minimizing the total required sample sizes, and corresponding formulas
for sample size determination. Based on these results, we will now derive the approximated
power 1 − β̃j of the pretests HS

0,T and HS
0,R, respectively, when the sample sizes are de-

termined with (13) to obtain a power of 1 − β for the RET. It will turn out that for the
commonly used alternative λT = λR no correction of the sample size is necessary to obtain
a power of 1−β for the complete test procedure because the power of the pretests is always
larger than 1−β for ∆ ≥ 1/3, which covers the range of practical interest for non-inferiority
tests, cf. Lange & Freitag [20].

We restrict our considerations to homogeneous censoring probabilities, i.e. p = pT = pR =
pP , and ∆ ∈ [0, 1). The power 1 − β̃j of the test decisions for superiority of j ∈ {R, T} to
placebo introduced in the previous Section 4.1 can be approximated by

1 − β̃j ≈ Φ

(

zα −
√

nj + nP

ϑj

σj

)

(14)

with Φ the cumulative distribution function of the standard normal distribution. Substitut-
ing the approximately required optimal sample sizes (n∗

T , n∗
R, n∗

P ) from (13) for the RET to
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obtain a power of 1 − β, which presumes the allocation n∗
T : n∗

R : n∗
P = 1 : ∆ : (1 − ∆), in

(14) yields by straightforward calculations

1 − β̃j ≈ Φ

(

zα +
(∆ − 1) ϑj

|η| bj(∆)

)

(15)

with

bT (∆) = (z1−β − zα)

√

2

(1 − ∆)(2 − ∆)
(16)

and

bR(∆) = (z1−β − zα)

√

2 ∆

1 − ∆
. (17)

As a first result, one observes that the power of the pretests is independent of the censoring
probability p. For the commonly used alternative η < 0 with λT = λR > λP

|η| = ∆ log λR − log λT − (∆ − 1) log λP = (∆ − 1)ϑj

holds for j = T,R, which simplifies (15) to

1 − β̃j ≈ Φ(zα + bj(∆)) .

The case λT = λR. Therefore, under the alternative λT = λR the power of the pretests
is in addition independent of the effect size λP /λR and only depends on ∆ besides α and
β. This allows to estimate the power of the pretests from the power 1− β of the RET as at
least 1 − β, again, for a range of ∆, s.t. 1/3 ≤ ∆ < 1. To this end, observe that bT (∆) and
bR(∆) in (16) and (17),respectively, are always ≥ (z1−β − zα).

In fact, numerical investigations show that the power of the pretest is often even better.
This is illustrated in table 1, which shows for different effect constellations λT : λR : λP

the approximated power of the pretests for HS
0,R and HS

0,T given in (15). The values are
calculated for a significance level of α = 0.05 and a desired power for the RET of 0.8. Under
λT = λR even for a small ∆ of 0.5 the power of both pretests is with 96.94% and 99.21%,
respectively, nearly 1 and increases for increasing ∆. Hence, the power of the complete test
is almost equal to the power 1 − β of the RET, and no adjustment is required to obtain an
overall power of 1 − β.

The case of different effect sizes. The power of the pretests is increasing in the test-
reference effect λT /λR for a fixed reference-placebo effect λP /λR. It can decrease drastically
when the complete trial is planned via the RET and under an alternative λT < λR < λP ,
e.g. for HS

0,R, λT : λR : λP = 0.8 : 1 : 1.1, and ∆ = 0.5 one ends up with a power of
only 15.24%. Therefore, one has to be aware of a possibly significant reduction in power
when planning under an alternative λT < λR < λP . Due to the parameter constellations
λT < λR, this loss in power is a more serious problem for HS

0,R than for HS
0,T , confer Table

1. Moreover, the test for superiority to placebo is more powerful for the test treatment than
for the reference in general and especially also for λT = λR due to the sample allocation
n∗

T : n∗
R : n∗

P = 1 : ∆ : (1 − ∆) used. Hence, in the considered complete test procedure
from a statistical point of view the pretest for HS

0,T is preferred to those for HS
0,R. But we

emphasize again that both pretests have a power of almost 1 and no adjustment of sample
size is required under the commonly used alternative λT = λR.

5. SIMULATIONS

In the following, we present the main results of extensive simulations studies for the actual
type I error of the RET, confer Section 2.2, for the RET sample size formula (13) and for the
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λP /λR

n nT : nR : nP 10 8 5 3 2 1.5 1.2

30 1:1:1 5.69 5.89 5.71 5.71 6.02 5.94 6.17

2:2:1 5.35 5.10 5.31 5.26 4.91 5.02 5.20

2:1:1 4.68 4.44 4.55 4.78 4.64 4.78 4.63

60 1:1:1 5.90 5.67 5.62 5.29 5.21 5.59 5.35

2:2:1 5.23 5.25 4.91 4.56 5.22 5.19 5.26

2:1:1 4.92 4.23 4.79 4.87 4.84 4.32 5.02

120 1:1:1 5.80 5.29 5.47 5.35 5.60 5.42 5.47

2:2:1 4.83 5.00 5.28 4.80 4.88 5.35 4.66

2:1:1 4.76 4.46 4.30 4.94 4.91 4.56 4.73

240 1:1:1 4.97 5.31 5.43 5.22 4.96 5.09 5.30

2:2:1 5.05 5.20 5.03 5.06 4.87 5.11 4.87

2:1:1 5.02 4.77 4.54 5.05 4.79 5.06 4.61

480 1:1:1 5.01 5.68 5.11 5.03 5.01 5.10 5.15

2:2:1 5.13 5.41 5.06 4.86 5.19 5.32 5.07

2:1:1 4.90 4.75 5.15 5.13 4.55 4.94 5.00

960 1:1:1 5.35 5.13 4.98 5.42 5.02 5.22 5.09

2:2:1 4.89 4.77 4.74 5.14 4.87 4.83 4.97

2:1:1 4.61 4.89 4.74 4.63 4.98 5.09 4.64

1440 1:1:1 4.94 5.23 5.08 5.37 4.98 5.25 5.31

2:2:1 4.84 4.95 5.25 5.08 4.83 4.83 4.75

2:1:1 5.03 5.10 5.23 5.27 4.60 4.89 4.63

Table 2

Simulated actual type I error in % for a nominal significance level of α = 0.05, pT = pR = pP = 0.8,
∆ = 0.5, and 10 000 replications. Values larger than 5.5% are bold.

derived power of the pretests presented in Section 4.1. Moreover, the power of the complete
test procedures introduced in the previous section is simulated when the trial is conducted
via the optimally allocated sample size for the RET. It turns out that the large sample
framework presented in this paper yields even for small total sample sizes quite satisfactory
results and that a finite sample adjustment is not necessary, in general.

The following investigations are based on a nominal significance level of α = 0.05. How-
ever, similar results are obtained for a nominal significance level of α = 0.025 (not displayed).

5.1. Type I error

To investigate the finite sample behavior of the RET we simulated the actual type I error for
a nominal significance level α = 0.05, the optimal allocation ratio, allocation ratios of 1:1:1
and 2:2:1, active control effects of λP /λR = 10, 8, 5, 3, 2, 1.5, 1.2, retention of effects ∆ =
0.5, 0.7, and total sample sizes n = 30, 60, 120, 240, 480, 960, 1440. The probabilities for an
uncensored observation in the three groups T,R, and P are assumed to be homogeneous with
pT = pR = pP = 0.8. All parameter constellations were simulated with 10 000 replications.
The results for ∆ = 0.5 are presented in Table 2. The results for ∆ = 0.7 are similar and
omitted due to the marginal gain of insight.

For small total sample sizes (n < 120) the Wald-type test tends to be somewhat anti-
conservative for the balanced design and somewhat conservative for the optimal design (2:1:1
for ∆ = 0.5), whereas the unbalanced 2:2:1 attains the nominal significance level α = 0.05.
However, the magnitudes of these discrepancies are negligible and for total sample sizes
round about 120 and more the nominal significance level of α = 0.05 is attained almost
exactly for all three designs. It is worth to note that these observations for the actual type I
error can be made independently of the underlying active control effect and the choice of ∆.
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Pretest RET Complete test procedure

∆ λT :λR:λP HS
0,R HS

0,T HN
0 HN

0 ∪ HS
0,R HN

0 ∪ HS
0,T

0.5 0.8:1:1.1 14.75 77.53 79.92 11.39 71.60

0.8:1:1.2 26.99 84.03 80.48 21.62 75.95

0.8:1:1.5 52.43 92.55 80.55 41.75 79.53

0.8:1:2 69.65 95.45 80.13 55.26 79.82

0.8:1:3 79.67 96.80 79.06 62.37 78.94

0.9:1:1.1 28.87 84.99 80.45 23.02 76.37

0.9:1:1.2 49.66 91.05 79.92 39.38 78.54

0.9:1:1.5 74.55 96.01 79.64 58.86 79.33

0.9:1:2 85.73 97.65 79.91 68.11 79.81

0.9:1:3 89.56 98.27 78.85 70.25 78.81

1:1:1.1 96.95 99.24 79.41 76.93 79.39

1:1:1.2 97.01 99.32 80.26 77.86 80.24

1:1:1.5 96.99 99.17 79.86 77.60 79.84

1:1:2 96.56 99.31 80.19 77.43 80.19

1:1:3 96.24 99.17 79.78 76.62 79.77

0.7 0.8:1:1.1 14.40 68.80 79.49 11.59 63.15

0.8:1:1.2 27.04 80.48 80.44 21.31 71.84

0.8:1:1.5 60.33 93.24 80.03 47.73 78.42

0.8:1:2 83.64 97.97 79.50 66.19 79.26

0.8:1:3 94.57 99.44 79.76 75.16 79.73

0.9:1:1.1 30.29 81.82 80.34 24.41 72.66

0.9:1:1.2 57.10 91.80 79.67 45.39 77.29

0.9:1:1.5 89.57 98.67 79.64 71.16 79.48

0.9:1:2 97.70 99.78 79.78 77.91 79.75

0.9:1:3 99.45 99.94 80.19 79.74 80.18

1:1:1.1 99.98 100.00 80.05 80.03 80.05

1:1:1.2 100.00 100.00 80.99 80.99 80.99

1:1:1.5 100.00 100.00 79.85 79.85 79.85

1:1:2 99.98 100.00 79.06 79.04 79.06

1:1:3 99.99 100.00 79.96 79.95 79.96

Table 3

Simulated power in %. Desired power of 0.8 for the RET under optimal allocation, significance level
α = 0.05, pT = pR = pP = 0.8, and 10 000 replications. For the complete test procedures values less than

75% are bold.

We summarize that the asymptotic RET yields a test for finite samples, which keeps rather
accurately the nominal significance level α = 0.05 even for small total sample sizes about
120 and all simulated parameter constellations.

5.2. Power

Table 3 presents the simulated power of the pretest for HS
0,R and HS

0,T , respectively, of
the RET and the power of complete test procedure, whereas either a test of superiority of
the reference treatment to placebo or of the test treatment to placebo is performed in the
first step and in the second step the RET. The RET is performed for different parameter
constellations λT : λR : λP in the alternative, and for ∆ = 0.5, 0.7. Beside the commonly
used alternative λT = λR, we considered alternatives with λT < λR, since, as pointed out in
the previous section, these are the critical parameter constellations in planning the complete
test procedure. We considered homogeneous censoring probabilities pT = pR = pP = 0.8
as before and a significance level of α = 0.05. In each case the used sample sizes were
determined according to the optimal allocation (13) to obtain a power of 80% in the RET.
The results are based on 10 000 replications.
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Hypothesis p-value in %

HN
0 , ∆ = 0.5 1.83

HN
0 , ∆ = 0.8 2.51

HN
0 , ∆ = 1 4.42

HS
0,R 33.34

HS
0,T 3.88

Table 4

P-values for the RET and the pretests.

At first, one observes that for all parameter constellations the power of the RET attains
exactly 80%. The simulated power for the pretest coincides with the theoretically computed
one in Table 1. Moreover, the simulations approve the assumption that no sample size
adjustment for the complete test procedure is necessary under the commonly used alternative
λT = λR. In contrast, under alternatives λT < λR the complete test procedure with a pretest
for superiority of the reference to placebo sustains a drastically loss in power, whereas the
complete test procedure with a pretest for superiority of the test treatment to placebo keeps
a power of at least 70% in all cases.

6. ANALYSIS OF A THREE ARM CLINICAL TRIAL IN DEPRESSION

In this section, we revisit the example in treatment of major depression of the introduc-
tion. In this randomized, double blind study a new antidepressant (T) is compared to a
standard antidepressant (R), known for having a fast onset of action, and to placebo (P).
The comparison is based on the analysis of the time to first remission whereas remission
is defined as maintaining the Hamilton Rating Scale of Depression (HAM-D) total score
at ≤ 7 as aforementioned. The data set consists of nT = 262, nR = 267, and nP = 135
pairs of observations, the time to first remission in days, and the censoring indicator with a
fraction of 0.51, 0.46, and 0.41 uncensored observations, respectively. For the ML-estimators
we obtain λ̂T = 67.75, λ̂R = 83.84, and λ̂P = 89.87. Thus, one would guess that the new
antidepressant has the fastest onset of action followed by the reference and by placebo. The
PP-plots in Figure 2 in the introduction indicate a quite good fit of the exponential model.
Note that due to the heavy censoring at the right tail the quality of fit is decreased, of
course.

The resulting p-values for the RET and the pretests are presented in Table 4. If we
presume the commonly used significance level of 5%, the hypothesis of the RET could be
even rejected for ∆ = 1 and hence not only non-inferiority but also superiority of the new
treatment to the standard treatment could be claimed. The pretest with the new treatment
(HS

0,T ) would reject in favor of superiority of new treatment to placebo. In contrast, the

pretest with the reference treatment (HS
0,R) would fail, i.e. it does not reject. This fact

supports the view of Koch & Röhmel [11] to perform the pretest for HS
0,T instead of HS

0,R.
The present sample size allocation is approximately nT : nR : nP ≈ 2 : 2 : 1. Hence, if

we consider ∆ = 0.5, a sample size reduction of roughly 10% would have been possible by
reallocating to the optimal allocation 2 : 1 : 1 (see Figure 5).

7. SOFTWARE

The R source code of the functions for planning and analyzing the test procedures presented
in this paper are available in a package at the author’s web page

http://www.stochastik.math.uni-goettingen.de/RET.zip

This package includes the functions ret and pretest to compute the p-values for the RET
and the pretest, respectively. Moreover, a function ret samplesize is provided to determine
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the required sample sizes to obtain a desired power for the RET. The package also includes
a brief instruction manual for applying these functions.

8. DISCUSSION

In this paper, we have presented a full analysis and planning of three-arm non-inferiority
trials including an active control and a placebo group (gold standard design), where the
observations are randomly right censored as we have assumed it for the depression study.
As a byproduct we obtain also a two-arm study, which in this context also never has been
considered so far. To this end we assumed exponentially distributed endpoints (time to first
remission). Our analysis is based on a Wald-type test (RET) for a retention of control effect
η = log λT /λP −∆log λR/λP , which shows quite good small sample characteristics. Due to
the choice of scale the asymptotic variance σ2 of the ML-estimator η̂ only depends on the
non-inferiority margin ∆, the probabilities of an uncensored observation pk, k = T,R, P , the
sample allocation, and not on the parameters λk, k = T,R, P , again. This makes estimation
of σ2 particularly simple. The probabilities pk, k = T,R, P , completely characterize the
censoring scheme and no further specifications of the censoring variables Uk are necessary.

There are two major findings. First, the optimal allocation of samples for the RET be-
comes particularly simple when the trial is planned under a worst case scenario, i.e. un-
der homogeneous censoring probabilities in all groups with p = min{pT , pR, pP }, and does
not depend on the parameters λT , λR, λP , and on the censoring distribution, again, viz.
n∗

T : n∗
R : n∗

P = 1 : ∆ : (1 − ∆), exactly as for the Wald-type test in a trial with nor-
mal endpoints (cf. Pigeot et al. [12]). Second, independent of the censoring distribution, the
power 1−β of the two-sample pretest for superiority of the test and the reference treatment,
respectively, to placebo is automatically guaranteed, when the three-sample trial is planned
under the commonly used alternative λT = λR < λP with a sample size to keep the power
1−β for RET, provided the non-inferiority margin 1/3 ≤ ∆ < 1. In particular, the power of
the pretest is independent of the considered active control effect λR/λP . Moreover, numeri-
cal investigations show that the power of the pretest is often even better and no sample size
adjustment is necessary to obtain a power of 1−β for the complete test procedure. In addi-
tion, it turns out that from a statistical point of view the pretest for superiority of the test
treatment to placebo is preferred to those of the reference to placebo due to a larger power.
This may be also adorable from a clinical perspective because it allows to reveal the test
treatments efficacy in direct comparison with placebo instead via the indirect assessment by
an additional standard.

The presented approach is based on the asymptotic normality of η̂, and to our knowledge
this is the first paper which shows this for censored observations. This suggests that our
method can be extended to other parametric models such as Weibull or Gamma distributed
endpoints, and as well as to other censoring schemes such as interval censored observations,
as they may occur, e.g. in cancer studies. Certainly, the case of uncensored, exponentially
distributed endpoints is covered by the case homogeneous censoring probabilities with p = 1.
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