
  

  

Abstract— A novel nonlinear state feedback control design is 
presented for discrete-time nonlinear systems and mixed 
performance criteria. The purpose behind this new approach is 
to convert a nonlinear system control design into a convex 
optimization problem involving state dependent linear matrix 
inequality solutions. By solving the inequalities at each time 
step, the optimal control solution is found to satisfy mixed 
performance criteria guaranteeing quadratic optimality with 
inherent stability property in combination with ∞H  or a 
passivity type of disturbance reduction. The effectiveness of the 
proposed technique is demonstrated by simulations involving 
the control of a benchmark mechanical system. 

I. INTRODUCTION 
In this paper, we aim to address nonlinear state feedback 

control design of discrete-time nonlinear control systems 
using the state-dependent Linear Matrix Inequalities (LMI) 
approach. We characterize the solution of the nonlinear 
discrete-time control system with a state dependent LMI, 
which are essentially equivalent to the discrete-time version 
of classical Hamilton-Jacobi Inequalities (HJI) [1]-[3]. As a 
precursor to this approach, few examples of state dependent 
Riccati equation control approach can be found in [4]-[6]. A 
preliminary investigation into the state dependent LMI 
approach to nonlinear systems can be found in [7], [8]. The 
purpose behind this novel approach is to convert a nonlinear 
system control problem into a convex optimization problem 
which is solved by LMI at each time step. The recent 
development in numerical algorithms for solving convex 
optimization provides very efficient means for solving LMI. 
If a solution can be expressed in LMI form, then there exist 
efficient algorithms providing global numerical solutions 
[9]. Therefore if the design LMI are feasible, then state-
dependent LMI control technique provides global optimal 
solutions for nonlinear control systems. Mixed performance 
criteria are used to design the controller in order to 
guarantee quadratic optimality with inherent stability 
property in combination with ∞H  or a passivity type of 
disturbance attenuation.    

In the following section, we introduce the discrete system 
model and the performance index satisfying mixed 
performance criteria. Then, LMI control solution derivation 
is presented, which characterizes the optimal and robust 
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control of nonlinear systems. We further examine the 
properties of this powerful alternative to the HJI technique. 
Extensive simulations have been used to examine the 
effectiveness of the new state dependent LMI control 
technique. Only the inverted pendulum control problem is 
used in this paper as an illustrative example due to space 
limitations.     

The following notation is used in this work: 
nx ℜ∈ denotes n-dimensional real vector with norm 

2/1)( xxx T=  where T)(⋅ indicates transpose. 0A ≥ for a 
symmetric matrix denotes a positive semi-definite matrix. 

2L is the space of infinite sequences of finite dimensional 

vectors with finite energy: ∞<∑∞

=0

2

k kx .  

 

II. SYSTEM MODEL AND PERFORMANCE INDEX 
Consider the input-affine discrete time nonlinear system 

represented by the following difference equation:  
kkkkkkkkkkkk wFuBxAwxFuxBxfx ⋅+⋅+⋅=⋅+⋅+=+ )()()(1

(1) 
where  

n
kx ∈ℜ :  state vector   

m
ku ∈ℜ :  applied input 

q
kw ∈ℜ :  2L  type of disturbance 

kkk FBA ,, : known coefficient matrices of appropriate 
dimensions, which can be functions of kx  

     
    Note that the simplified notation for time varying 
matrices ,k kA B , etc. is used to denote the state dependent 

matrices. The performance output p
kz ℜ∈  is 

kkkkkkkkk wDxCwxDxxCz ⋅+⋅=⋅+⋅= )()(  
(2)                      

where kk DC ,  are,  in general, state dependent coefficient 
matrices of appropriate dimensions.  
 

It is assumed that the state feedback is available and the 
nonlinear state feedback control input is given by 

kkkkk xKxxKu ⋅=⋅= )(  
                               (3) 

    Consider the quadratic energy function 
0>= kk

T
kk xPxV  
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                                 (4) 
for the following difference inequality 

01 ≤⋅+⋅−⋅+++−+ k
T
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T
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T
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T
kkk

T
kkk wwwzzzuRuxQxVV γβα          

(5) 
with 0,0 >> kk RQ  being functions of kx , in general, and 
the model (1)-(3). 
 
    Note that upon summation over k , (5) yields 
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(6) 
By properly specifying the value of the weighing matrices 

kkkk DCRQ ,,, and γβα ,, , mixed performance criteria can 
be used in nonlinear control design, which yields a mixed 
Nonlinear Quadratic Regulator (NLQR) in combination with 

∞H  or passivity performance index. For example, if we take 
0,0,1 <== γβα , (6) yields 
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(7) 
which is mixed suboptimal NLQR- ∞H design [10]. 
 

The possible performance criteria which can be used in 
this framework with different design parameters γβα ,, are 
given in Table.1. Note also that for 0, 0, 0α β γ= = = , it 

follows from Eqn. (7) that
2

0 kk
x∞

=
< ∞∑  and therefore, the 

controlled system is exponentially asymptotically stable [10] 
for all of the criteria given in the table. 
 

Table.1. Various performance criteria in a general framework 
α  β  γ  Performance criteria 
1 0 <0 Suboptimal NLQR- ∞H Design 
0 1 0 NLQR-Passivity Design 
0 1 >0 NLQR-Input Strict Passivity Design 

>0 1 0 NLQR-Output Strict Passivity Design 
>0 1 >0 NLQR-Very Strict Passivity 

 

III. MAIN RESULTS 
The following theorem summarizes the main results of the 
paper: 
 
Theorem—Given the system Eqn.(1), performance output 
Eqn.(2), control equation (3) and performance index (6), if 
there exist matrices 01 >= −

kk PM  and kY  for all 0≥k , such 
that the following state dependent LMI hold: 
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(8) 
where  

T
kkk

T
kk CMDCM βα ⋅+−=Ξ 5.012   

T
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T
kkk BYAM +=Ξ13  

2/
14

T
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2/
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T
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T
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T
kkCM2/1

16 α=Ξ  

( )T
kkk

T
k DDDDI +⋅+−−=Ξ βαγ 5.022  

T
kF=Ξ23  

(9) 
and 

1k kM M+ ≥                                (10) 
 
then inequality (6) is satisfied. The nonlinear feedback gain 
of the controller is given by 

kkk PYK ⋅=  
                                                                      (11) 

□ 
Proof 
By applying system Eqn.(1), performance output Eqn.(2) 
and state feedback input Eqn.(3), the inequality (5) becomes 
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(12) 
Equivalently,  
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where 
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111  
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kkk CDCFPKBA βα ⋅−++=Ψ + 5.0112  

( )T
kkk

T
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T
k DDIDDFPF +⋅−++=Ψ + βγα 5.0122  

(14) 
Therefore, (6) is equivalent to matrix 0≤Ψ , which is 
equivalent to the inequality 
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By adding and subtracting the same term in (15), the 
following inequality results 
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Therefore, subject to kk PP ≤+1 , (16) can be rewritten as 
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 (17) 
By applying Schur complement result [9], we obtain 
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where 

k
T
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T
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By pre-multiplying and post-multiplying the matrix with 
block diagonal matrix { }kk MIMdiag ,, , where 1−= kk PM , 
the following inequality follows 
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(22) 
Finally, by applying Schur complement [9] again, the 
following LMI result is obtained 
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where  
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Hence, if the LMI (8) and (10) hold, inequality (6) is 
satisfied. This concludes the proof of Theorem 1.                     
■ 
 
Remark: For the chosen performance criterion among those 
in Table 1, the LMI (8) and (10) need to be solved at each 
time step and the state feedback gain (11) needs to be 
applied to control system (1) to achieve desired 
performance.  

IV. SIMULATION STUDIES 
    The inverted pendulum on a cart problem is a classical 
control problem used widely as a benchmark for testing 
control algorithms. The pendulum mass is above the pivot 
point which is mounted on a horizontally moving cart. The 
problem is related to rocket or missile guidance, where the 
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actuator is operating at the bottom of a long vehicle. It is 
also used herein to demostrate the effectiveness of the state 
dependent LMI control approach. 
 

 
Fig.1. Inverted pendulum system diagram 

 
    Fig.1. shows the physical representation of the inverted 
pendulum system. A beam attached to the cart can rotate 
freely in the vertical 2-dimensional plane.  The angle of the 
beam with respect to the vertical is denoted by angle θ. The 
cart moves in the 1-dimensional track, with position x. The 
external force F, the control input acting on the cart, is used 
to stabilize this highly nonlinear system while satisfying the 
mixed performance criteria.   
 
    The control objective is to find the state dependent LMI 
control to set cart position x, velocity of the cart x , angle of 
the beam θ and angular velocity θ  all to zero while 
satisfying some chosen optimality criteria.  
 
    Traditional nonlinear control techniques assume that θ  is 
a very small angle, ( ) 1cos ≅θ and ( ) 0sin ≅θ , then linearize 
the system equation around its equlibrium point afterwards. 
Other nonlinear control methods have also been applied 
[10]. However, it can be shown that the control is not 
guaranteed to be globally optimal or stable. In this paper, we 
will not resort to the usual linearization approach. That is 
why a detailed account of the system modeling is provided.  
 
    A model of the inverted pendulum problem can be 
derived using standard techniques [10]:    

2

2
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M m x bx mL mL F
I mL mgL mLx

θ θ θ θ
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(25) 
where 
M      mass of the cart 
m              mass of the pendulum 
b           friction coefficient between cart and ground 
L           length to the pendulum center of mass 

     (length of the pendulum equals L2 )   
2)2(

3
1 LmI = inertia of the pendulum 

F    external force, input ot the system 
 
Denote the following state variables: 

)(,1 kTxx k = , 2, ( )kx x kT= , )(,3 kTx k θ= , 4, ( )kx kTθ=   
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the discrete-time system equation can be written as 

k

k

k

k

k

k

k

k

k

u

b

b

x
x
x
x

a
T
a

a

a

a

a
T

x
x
x
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

+

4

2

,4

,3

,2

,1

44

24

43

23

42

22

1,4

1,3

1,2

1,1

0

00

1

0

0
0
0
0
1

 

(27) 
where 

ku is the thk sampling instant value of the input force F  and  
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    It should be noted that this state space formulation does 
not involve a process of linearization, but a process of state-
dependent parameterization. To avoid the division by zero, 

the term 
k

k

x
x

,3

,3 )sin(
 is substituted for 0,3 =kx  by the limit 
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The following system parameters are assumed 

206.0
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    The following design parameters are chosen to satisfy 
different mixed criteria:   
 
Mixed NLQR- ∞H Design (Predominant NLQR)  

[ ]01.001.001.001.0=C , ]01.0[=D , 4IQ = , 1=R , 
1=α , 0=β , 5−=γ  

Mixed NLQR- ∞H Design (Predominant ∞H ) 
[ ]1111=C , ]1[=D , 401.0 IQ ×= , 01.0=R , 1=α ,  
0=β , 5−=γ   

NLQR-Very Strict Passivity 
[ ]1111=C , ]1[=D , 4Q I= , 1R = , 0.01α = , 1=β , 
0.01γ =   

The following initial conditions are assumed: 
0,4/,0,1 4321 ==== xxxx π  

    All of the above mixed criteria control performance 
results are shown in the Fig.2-6, in comparison with the 
traditional Linear Quadratic Regulator (LQR) technique 
based on linearization [11]. From these figures, we find that 
the novel state dependent LMI control has better 
performance compared with the traditional LQR technique 
based on linearization. Especially, Figs.2, 4 and 5 show that 
the traditional LQR technique loses control of the state 
variables. It should also be noted that predominant NLQR 
and predominant ∞H  control techniques lead to faster 
response times than the NLQR-passivity technique. Fig.6 
shows that the highest magnitude of control is needed by the 
predominant ∞H  control and the lowest control magnitude 
is needed by the linearization based LQR technique. 
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Fig.2. Position trajectory of the inverted pendulum 
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Fig.3. Velocity trajectory of the inverted pendulum 
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Fig.4. Angle “theta” trajectory of the inverted pendulum 
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Fig.5. Angular velocity trajectory of the inverted pendulum 
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Fig.6. Control input 

V. CONCLUSION 
    This paper has presented a novel discrete time nonlinear 
system control approach based on the state dependent LMI 
solutions.  Mixed performance criteria are used to design the 
controller and relative weighting of these criteria can be 
achieved by choosing different coefficient matrices. The 
benchmark inverted pendulum on a cart control problem is 
used as an example to demonstrate its effectiveness. The 
proposed method provides us a powerful alternative to the 
existing nonlinear control approaches.   
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