Alexej P. Pynko

SEQUENTIAL CALCULI FOR MANY-VALUED LOGICS WITH EQUALITY DETERMINANT

Abstract

We propose a general method of constructing sequential calculi with cut elimination property for propositional finitely-valued logics with equality determinant. We then prove the non-algebraizability of the consequence operations of cut-free versions of such sequential calculi.

Key words and phrases: many-valued logic, equality determinant, sequential calculus, cut elimination, algebraizable sequential consequence operation.

One of the main issues concerning many-valued logics is to find their appropriate useful axiomatizations. Since the development of the formalism of many-place sequents in [13] which enabled one to axiomatize arbitrary finitely-valued logics, the main emphasis within the topic has been laid on developing generic approaches dealing with variations of the approach [13]. However, the possibility of using standard Gentzen (two-place) calculi for finitely-valued logics has deserved much less attention, especially, in connection with developing general approaches. Nevertheless, such possibility does exist, at least, provided some restrictions are laid on finitely-valued logics under consideration. In our paper, we restrict our consideration by finitely many-valued logics having what we call here equality determinant.

[^0]Throughout the paper, we follow standard set-theoretical, latticetheoretical, algebraic and logical conventions (which we do not specify here explicitly) as well as the terminology and notations adopted in the end of Section 1 and in Section 4 of [12] (which we do not repeat here), except that propositional (i.e., algebraic) signatures are called (propositional) languages while L-matrices (where L is a language), are referred to as (propositional many-valued) L-logics.

Throughout the paper, unless otherwise specified, fix any language L, the set of all nullary connectives of which is denoted by L_{0}, any $k, l \in\{0,1\}$, any denumerable set Var $:=\{p, q\} \cup\left\{p_{i}, q_{i} \mid i \geq 1\right\}$ of (propositional) variables and any many-valued L-logic $\mathcal{M}=\langle\mathcal{A}, \bar{D}\rangle$ where (just recall it) \mathcal{A} is an L-algebra, which is called the underlying algebra of \mathcal{M} and the elements of which are referred to as (truth) values of \mathcal{M}, and D is a subset of A, the elements of which are referred to as distinguished values of \mathcal{M}.

A 0-(1-) subalgebra of \mathcal{M} is a subalgebra \mathcal{B} of \mathcal{A} such that $B \cap D=\emptyset$ $(B \subseteq D)$. (Clearly, the problem of determining whether \mathcal{M} has either of such subalgebras is decidable whenever L is finite.)

Proposition 1. Let $X \subseteq \operatorname{Seq}^{(1,0)}\left(\subseteq \operatorname{Seq}^{(0,1)}\right)$ and $\Gamma \vdash \Delta \in \operatorname{Cn}_{\mathcal{M}}^{(0,0)}(X)$. Assume \mathcal{M} has a 0-(1-) subalgebra. Then, $\Gamma \vdash \Delta \in \operatorname{Seq}^{(1,0)}\left(\in \operatorname{Seq}^{(0,1)}\right)$.

Proof: By contradiction. Suppose that $\Gamma \vdash \Delta \notin \operatorname{Seq}^{(1,0)}\left(\notin \operatorname{Seq}^{(0,1)}\right)$. Then, the sequence $\Gamma(\Delta)$ is empty. Consider any $0-(1-)$ subalgebra \mathcal{B} of \mathcal{M} and any $h \in \operatorname{hom}\left(\mathcal{F} m_{L}, \mathcal{B}\right)$. Then, $\Theta \models_{\mathcal{M}}^{h} \Xi$ for each $\Theta \vdash \Xi \in X$, since the sequence $\Theta(\Xi)$ is not empty. However, $\Gamma \not{\neq \mathcal{M}_{\mathcal{M}}^{h} \Delta \text {. This contradiction }}^{\prime}$ shows that $\Gamma \vdash \Delta \in \operatorname{Seq}^{(1,0)}\left(\in \operatorname{Seq}^{(0,1)}\right)$.

In particular, this means that $\operatorname{Cn}_{\mathcal{M}}^{(0,0)}(\emptyset) \subseteq \operatorname{Seq}_{L}^{(1,0)}\left(\mathrm{Cn}_{\mathcal{M}}^{(0,0)}(\emptyset) \subseteq\right.$ $\operatorname{Seq}_{L}^{(0,1)}$) whenever \mathcal{M} has a $0-(1-)$ subalgebra. This justifies the following restriction of the standard sequential language $\operatorname{Seq}_{L}^{(0,0)}$ by sequents of rank (k, l) adopted in the present paper. From now on, we assume that $k=0(l=0)$ whenever \mathcal{M} has no $0-(1-)$ subalgebra.

In addition, from now on, we suppose that $|A|>1$ and \mathcal{M} has an equality determinant, that is, an arbitrary finite $\Im(p) \subseteq F m_{L}$ such that $p \in \Im, \Im(p) \cap \Im(q)=\emptyset$ and, for all $a, b \in A, a=b$ whenever, for each $\iota \in \Im$, $\iota^{\mathcal{A}}(a) \in D \Leftrightarrow \iota^{\mathcal{A}}(b) \in D$. The finiteness of \Im implies the finiteness of A, whereas $|A|>1$ implies $\emptyset \neq D \neq A$.

Let $X \subseteq F m_{L}$. Put $\Im(X):=\{\iota(\phi) \mid \iota \in \Im, \phi \in X\}$. An L-sequent $\Gamma \vdash \Delta$ is called X-simple provided $\Gamma, \Delta \in X^{*}$ and the sequence (Γ, Δ) has no repetitions.

By an (\Im, L)-type we mean any expression of the form $\iota(F)$, where $\iota \in \Im$ and $F \in L \backslash L_{0}$. It is said to be \Im-complex provided $\iota\left(F\left(p_{1}, \ldots, p_{n}\right)\right) \notin$ $\Im($ Var $)$, where n is the arity of F.

By an L-sequential \Im-table of $\operatorname{rank}(k, l)$ for \mathcal{M} we mean any pair of the form $\mathcal{T}=\left\langle\lambda_{\mathcal{T}}, \rho_{\mathcal{T}}\right\rangle$, where $\lambda_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$ are mappings from the set of all \Im-complex (\Im, L)-types to the set of all finite sets of L-sequents of rank $(0,0)$ such that, for each \Im-complex (\Im, L)-type $\iota(F)$, where F is n ary, $\lambda_{\mathcal{T}}(\iota(F))$ and $\rho_{\mathcal{T}}(\iota(F))$ consist of $\Im\left(\left\{p_{1}, \ldots, p_{n}\right\}\right)$-simple L-sequents of ranks $(k, 0)$ and $(0, l)$, respectively, such that

$$
\begin{align*}
\mathrm{Cn}_{\mathcal{M}}^{(k, 0)}\left(\iota\left(F\left(p_{1}, \ldots, p_{n}\right)\right) \vdash\right) & =\operatorname{Cn}_{\mathcal{M}}^{(k, 0)}\left(\lambda_{\mathcal{T}}(\iota(F))\right) \tag{1}\\
\operatorname{Cn}_{\mathcal{M}}^{(0, l)}\left(\vdash \iota\left(F\left(p_{1}, \ldots, p_{n}\right)\right)\right) & =\operatorname{Cn}_{\mathcal{M}}^{(0, l)}\left(\rho_{\mathcal{T}}(\iota(F))\right) \tag{2}
\end{align*}
$$

Theorem 1. There is an L-sequential \Im-table of $\operatorname{rank}(k, l)$ for \mathcal{M}.
Proof: Consider any $F \in L$ of arity $n \geq 1$ and any $\iota \in \Im$ such that the (\Im, L)-type $\iota(F)$ is \Im-complex. For every $a \in A$, set $\Im_{a}^{+}:=\{\mu \in$ $\left.\Im \mid \mu^{\mathcal{A}}(a) \in D\right\}$ and $\Im_{a}^{-}:=\left\{\mu \in \Im \mid \mu^{\mathcal{A}}(a) \notin D\right\}$. Choose arbitrary enumerations Θ_{a}^{+}and Θ_{a}^{-}of the sets \Im_{a}^{+}and \Im_{a}^{-}, respectively. Since \Im is an equality determinant for \mathcal{M} and $\Im_{a}^{+} \cup \Im_{a}^{-}=\Im$ for all $a \in A$, we have

$$
\begin{equation*}
\forall a, b \in A: a=b \Leftrightarrow \forall \mu \in \Im_{a}^{+}: \mu^{\mathcal{A}}(b) \in D \text { and } \forall \mu \in \Im_{a}^{-}: \mu^{\mathcal{A}}(b) \notin D \tag{3}
\end{equation*}
$$

Using (3), Proposition 1, the finiteness of A, the fact that $\Im_{a}^{+} \cap \Im_{a}^{-}=\emptyset$ for all $a \in A$ and the fact that $\Im(p) \cap \Im(q)=\emptyset$, it is easy to check that

$$
\begin{aligned}
\lambda_{\mathcal{T}}(\iota(F)):= & \left\{\Theta_{a_{1}}^{+}\left(p_{1}\right), \ldots, \Theta_{a_{n}}^{+}\left(p_{n}\right) \vdash \Theta_{a_{1}}^{-}\left(p_{1}\right), \ldots, \Theta_{a_{n}}^{-}\left(p_{n}\right) \mid\right. \\
& \left.a_{1}, \ldots, a_{n} \in A, \iota^{\mathcal{A}}\left(F^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right) \in D\right\} \\
\rho_{\mathcal{T}}(\iota(F)):= & \left\{\Theta_{a_{1}}^{+}\left(p_{1}\right), \ldots, \Theta_{a_{n}}^{+}\left(p_{n}\right) \vdash \Theta_{a_{1}}^{-}\left(p_{1}\right), \ldots, \Theta_{a_{n}}^{-}\left(p_{n}\right) \mid\right. \\
& \left.a_{1}, \ldots, a_{n} \in A, \iota^{\mathcal{A}}\left(F^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right) \notin D\right\}
\end{aligned}
$$

are finite sets of $\Im\left(\left\{p_{1}, \ldots, p_{n}\right\}\right)$-simple L-sequents of ranks $(k, 0)$ and $(0, l)$, respectively, such that (1) and (2) hold. Thus, we get an L-sequential $\Im-$ table \mathcal{T} of $\operatorname{rank}(k, l)$ for \mathcal{M}.

Remark that the proof of Theorem 1 is constructive and provides an effective method of constructing an L-sequential \Im-table of $\operatorname{rank}(k, l)$ for \mathcal{M} whenever L is finite.

From now on, we suppose that \mathcal{T} is an arbitrary L-sequential \Im-table of $\operatorname{rank}(k, l)$ for \mathcal{M}.

Definition 1. $\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$ is the sequential L-calculus of $\operatorname{rank}(k, l)$ consisting of the following axioms and rules:
(i) all axioms of the form $\Gamma, \phi, \Theta \vdash \Delta, \phi, \Xi$, where $\Gamma, \Delta, \Theta, \Xi \in \Im(\operatorname{Var} \cup$ $\left.L_{0}\right)^{*}$ and $\phi \in \Im(\operatorname{Var}) ;$
(ii) all axioms of the form $\Gamma \vdash \Delta$, where $\Gamma, \Delta \in \Im\left(\operatorname{Var} \cup L_{0}\right)^{*}$, such that there are an \Im-simple $\Theta \vdash \Xi \in \mathrm{Cn}_{\mathcal{M}}^{(k, l)}(\emptyset)$ and a $v \in \operatorname{Var}$ such that $\Theta[p / v](\Xi[p / v])$ is a subsequence of $\Gamma(\Delta)$;
(iii) for each $c \in L_{0}$ and every $\iota \in \Im$ such that $\iota^{\mathcal{A}}\left(c^{\mathcal{A}}\right) \notin D$, all axioms of the form $\Gamma, \iota(c), \Theta \vdash \Delta$, where $\Gamma, \Theta, \Delta \in \Im\left(\operatorname{Var} \cup L_{0}\right)^{*}$ and $|\Delta| \geq l ;$
(iv) for each $c \in L_{0}$ and every $\iota \in \Im$ such that $\iota^{\mathcal{A}}\left(c^{\mathcal{A}}\right) \in D$, all axioms of the form $\Gamma \vdash \Delta, \iota(c), \Xi$, where $\Gamma, \Delta, \Xi \in \Im\left(\operatorname{Var} \cup L_{0}\right)^{*}$ and $|\Gamma| \geq k$;
(v) for each \Im-complex (\Im, L)-type $\iota(F)$, where F is n-ary, all rules of the form

$$
\frac{\left\{\Gamma,\left(\Gamma^{\prime}\left[p_{i} / \varphi_{i}\right]_{1 \leq i \leq n}\right), \Theta \vdash \Delta,\left(\Delta^{\prime}\left[p_{i} / \varphi_{i}\right]_{1 \leq i \leq n}\right) \mid \Gamma^{\prime} \vdash \Delta^{\prime} \in \lambda_{\mathcal{T}}(\iota(F))\right\}}{\Gamma, \iota\left(F\left(\varphi_{1}, \ldots, \varphi_{n}\right)\right), \Theta \vdash \Delta}
$$

where $\varphi_{1}, \ldots, \varphi_{n} \in F m_{L}, \Gamma, \Delta \in F m_{L}^{*}, \Theta \in \Im\left(\operatorname{Var} \cup L_{0}\right)^{*}$ and $|\Delta| \geq l$, and of the form

$$
\frac{\left\{\Gamma,\left(\Gamma^{\prime}\left[p_{i} / \varphi_{i}\right]_{1 \leq i \leq n}\right) \vdash \Delta,\left(\Delta^{\prime}\left[p_{i} / \varphi_{i}\right]_{1 \leq i \leq n}\right), \Xi \mid \Gamma^{\prime} \vdash \Delta^{\prime} \in \rho_{\mathcal{T}}(\iota(F))\right\}}{\Gamma \vdash \Delta, \iota\left(F\left(\varphi_{1}, \ldots, \varphi_{n}\right)\right), \Xi}
$$

where $\varphi_{1}, \ldots, \varphi_{n} \in F m_{L}, \Gamma, \Delta \in F m_{L}^{*}, \Xi \in \Im\left(\operatorname{Var} \cup L_{0}\right)^{*}$ and $|\Gamma| \geq k$. By $\widehat{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}\left(\widetilde{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}\right)$ denote the sequential L-calculus of $\operatorname{rank}(k, l)$ obtained from $\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$ by adding all sequential L-rules of rank (k, l) which are instances of Contraction (Cut, respectively), Enlargement and Exchange.
THEOREM 2. $\operatorname{Cn}_{\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}(\emptyset)=\operatorname{Cn}_{\mathcal{M}}^{(k, l)}(\emptyset)$.

Proof: Clearly, every rule in $\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$ is satisfied in $\mathrm{Cn}_{\mathcal{M}}^{(k, l)}$. Therefore, by induction on the length of $\mathcal{S}_{\mathcal{M}, \mathcal{T}^{-}}^{(k, l)}$-derivations from \emptyset, one can easily check that $\operatorname{Cn}_{\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}(\emptyset) \subseteq \operatorname{Cn}_{\mathcal{M}}^{(k, l)}(\emptyset)$. The converse inclusion is proved by induction on the degree $\partial(\Gamma \vdash \Delta)$ of an arbitrary $\Gamma \vdash \Delta \in \mathrm{Cn}_{\mathcal{M}}^{(k, l)}(\emptyset)$ which is defined as follows. First, by induction on the length of L-formulas, define a mapping $\partial_{|\Im|}: F m_{L} \rightarrow \omega$ setting, for each $\varphi \in \operatorname{Var} \cup L_{0}, \partial_{|\Im|}(\varphi):=0$ and, for each $F \in L$ of arity $n \geq 1$ and all $\psi_{1}, \ldots, \psi_{n} \in F m_{L}, \partial_{|\Im|}\left(F\left(\psi_{1}, \ldots, \psi_{n}\right)\right):=$ $1+|\Im| \cdot \sum_{i=1}^{n} \partial_{|\Im|}\left(\psi_{i}\right)$. (Remark that $|\Im| \geq 1$, since $p \in \Im$. Therefore, for every $\varphi \in F m_{L}, \partial_{|\Im|}(\varphi)=0 \Leftrightarrow \varphi \in \operatorname{Var} \cup L_{0}$.) Next, we define a mapping $\partial^{\Im}: F m_{L} \rightarrow \omega$ putting $\partial^{\Im}(\varphi):=\min \left\{\partial_{|\Im|}(\psi) \mid \psi \in F m_{L}, \varphi=\iota(\psi), \iota \in \Im\right\}$ for all $\varphi \in F m_{L}$. (Since $p \in \Im$, the minimum is taken over a non-empty set of natural numbers, and so $\partial^{\Im}(\varphi)$ is defined correctly. It is easy to see that $\partial^{\Im}(\varphi)=0 \Leftrightarrow \varphi \in \Im\left(\operatorname{Var} \cup L_{0}\right)$.) Finally, define a mapping $\partial: \operatorname{Seq}_{L}^{(k, l)} \rightarrow \omega$ setting $\partial\left(\phi_{1}, \ldots, \phi_{m} \vdash \psi_{1}, \ldots, \psi_{n}\right):=\sum_{1 \leq i \leq m} \partial^{\Im}\left(\phi_{i}\right)+\sum_{1 \leq j \leq n} \partial^{\Im}\left(\psi_{j}\right)$ for all $\phi_{1}, \ldots, \phi_{m} \vdash \psi_{1}, \ldots, \psi_{n} \in \operatorname{Seq}_{L}^{(k, l)}$.

Assume $\partial(\Gamma \vdash \Delta)=0$. Consider the following 4 cases:

1. Γ and Δ have a common L-formula in $\Im(\operatorname{Var})$.

Then, by Definition $1(\mathrm{i}), \Gamma \vdash \Delta \in \mathrm{Cn}_{\mathcal{S}_{\mathcal{M}, \tau}^{(k, l)}}(\emptyset)$.
2. Γ contains an L-formula of the form $\iota(c)$, where $c \in L_{0}, \iota \in \Im$ and $\iota^{\mathcal{A}}\left(c^{\mathcal{A}}\right) \notin D$.
Then, by Definition 1 (iii), $\Gamma \vdash \Delta \in \operatorname{Cn}_{\mathcal{S}_{\mathcal{M}, T}^{(k, l)}}(\emptyset)$.
3. Δ contains an L-formula of the form $\iota(c)$, where $c \in L_{0}, \iota \in \Im$ and $\iota^{\mathcal{A}}\left(c^{\mathcal{A}}\right) \in D$.
Then, by Definition 1 (iv), $\Gamma \vdash \Delta \in \mathrm{Cn}_{\mathcal{S}_{\mathcal{M}, \mathcal{I}}^{(k, l)}}(\emptyset)$.
4. Neither 1 nor 2 nor 3 holds.

For each $v \in \operatorname{Var}$, by induction on the length of an arbitrary $\Theta \in$ $\Im\left(\operatorname{Var} \cup L_{0}\right)^{*}$ define $\Theta \downarrow v \in \Im(v)^{*}$ putting $\emptyset \downarrow v:=\emptyset$ and

$$
\langle\Xi, \xi\rangle \downarrow v:= \begin{cases}\langle\Xi \downarrow v, \xi\rangle & \text { if } \xi \in \Im(v) \text { and } \xi \notin \Xi \downarrow v, \\ \Xi \downarrow v & \text { otherwise }\end{cases}
$$

where $\xi \in \Im\left(\operatorname{Var} \cup L_{0}\right)$ and $\Xi \in \Im\left(\operatorname{Var} \cup L_{0}\right)^{*}$. By contradiction prove that there is some $v \in \operatorname{Var}$ such that $(\Gamma \downarrow v) \vdash(\Delta \downarrow v) \in \operatorname{Cn}_{\mathcal{M}}^{(0,0)}(\emptyset)$. Suppose that, for all $v \in \operatorname{Var}$, there is some $h_{v} \in \operatorname{hom}\left(\mathcal{F} m_{L}, \mathcal{A}\right)$ such that $\Gamma \downarrow v \not \models_{\mathcal{M}}^{h_{v}} \Delta \downarrow v$. Define an $h \in \operatorname{hom}\left(\mathcal{F} m_{L}, \mathcal{A}\right)$ setting $h v:=h_{v} v$
for all $v \in \operatorname{Var}$. Then, $\Gamma \not \vDash_{\mathcal{M}}^{h} \Delta$. This contradicts the assumption $\Gamma \vdash \Delta \in \operatorname{Cn}_{\mathcal{M}}^{(k, l)}(\emptyset)$. Thus, there is some $v \in \operatorname{Var}$ such that $(\Gamma \downarrow v) \vdash$ $(\Delta \downarrow v) \in \operatorname{Cn}_{\mathcal{M}}^{(0,0)}(\emptyset)$. Hence, $\Theta \vdash \Xi:=(\Gamma \downarrow v)[v / p] \vdash(\Delta \downarrow v)[v / p] \in$ $\mathrm{Cn}_{\mathcal{M}}^{(0,0)}(\emptyset)$. Applying Proposition 1 with $X=\emptyset$, we conclude that $\Theta \vdash \Xi \in \operatorname{Seq}^{(k, l)}$, and so $\Theta \vdash \Xi \in \operatorname{Cn}_{\mathcal{M}}^{(k, l)}(\emptyset)$. Moreover, $\Theta \vdash \Xi$ is \Im-simple. Finally, $\Theta[p / v]=\Gamma \downarrow v(\Xi[p / v]=\Delta \downarrow v)$ is a subsequence of $\Gamma(\Delta)$. Then, by Definition $1(\mathrm{ii}), \Gamma \vdash \Delta \in \mathrm{Cn}_{\mathcal{S}_{\mathcal{M}, T}^{(k, l)}}(\emptyset)$.
Now assume that $\partial(\Gamma \vdash \Delta)>0$. Then, there is some $\xi \in F m_{L}$ belonging to either Γ or Δ such that $\partial^{\Im}(\xi)>0$. First, suppose that $\xi \in \Gamma$. Then, $\Gamma=(\Theta, \varphi, \Xi)$, where $\Theta \in F m_{L}^{*}, \Xi \in \Im\left(\operatorname{Var} \cup L_{0}\right)^{*}, \varphi \in$ $F m_{L}$ and $\partial^{\Im}(\varphi)>0$. By definition of ∂^{\Im}, there are some $\phi \in F m_{L}$ and $\iota \in \Im$ such that $\varphi=\iota(\phi)$ and $\partial^{\Im}(\varphi)=\partial_{|\Im|}(\phi)$. Then, $\partial_{|\Im|}(\phi)>$ 0 , and so $\phi=F\left(\psi_{1}, \ldots, \psi_{n}\right)$, where $F \in L, n \geq 1$ is the arity of F and $\psi_{1}, \ldots, \psi_{n} \in F m_{L}$. By contradiction prove that $\iota\left(F\left(p_{1}, \ldots, p_{n}\right)\right) \notin$ $\Im(\operatorname{Var})$. Suppose that $\iota\left(F\left(p_{1}, \ldots, p_{n}\right)\right) \in \Im(\operatorname{Var})$. Then, $n=1$. In that case $\iota(F(p)) \in \Im, \phi=F\left(\psi_{1}\right)$ and $\varphi=\iota\left(F\left(\psi_{1}\right)\right)$. Hence, $\partial^{\Im}(\varphi) \leq \partial_{|\Im|}\left(\psi_{1}\right)<$ $\partial_{|\Im|}(\phi)=\partial^{\Im}(\varphi)$. This contradiction shows that $\iota\left(F\left(p_{1}, \ldots, p_{n}\right)\right) \notin \Im(\operatorname{Var})$. Hence, the (\Im, L)-type $\iota(F)$ is \Im-complex. Take any $\Gamma^{\prime} \vdash \Delta^{\prime} \in \lambda_{\mathcal{T}}(\iota(F))$. By (1), we have $\Theta,\left(\Gamma^{\prime}\left[p_{i} / \psi_{i}\right]_{1 \leq i \leq n}\right), \Xi \vdash \Delta,\left(\Delta^{\prime}\left[p_{i} / \psi_{i}\right]_{1 \leq i \leq n}\right) \in \mathrm{Cn}_{\mathcal{M}}^{(k, l)}(\emptyset)$. Moreover,

$$
\begin{aligned}
\partial\left(\Theta,\left(\Gamma^{\prime}\left[p_{i} / \psi_{i}\right]_{1 \leq i \leq n}\right), \Xi \vdash \Delta,\left(\Delta^{\prime}\left[p_{i} / \psi_{i}\right]_{1 \leq i \leq n}\right)\right) & = \\
\partial(\Theta, \Xi \vdash \Delta)+\partial\left(\left(\Gamma^{\prime} \vdash \Delta^{\prime}\right)\left[p_{i} / \psi_{i}\right]_{1 \leq i \leq n}\right) & \leq \\
\partial(\Theta, \Xi \vdash \Delta)+\sum_{\iota \in \Im} \sum_{i=1}^{n} \partial^{\Im}\left(\iota\left(\psi_{i}\right)\right) & \leq \\
\partial(\Theta, \Xi \vdash \Delta)+|\Im| \cdot \sum_{i=1}^{n} \partial_{|\Im|}\left(\psi_{i}\right) & < \\
\partial(\Theta, \Xi \vdash \Delta)+\partial_{|\Im|}(\phi) & = \\
\partial(\Theta, \Xi \vdash \Delta)+\partial^{\Im}(\varphi) & =\partial(\Gamma \vdash \Delta) .
\end{aligned}
$$

By the induction hypothesis, $\Theta,\left(\Gamma^{\prime}\left[p_{i} / \psi_{i}\right]_{1 \leq i \leq n}\right), \Xi \vdash \Delta,\left(\Delta^{\prime}\left[p_{i} / \psi_{i}\right]_{1 \leq i \leq n}\right) \in$ $\operatorname{Cn}_{\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}(\emptyset)$ for all $\Gamma^{\prime} \vdash \Delta^{\prime} \in \lambda_{\mathcal{T}}(\iota(F))$. By Definition $1(\mathrm{v})$, this yields $\Gamma \vdash \Delta \in \mathrm{Cn}_{\mathcal{S}_{\mathcal{M}, \tau}^{(k, l)}}(\emptyset)$. The case $\xi \in \Delta$ is analyzed in a similar way but with using (2).

Remark that the proof of Theorem 2 generalizing the proof of Theorem 3.2 of [10], which in its turn goes back to [9] and which has been used in [12], is constructive and, provided L is finite, gives an effective procedure which uses a given \mathcal{T} and enables us to determine the derivability of sequents in $\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$ and (in case of the derivability) to search a derivation.

By Proposition 4.3 of [12] and Theorem 2, we get
Corollary 1. Structural rules (including Contraction) are admissible in $\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$, and so $\mathrm{Cn}_{\widehat{\mathcal{S}}_{(\mathcal{M}, \mathcal{T}}^{(k, l)}}(\emptyset)=\mathrm{Cn}_{\widehat{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}(\emptyset)=\mathrm{Cn}_{\widetilde{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}(\emptyset)$. In particular, Cut is admissible in $\widehat{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$ and is eliminable from $\widetilde{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$.

It is easy to check that the sequential consequence $\mathrm{Cn}_{\widetilde{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}$ is enlargable in the sense of p. 78 of [12]. Therefore, by Theorem 4.2 and Proposition 4.3 of [12], taking the finitarity of $\mathrm{C}_{\widetilde{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}$ (see p. 77 of [12]) and $\mathrm{Cn}_{\mathcal{M}}^{(k, l)}$ (see p. 79 of [12]) into account, Theorem 2 and Corollary 1 yield

Corollary 2. $\mathrm{Cn}_{\widetilde{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}=\mathrm{Cn}_{\mathcal{M}}^{(k, l)}$.
Since $\emptyset \neq D \neq A,\{\vdash ; p \vdash ; \vdash p\} \cap \operatorname{Cn}_{\mathcal{M}}^{(k, l)}(\emptyset)=\emptyset$. Therefore, $\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$ and $\widehat{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$ consist of connective-introducing rules (see Subsection 3.6 of [11]) and some structural rules except for Cut. Then, by Theorem 3.30 of [11], we have

Proposition 2. Neither $\mathrm{Cn}_{\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}$ nor $\mathrm{Cn}_{\widehat{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}$ is algebraizable.
Moreover, by Lemma 3.31 of [11], the instance $\frac{p \vdash q, p_{1} \quad p_{1}, p \vdash q}{p \vdash q}$ of Cut is derivable neither in $\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$ nor in $\widehat{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}$. Hence, we get

Proposition 3. $\mathrm{Cn}_{\widehat{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}} \neq \mathrm{Cn}_{\widetilde{\mathcal{S}}_{\mathcal{M}, \mathcal{T}}^{(k, l)}} \neq \mathrm{Cn}_{\mathcal{S}_{\mathcal{M}, \mathcal{T}}^{(k, l)}}$.
Clearly, every functionally-complete finitely-valued logic having both distinguished and non-distinguished values (in particular, every finitelyvalued logic of Post) has an equality determinant. (Notice that such a logic has neither 0 - nor 1-subalgebras, and so $k=l=0$.) Let us mention more denumerable classes of finitely-valued logics having an equality determinant.

Example 1. (Two-valued logics) Let $A:=\{\mathrm{f}, \mathrm{t}\}$, where f and t are different truth values, and $D:=\{\mathrm{t}\}$. Then, $\Im:=\{p\}$ is an equality determinant for \mathcal{M}.

Example 1 covers the classical logic and its fragments.
Example 2. (Three- and four-valued logics with constructive negation) Suppose that L contains a unary connective \neg treated as constructive negation. Let $\{\mathrm{f}, \mathrm{t}\} \subset A \subseteq\{\mathrm{f}, \mathrm{t}, \mathrm{n}, \mathrm{b}\}$, where $\mathrm{f}, \mathrm{t}, \mathrm{n}, \mathrm{b}$ are different truth values, $D:=A \cap\{\mathrm{t}, \mathrm{b}\}, \neg \mathrm{f} \in D, \neg \mathrm{t} \notin D, \mathrm{n} \in A \Rightarrow \neg \mathrm{n} \notin D$ and $\mathrm{b} \in A \Rightarrow \neg \mathrm{~b} \in D$. Then, $\Im:=\{p, \neg p\}$ is an equality determinant for \mathcal{M}.

Example 2 covers, in particular, 12 four-valued logics studied in [12], [11], $[10]^{1}$, including the logic of first-degree entailments in the relevance system [4], [5] known also as Dunn-Belnap's four-valued logic [4], [1], as well as three-valued logics studied in [11], [9], including the logic of first-degree entailments (in Dunn's sense [4], [5]) in Dummett's LC [2] (cf. Definition 4.80 of [11] and the paragraph after it). Notice that the calculi introduced in [12], [11], [10], [9] can be constructed upon the basis of some sequential tables with using Definition 1. And what is more, Theorem 2, Corollaries 1 and 2 as well as Propositions 2 and 3 generalize corresponding results of [12], [11], [10], [9]. As a one more logic covered by Example 2, we should like to highlight Dunn's RM3 [3], for which no appropriate cut-free Gentzen-style calculus has been known until the present paper.

Example 3. (Finitely-valued Łukasiewicz logics) [7] Let $L:=\{\wedge, \vee$, $\supset, \neg\}$, where \wedge (conjunction), \vee (disjunction) and \supset (implication) are binary infix connectives and \neg (negation) is a unary connective, $n \geq 2$, $A:=\left\{\left.\frac{i}{n-1} \right\rvert\, i<n\right\}, D:=\{1\}, a \wedge b:=\min (a, b), a \vee b:=\max (a, b)$, $a \supset b:=\min (1,1-a+b)$ and $\neg a:=1-a$ for all $a, b \in A$. In case $n \geq 4, \mathcal{M}$ falls into neither Example 1 nor Example 2. Nevertheless, \mathcal{M} has an equality determinant consisting of $n-1$ elements. Take any $0<i<n-1$. Consider the function $f_{i}:[0,1] \rightarrow \mathbf{R}$ given by $f_{i}(x):=(n-1) x-(i-1)$ for all $x \in[0,1]$. Then, by McNaughton's Lemma [8], there is some $\gamma_{i}(p) \in F m_{L}$ such that $\gamma_{i}^{\mathcal{A}}(a)=\min \left(\max \left(f_{i}(a), 0\right), 1\right)$ for all $a \in A$. Remark that, for all $j<n, \gamma_{i}^{\mathcal{A}}\left(\frac{j}{n-1}\right) \in D \Leftrightarrow i \leq j$. Finally, it is easy to check that $\Im:=\{p\} \cup\left\{\gamma_{i}: 0<i<n-1\right\}$ is an equality determinant for \mathcal{M} con-

[^1]sisting of $n-1$ elements. Notice that \mathcal{M} has neither 0 - nor 1-subalgebras. Therefore, $k=l=0$.

Example 4. As logics with equality determinant covered by neither Example 1 nor Example 2 nor Example 3, we should like to highlight arbitrary fragments and expansions of the 16 -valued trilattice logic suggested by Dunn, et al., in [6] with $D=\{a \in A \mid \mathbf{T} \in a\}, L \supseteq\left\{\sim_{t}, \sim_{c}\right\}$ and $\Im=\left\{p, \sim_{t} p, \sim_{c} p, \sim_{t} \sim_{c} p\right\}$.

References

[1] N. D. Belnap, A useful four-valued logic, [in:] Modern uses of multiple-valued logic, D. Reidel Publishing Company, J. M. Dunn and G. Epstein (eds.), Dordrecht, 1977, pp. 8-37.
[2] M. Dummett, A propositional calculus with denumerable matrix, Journal of Symbolic Logic 24 (1959), pp. 97-106.
[3] J. M. Dunn, Algebraic completeness results for R-mingle and its extensions, The Journal of Symbolic Logic 35 (1970), pp. 1-13.
[4] J. M. Dunn, Intuitive semantics for first-order-degree entailment and 'coupled tree', Philosophical Studies 29 (1976), pp. 149-168.
[5] J. M. Dunn, Relevance logic and entailment, [in:] Handbook of Philosophical Logic, vol. III, D. Reidel Publishing Company, D. Gabbay and F. Guenther (eds.), Dordrecht, 1986, pp. 117-224.
[6] J. M. Dunn, Y. Shramko and T. Takenaka, The trilattice of constructive truth values, Journal of Logic and Computation 11 (2001), pp. 761-788.
[7] J. Łukasiewicz, O logice trójwartościowej, Ruch Filozoficzny 5 (1920), pp. 170-171.
[8] R. McNaughton, A theorem about infinite-valued sentential logic, Journal of Symbolic Logic 16 (1951), pp. 1-13.
[9] A. P. Pynko, A structural semantic approach to constructing propositional logical systems (in Russian), Preprint Pr-1815 (Russian Academy of Sciences, Space Research Institute, Moscow, February 1992), 33pp.
[10] A. P. Pynko, Characterizing Belnap's logic via De Morgan's laws, Mathematical Logic Quarterly 41 (1995), pp. 442-454.
[11] A. P. Pynko, Definitional equivalence and algebraizability of generalized logical systems, Annals of Pure and Applied Logic 98 (1999), pp. 1-68.
[12] A. P. Pynko, Functional completeness and axiomatizability within Belnap's four-valued logic and its expansions, Journal of Applied NonClassical Logics 9 (1999), pp. 61-105.
[13] K. Schröter, Methoden zur Axiomatisierung beliebiger Aussagenund Prädikatenkalküle, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 1 (1955), pp. 214-251.

Department 100
Institute of Cybernetics
Glushkov prosp. 40, Kiev-187 (GSP)
03680, Ukraine
e-mail: pynko@hotmail.com

[^0]: ${ }^{0}$ The work is supported by the National Academy of Sciences of Ukraine.
 ${ }^{0} 2000$ Mathematics Subject Classification: 03B22, 03B50, 03F03, 03F05, 03G99.

[^1]: ${ }^{1}$ In [12] the notations $\sim, 0,1, \perp, \top$ are used instead of $\neg, \mathrm{f}, \mathrm{t}, \mathrm{n}, \mathrm{b}$, respectively.

