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Abstract

We propose a general method of constructing sequential calculi with cut elimina-

tion property for propositional finitely-valued logics with equality determinant.

We then prove the non-algebraizability of the consequence operations of cut-free

versions of such sequential calculi.
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One of the main issues concerning many-valued logics is to find their
appropriate useful axiomatizations. Since the development of the formalism
of many-place sequents in [13] which enabled one to axiomatize arbitrary
finitely-valued logics, the main emphasis within the topic has been laid on
developing generic approaches dealing with variations of the approach [13].
However, the possibility of using standard Gentzen (two-place) calculi for
finitely-valued logics has deserved much less attention, especially, in con-
nection with developing general approaches. Nevertheless, such possibility
does exist, at least, provided some restrictions are laid on finitely-valued
logics under consideration. In our paper, we restrict our consideration by
finitely many-valued logics having what we call here equality determinant.
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Throughout the paper, we follow standard set-theoretical, lattice-
theoretical, algebraic and logical conventions (which we do not specify here
explicitly) as well as the terminology and notations adopted in the end of
Section 1 and in Section 4 of [12] (which we do not repeat here), except that
propositional (i.e., algebraic) signatures are called (propositional) languages
while L-matrices (where L is a language), are referred to as (propositional
many-valued) L-logics.

Throughout the paper, unless otherwise specified, fix any language L,
the set of all nullary connectives of which is denoted by L0, any k, l ∈ {0, 1},
any denumerable set Var := {p, q} ∪ {pi, qi | i ≥ 1} of (propositional)
variables and any many-valued L-logic M = 〈A, D〉 where (just recall it)
A is an L-algebra, which is called the underlying algebra of M and the
elements of which are referred to as (truth) values of M, and D is a subset
of A, the elements of which are referred to as distinguished values of M.

A 0-(1-)subalgebra of M is a subalgebra B of A such that B ∩D = ∅
(B ⊆ D). (Clearly, the problem of determining whether M has either of
such subalgebras is decidable whenever L is finite.)

Proposition 1. Let X ⊆ Seq(1,0) ( ⊆ Seq(0,1)) and Γ ` ∆ ∈ Cn(0,0)
M (X).

Assume M has a 0-(1-)subalgebra. Then, Γ ` ∆ ∈ Seq(1,0) ( ∈ Seq(0,1)).

Proof: By contradiction. Suppose that Γ ` ∆ 6∈ Seq(1,0) ( 6∈ Seq(0,1)).
Then, the sequence Γ (∆) is empty. Consider any 0-(1-)subalgebra B of
M and any h ∈ hom(FmL,B). Then, Θ |=h

M Ξ for each Θ ` Ξ ∈ X, since
the sequence Θ (Ξ) is not empty. However, Γ 6|=h

M ∆. This contradiction
shows that Γ ` ∆ ∈ Seq(1,0) ( ∈ Seq(0,1)).

In particular, this means that Cn(0,0)
M (∅) ⊆ Seq(1,0)

L (Cn(0,0)
M (∅) ⊆

Seq(0,1)
L ) whenever M has a 0-(1-)subalgebra. This justifies the follow-

ing restriction of the standard sequential language Seq(0,0)
L by sequents of

rank (k, l) adopted in the present paper. From now on, we assume that
k = 0 (l = 0) whenever M has no 0-(1-)subalgebra.

In addition, from now on, we suppose that |A| > 1 and M has an
equality determinant, that is, an arbitrary finite =(p) ⊆ FmL such that
p ∈ =, =(p)∩=(q) = ∅ and, for all a, b ∈ A, a = b whenever, for each ι ∈ =,
ιA(a) ∈ D ⇔ ιA(b) ∈ D. The finiteness of = implies the finiteness of A,
whereas |A| > 1 implies ∅ 6= D 6= A.
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Let X ⊆ FmL. Put =(X) := {ι(φ) | ι ∈ =, φ ∈ X}. An L-sequent
Γ ` ∆ is called X-simple provided Γ, ∆ ∈ X∗ and the sequence (Γ, ∆) has
no repetitions.

By an (=, L)-type we mean any expression of the form ι(F ), where
ι ∈ = and F ∈ L\L0. It is said to be =-complex provided ι(F (p1, . . . , pn)) 6∈
=(Var), where n is the arity of F .

By an L-sequential =-table of rank (k, l) for M we mean any pair
of the form T = 〈λT , ρT 〉, where λT and ρT are mappings from the set
of all =-complex (=, L)-types to the set of all finite sets of L-sequents of
rank (0, 0) such that, for each =-complex (=, L)-type ι(F ), where F is n-
ary, λT (ι(F )) and ρT (ι(F )) consist of =({p1, . . . , pn})-simple L-sequents of
ranks (k, 0) and (0, l), respectively, such that

Cn(k,0)
M (ι(F (p1, . . . , pn)) ` ) = Cn(k,0)

M (λT (ι(F ))) (1)

Cn(0,l)
M ( ` ι(F (p1, . . . , pn))) = Cn(0,l)

M (ρT (ι(F ))) (2)

Theorem 1. There is an L-sequential =-table of rank (k, l) for M.

Proof: Consider any F ∈ L of arity n ≥ 1 and any ι ∈ = such that
the (=, L)-type ι(F ) is =-complex. For every a ∈ A, set =+

a := {µ ∈
= | µA(a) ∈ D} and =−a := {µ ∈ = | µA(a) 6∈ D}. Choose arbitrary
enumerations Θ+

a and Θ−
a of the sets =+

a and =−a , respectively. Since = is
an equality determinant for M and =+

a ∪ =−a = = for all a ∈ A, we have

∀a, b ∈ A : a = b ⇔ ∀µ ∈ =+
a : µA(b) ∈ D and ∀µ ∈ =−a : µA(b) 6∈ D. (3)

Using (3), Proposition 1, the finiteness of A, the fact that =+
a ∩=−a = ∅ for

all a ∈ A and the fact that =(p) ∩ =(q) = ∅, it is easy to check that

λT (ι(F )) := {Θ+
a1

(p1), . . . , Θ+
an

(pn) ` Θ−a1
(p1), . . . , Θ−

an
(pn) |

a1, . . . , an ∈ A, ιA(FA(a1, . . . , an)) ∈ D}
ρT (ι(F )) := {Θ+

a1
(p1), . . . , Θ+

an
(pn) ` Θ−a1

(p1), . . . , Θ−
an

(pn) |
a1, . . . , an ∈ A, ιA(FA(a1, . . . , an)) 6∈ D}

are finite sets of =({p1, . . . , pn})-simple L-sequents of ranks (k, 0) and (0, l),
respectively, such that (1) and (2) hold. Thus, we get an L-sequential =-
table T of rank (k, l) for M.
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Remark that the proof of Theorem 1 is constructive and provides an
effective method of constructing an L-sequential =-table of rank (k, l) for
M whenever L is finite.

From now on, we suppose that T is an arbitrary L-sequential =-table
of rank (k, l) for M.

Definition 1. S(k,l)
M,T is the sequential L-calculus of rank (k, l) consisting

of the following axioms and rules:

(i) all axioms of the form Γ, φ,Θ ` ∆,φ, Ξ, where Γ, ∆,Θ, Ξ ∈ =(Var ∪
L0)∗ and φ ∈ =(Var);

(ii) all axioms of the form Γ ` ∆, where Γ, ∆ ∈ =(Var ∪ L0)∗, such that
there are an =-simple Θ ` Ξ ∈ Cn(k,l)

M (∅) and a v ∈ Var such that
Θ[p/v] (Ξ[p/v]) is a subsequence of Γ (∆);

(iii) for each c ∈ L0 and every ι ∈ = such that ιA(cA) 6∈ D, all axioms of
the form Γ, ι(c), Θ ` ∆, where Γ,Θ, ∆ ∈ =(Var ∪ L0)∗ and |∆| ≥ l;

(iv) for each c ∈ L0 and every ι ∈ = such that ιA(cA) ∈ D, all axioms of
the form Γ ` ∆, ι(c), Ξ, where Γ,∆, Ξ ∈ =(Var ∪ L0)∗ and |Γ | ≥ k;

(v) for each =-complex (=, L)-type ι(F ), where F is n-ary, all rules of the
form

{Γ, (Γ ′[pi/ϕi]1≤i≤n), Θ ` ∆, (∆′[pi/ϕi]1≤i≤n) | Γ ′ ` ∆′ ∈ λT (ι(F ))}
Γ, ι(F (ϕ1, . . . , ϕn)), Θ ` ∆

where ϕ1, . . . , ϕn ∈ FmL, Γ, ∆ ∈ Fm∗
L, Θ ∈ =(Var∪L0)∗ and |∆| ≥ l,

and of the form

{Γ, (Γ ′[pi/ϕi]1≤i≤n) ` ∆, (∆′[pi/ϕi]1≤i≤n), Ξ | Γ ′ ` ∆′ ∈ ρT (ι(F ))}
Γ ` ∆, ι(F (ϕ1, . . . , ϕn)), Ξ

where ϕ1, . . . , ϕn ∈ FmL, Γ, ∆ ∈ Fm∗
L, Ξ ∈ =(Var∪L0)∗ and |Γ | ≥ k.

By Ŝ(k,l)
M,T (S̃(k,l)

M,T ) denote the sequential L-calculus of rank (k, l) obtained

from S(k,l)
M,T by adding all sequential L-rules of rank (k, l) which are instances

of Contraction (Cut, respectively), Enlargement and Exchange.

Theorem 2. CnS(k,l)
M,T

(∅) = Cn(k,l)
M (∅).
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Proof: Clearly, every rule in S(k,l)
M,T is satisfied in Cn(k,l)

M . Therefore, by

induction on the length of S(k,l)
M,T -derivations from ∅, one can easily check

that CnS(k,l)
M,T

(∅) ⊆ Cn(k,l)
M (∅). The converse inclusion is proved by induction

on the degree ∂(Γ ` ∆) of an arbitrary Γ ` ∆ ∈ Cn(k,l)
M (∅) which is defined

as follows. First, by induction on the length of L-formulas, define a mapping
∂|=| : FmL → ω setting, for each ϕ ∈ Var ∪ L0, ∂|=|(ϕ) := 0 and, for each
F ∈ L of arity n ≥ 1 and all ψ1, . . . , ψn ∈ FmL, ∂|=|(F (ψ1, . . . , ψn)) :=
1 + |=| ·∑n

i=1 ∂|=|(ψi). (Remark that |=| ≥ 1, since p ∈ =. Therefore, for
every ϕ ∈ FmL, ∂|=|(ϕ) = 0 ⇔ ϕ ∈ Var ∪ L0.) Next, we define a mapping
∂= : FmL → ω putting ∂=(ϕ) := min{∂|=|(ψ) | ψ ∈ FmL, ϕ = ι(ψ), ι ∈ =}
for all ϕ ∈ FmL. (Since p ∈ =, the minimum is taken over a non-empty set
of natural numbers, and so ∂=(ϕ) is defined correctly. It is easy to see that
∂=(ϕ) = 0 ⇔ ϕ ∈ =(Var∪L0).) Finally, define a mapping ∂ : Seq(k,l)

L → ω
setting ∂(φ1, . . . , φm ` ψ1, . . . , ψn) :=

∑
1≤i≤m ∂=(φi) +

∑
1≤j≤n ∂=(ψj)

for all φ1, . . . , φm ` ψ1, . . . , ψn ∈ Seq(k,l)
L .

Assume ∂(Γ ` ∆) = 0. Consider the following 4 cases:
1. Γ and ∆ have a common L-formula in =(Var).

Then, by Definition 1(i), Γ ` ∆ ∈ CnS(k,l)
M,T

(∅).
2. Γ contains an L-formula of the form ι(c), where c ∈ L0, ι ∈ = and

ιA(cA) 6∈ D.
Then, by Definition 1(iii), Γ ` ∆ ∈ CnS(k,l)

M,T
(∅).

3. ∆ contains an L-formula of the form ι(c), where c ∈ L0, ι ∈ = and
ιA(cA) ∈ D.
Then, by Definition 1(iv), Γ ` ∆ ∈ CnS(k,l)

M,T
(∅).

4. Neither 1 nor 2 nor 3 holds.
For each v ∈ Var, by induction on the length of an arbitrary Θ ∈
=(Var ∪ L0)∗ define Θ↓v ∈ =(v)∗ putting ∅↓v := ∅ and

〈Ξ, ξ〉↓v :=
{ 〈Ξ↓v, ξ〉 if ξ ∈ =(v) and ξ 6∈ Ξ↓v,

Ξ↓v otherwise,

where ξ ∈ =(Var∪L0) and Ξ ∈ =(Var∪L0)∗. By contradiction prove
that there is some v ∈ Var such that (Γ↓v) ` (∆↓v) ∈ Cn(0,0)

M (∅).
Suppose that, for all v ∈ Var, there is some hv ∈ hom(FmL,A) such
that Γ↓v 6|=hv

M ∆↓v. Define an h ∈ hom(FmL,A) setting hv := hvv
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for all v ∈ Var. Then, Γ 6|=h
M ∆. This contradicts the assumption

Γ ` ∆ ∈ Cn(k,l)
M (∅). Thus, there is some v ∈ Var such that (Γ↓v) `

(∆↓v) ∈ Cn(0,0)
M (∅). Hence, Θ ` Ξ := (Γ↓v)[v/p] ` (∆↓v)[v/p] ∈

Cn(0,0)
M (∅). Applying Proposition 1 with X = ∅, we conclude that

Θ ` Ξ ∈ Seq(k,l), and so Θ ` Ξ ∈ Cn(k,l)
M (∅). Moreover, Θ ` Ξ is

=-simple. Finally, Θ[p/v] = Γ↓v (Ξ[p/v] = ∆↓v) is a subsequence of
Γ (∆). Then, by Definition 1(ii), Γ ` ∆ ∈ CnS(k,l)

M,T
(∅).

Now assume that ∂(Γ ` ∆) > 0. Then, there is some ξ ∈ FmL

belonging to either Γ or ∆ such that ∂=(ξ) > 0. First, suppose that
ξ ∈ Γ . Then, Γ = (Θ,ϕ, Ξ), where Θ ∈ Fm∗

L, Ξ ∈ =(Var ∪ L0)∗, ϕ ∈
FmL and ∂=(ϕ) > 0. By definition of ∂=, there are some φ ∈ FmL

and ι ∈ = such that ϕ = ι(φ) and ∂=(ϕ) = ∂|=|(φ). Then, ∂|=|(φ) >
0, and so φ = F (ψ1, . . . , ψn), where F ∈ L, n ≥ 1 is the arity of F
and ψ1, . . . , ψn ∈ FmL. By contradiction prove that ι(F (p1, . . . , pn)) 6∈
=(Var). Suppose that ι(F (p1, . . . , pn)) ∈ =(Var). Then, n = 1. In that case
ι(F (p)) ∈ =, φ = F (ψ1) and ϕ = ι(F (ψ1)). Hence, ∂=(ϕ) ≤ ∂|=|(ψ1) <

∂|=|(φ) = ∂=(ϕ). This contradiction shows that ι(F (p1, . . . , pn)) 6∈ =(Var).
Hence, the (=, L)-type ι(F ) is =-complex. Take any Γ ′ ` ∆′ ∈ λT (ι(F )).
By (1), we have Θ, (Γ ′[pi/ψi]1≤i≤n), Ξ ` ∆, (∆′[pi/ψi]1≤i≤n) ∈ Cn(k,l)

M (∅).
Moreover,

∂(Θ, (Γ ′[pi/ψi]1≤i≤n), Ξ ` ∆, (∆′[pi/ψi]1≤i≤n)) =
∂(Θ, Ξ ` ∆) + ∂((Γ ′ ` ∆′)[pi/ψi]1≤i≤n) ≤

∂(Θ, Ξ ` ∆) +
∑

ι∈=

n∑

i=1

∂=(ι(ψi)) ≤

∂(Θ, Ξ ` ∆) + |=| ·
n∑

i=1

∂|=|(ψi) <

∂(Θ,Ξ ` ∆) + ∂|=|(φ) =

∂(Θ, Ξ ` ∆) + ∂=(ϕ) = ∂(Γ ` ∆).

By the induction hypothesis, Θ, (Γ ′[pi/ψi]1≤i≤n), Ξ ` ∆, (∆′[pi/ψi]1≤i≤n) ∈
CnS(k,l)

M,T
(∅) for all Γ ′ ` ∆′ ∈ λT (ι(F )). By Definition 1(v), this yields

Γ ` ∆ ∈ CnS(k,l)
M,T

(∅). The case ξ ∈ ∆ is analyzed in a similar way but with

using (2).
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Remark that the proof of Theorem 2 generalizing the proof of Theorem
3.2 of [10], which in its turn goes back to [9] and which has been used in [12],
is constructive and, provided L is finite, gives an effective procedure which
uses a given T and enables us to determine the derivability of sequents in
S(k,l)
M,T and (in case of the derivability) to search a derivation.

By Proposition 4.3 of [12] and Theorem 2, we get

Corollary 1. Structural rules (including Contraction) are admissible in
S(k,l)
M,T , and so CnS(k,l)

M,T
(∅) = CnŜ(k,l)

M,T
(∅) = CnS̃(k,l)

M,T
(∅). In particular, Cut

is admissible in Ŝ(k,l)
M,T and is eliminable from S̃(k,l)

M,T .

It is easy to check that the sequential consequence CnS̃(k,l)
M,T

is en-

largable in the sense of p. 78 of [12]. Therefore, by Theorem 4.2 and
Proposition 4.3 of [12], taking the finitarity of CnS̃(k,l)

M,T
(see p. 77 of [12])

and Cn(k,l)
M (see p. 79 of [12]) into account, Theorem 2 and Corollary 1

yield

Corollary 2. CnS̃(k,l)
M,T

= Cn(k,l)
M .

Since ∅ 6= D 6= A, { ` ; p ` ; ` p} ∩ Cn(k,l)
M (∅) = ∅. Therefore, S(k,l)

M,T
and Ŝ(k,l)

M,T consist of connective-introducing rules (see Subsection 3.6 of
[11]) and some structural rules except for Cut. Then, by Theorem 3.30 of
[11], we have

Proposition 2. Neither CnS(k,l)
M,T

nor CnŜ(k,l)
M,T

is algebraizable.

Moreover, by Lemma 3.31 of [11], the instance p ` q, p1 p1, p ` q
p ` q

of

Cut is derivable neither in S(k,l)
M,T nor in Ŝ(k,l)

M,T . Hence, we get

Proposition 3. CnŜ(k,l)
M,T

6= CnS̃(k,l)
M,T

6= CnS(k,l)
M,T

.

Clearly, every functionally-complete finitely-valued logic having both
distinguished and non-distinguished values (in particular, every finitely-
valued logic of Post) has an equality determinant. (Notice that such a
logic has neither 0- nor 1-subalgebras, and so k = l = 0.) Let us men-
tion more denumerable classes of finitely-valued logics having an equality
determinant.
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Example 1. (Two-valued logics) Let A := {f, t}, where f and t are
different truth values, and D := {t}. Then, = := {p} is an equality deter-
minant for M.

Example 1 covers the classical logic and its fragments.

Example 2. (Three- and four-valued logics with constructive
negation) Suppose that L contains a unary connective ¬ treated as con-
structive negation. Let {f, t} ⊂ A ⊆ {f, t, n, b}, where f, t, n, b are different
truth values, D := A ∩ {t, b}, ¬f ∈ D, ¬t 6∈ D, n ∈ A ⇒ ¬n 6∈ D and
b ∈ A ⇒ ¬b ∈ D. Then, = := {p,¬p} is an equality determinant for M.

Example 2 covers, in particular, 12 four-valued logics studied in [12],
[11], [10]1, including the logic of first-degree entailments in the relevance
system [4], [5] known also as Dunn-Belnap’s four-valued logic [4], [1], as well
as three-valued logics studied in [11], [9], including the logic of first-degree
entailments (in Dunn’s sense [4], [5]) in Dummett’s LC [2] (cf. Definition
4.80 of [11] and the paragraph after it). Notice that the calculi introduced
in [12], [11], [10], [9] can be constructed upon the basis of some sequential
tables with using Definition 1. And what is more, Theorem 2, Corollaries
1 and 2 as well as Propositions 2 and 3 generalize corresponding results
of [12], [11], [10], [9]. As a one more logic covered by Example 2, we
should like to highlight Dunn’s RM3 [3], for which no appropriate cut-free
Gentzen-style calculus has been known until the present paper.

Example 3. (Finitely-valued ÃLukasiewicz logics) [7] Let L := {∧,∨,
⊃,¬}, where ∧ (conjunction), ∨ (disjunction) and ⊃ (implication) are bi-
nary infix connectives and ¬ (negation) is a unary connective, n ≥ 2,
A := { i

n−1 | i < n}, D := {1}, a ∧ b := min(a, b), a ∨ b := max(a, b),
a ⊃ b := min(1, 1−a+b) and ¬a := 1−a for all a, b ∈ A. In case n ≥ 4, M
falls into neither Example 1 nor Example 2. Nevertheless, M has an equal-
ity determinant consisting of n−1 elements. Take any 0 < i < n−1. Con-
sider the function fi : [0, 1] → R given by fi(x) := (n− 1)x− (i− 1) for all
x ∈ [0, 1]. Then, by McNaughton’s Lemma [8], there is some γi(p) ∈ FmL

such that γAi (a) = min(max(fi(a), 0), 1) for all a ∈ A. Remark that,
for all j < n, γAi ( j

n−1 ) ∈ D ⇔ i ≤ j. Finally, it is easy to check that
= := {p} ∪ {γi : 0 < i < n − 1} is an equality determinant for M con-

1In [12] the notations ∼, 0, 1,⊥,> are used instead of ¬, f, t,n,b, respectively.
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sisting of n− 1 elements. Notice that M has neither 0- nor 1-subalgebras.
Therefore, k = l = 0.

Example 4. As logics with equality determinant covered by neither Ex-
ample 1 nor Example 2 nor Example 3, we should like to highlight arbi-
trary fragments and expansions of the 16-valued trilattice logic suggested
by Dunn, et al., in [6] with D = {a ∈ A | T ∈ a}, L ⊇ {∼t,∼c} and
= = {p,∼tp,∼cp,∼t∼cp}.
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