Bulletin of the Section of Logic Volume 33/1 (2004), pp. 23–32

Alexej P. Pynko

SEQUENTIAL CALCULI FOR MANY-VALUED LOGICS WITH EQUALITY DETERMINANT

Abstract

We propose a general method of constructing sequential calculi with cut elimination property for propositional finitely-valued logics with equality determinant. We then prove the non-algebraizability of the consequence operations of cut-free versions of such sequential calculi.

Key words and phrases: many-valued logic, equality determinant, sequential calculus, cut elimination, algebraizable sequential consequence operation.

One of the main issues concerning many-valued logics is to find their appropriate useful axiomatizations. Since the development of the formalism of many-place sequents in [13] which enabled one to axiomatize arbitrary finitely-valued logics, the main emphasis within the topic has been laid on developing generic approaches dealing with variations of the approach [13]. However, the possibility of using standard Gentzen (two-place) calculi for finitely-valued logics has deserved much less attention, especially, in connection with developing general approaches. Nevertheless, such possibility does exist, at least, provided some restrictions are laid on finitely-valued logics under consideration. In our paper, we restrict our consideration by finitely many-valued logics having what we call here equality determinant.

 $^{^0\}mathrm{The}$ work is supported by the National Academy of Sciences of Ukraine.

⁰2000 Mathematics Subject Classification: 03B22, 03B50, 03F03, 03F05, 03G99.

Throughout the paper, we follow standard set-theoretical, latticetheoretical, algebraic and logical conventions (which we do not specify here explicitly) as well as the terminology and notations adopted in the end of Section 1 and in Section 4 of [12] (which we do not repeat here), except that propositional (i.e., algebraic) signatures are called *(propositional) languages* while *L*-matrices (where *L* is a language), are referred to as *(propositional many-valued) L-logics*.

Throughout the paper, unless otherwise specified, fix any language L, the set of all nullary connectives of which is denoted by L_0 , any $k, l \in \{0, 1\}$, any denumerable set $\text{Var} := \{p, q\} \cup \{p_i, q_i \mid i \geq 1\}$ of (propositional) variables and any many-valued L-logic $\mathcal{M} = \langle \mathcal{A}, D \rangle$ where (just recall it) \mathcal{A} is an L-algebra, which is called the underlying algebra of \mathcal{M} and the elements of which are referred to as (truth) values of \mathcal{M} , and D is a subset of \mathcal{A} , the elements of which are referred to as distinguished values of \mathcal{M} .

A 0-(1-)subalgebra of \mathcal{M} is a subalgebra \mathcal{B} of \mathcal{A} such that $B \cap D = \emptyset$ ($B \subseteq D$). (Clearly, the problem of determining whether \mathcal{M} has either of such subalgebras is decidable whenever L is finite.)

PROPOSITION 1. Let $X \subseteq \operatorname{Seq}^{(1,0)}$ $(\subseteq \operatorname{Seq}^{(0,1)})$ and $\Gamma \vdash \Delta \in \operatorname{Cn}_{\mathcal{M}}^{(0,0)}(X)$. Assume \mathcal{M} has a 0-(1-)subalgebra. Then, $\Gamma \vdash \Delta \in \operatorname{Seq}^{(1,0)}$ $(\in \operatorname{Seq}^{(0,1)})$.

PROOF: By contradiction. Suppose that $\Gamma \vdash \Delta \notin \operatorname{Seq}^{(1,0)}$ ($\notin \operatorname{Seq}^{(0,1)}$). Then, the sequence Γ (Δ) is empty. Consider any 0-(1-)subalgebra \mathcal{B} of \mathcal{M} and any $h \in \operatorname{hom}(\mathcal{F}m_L, \mathcal{B})$. Then, $\Theta \models^h_{\mathcal{M}} \Xi$ for each $\Theta \vdash \Xi \in X$, since the sequence Θ (Ξ) is not empty. However, $\Gamma \not\models^h_{\mathcal{M}} \Delta$. This contradiction shows that $\Gamma \vdash \Delta \in \operatorname{Seq}^{(1,0)}$ ($\in \operatorname{Seq}^{(0,1)}$).

In particular, this means that $\operatorname{Cn}_{\mathcal{M}}^{(0,0)}(\emptyset) \subseteq \operatorname{Seq}_{L}^{(1,0)}(\operatorname{Cn}_{\mathcal{M}}^{(0,0)}(\emptyset) \subseteq \operatorname{Seq}_{L}^{(0,1)})$ whenever \mathcal{M} has a 0-(1-)subalgebra. This justifies the following restriction of the standard sequential language $\operatorname{Seq}_{L}^{(0,0)}$ by sequents of rank (k,l) adopted in the present paper. From now on, we assume that k = 0 (l = 0) whenever \mathcal{M} has no 0-(1-)subalgebra.

In addition, from now on, we suppose that |A| > 1 and \mathcal{M} has an equality determinant, that is, an arbitrary finite $\Im(p) \subseteq Fm_L$ such that $p \in \Im, \Im(p) \cap \Im(q) = \emptyset$ and, for all $a, b \in A, a = b$ whenever, for each $\iota \in \Im$, $\iota^{\mathcal{A}}(a) \in D \Leftrightarrow \iota^{\mathcal{A}}(b) \in D$. The finiteness of \Im implies the finiteness of A, whereas |A| > 1 implies $\emptyset \neq D \neq A$.

Let $X \subseteq Fm_L$. Put $\Im(X) := \{\iota(\phi) \mid \iota \in \Im, \phi \in X\}$. An *L*-sequent $\Gamma \vdash \Delta$ is called *X*-simple provided $\Gamma, \Delta \in X^*$ and the sequence (Γ, Δ) has no repetitions.

By an (\mathfrak{F}, L) -type we mean any expression of the form $\iota(F)$, where $\iota \in \mathfrak{F}$ and $F \in L \setminus L_0$. It is said to be \mathfrak{F} -complex provided $\iota(F(p_1, \ldots, p_n)) \notin \mathfrak{F}(\operatorname{Var})$, where n is the arity of F.

By an *L*-sequential \Im -table of rank (k, l) for \mathcal{M} we mean any pair of the form $\mathcal{T} = \langle \lambda_{\mathcal{T}}, \rho_{\mathcal{T}} \rangle$, where $\lambda_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$ are mappings from the set of all \Im -complex (\Im, L) -types to the set of all finite sets of *L*-sequents of rank (0,0) such that, for each \Im -complex (\Im, L) -type $\iota(F)$, where F is *n*ary, $\lambda_{\mathcal{T}}(\iota(F))$ and $\rho_{\mathcal{T}}(\iota(F))$ consist of $\Im(\{p_1, \ldots, p_n\})$ -simple *L*-sequents of ranks (k, 0) and (0, l), respectively, such that

$$\operatorname{Cn}_{\mathcal{M}}^{(k,0)}(\iota(F(p_1,\ldots,p_n))\vdash) = \operatorname{Cn}_{\mathcal{M}}^{(k,0)}(\lambda_{\mathcal{T}}(\iota(F)))$$
(1)

$$\operatorname{Cn}_{\mathcal{M}}^{(0,l)}(\vdash \iota(F(p_1,\ldots,p_n))) = \operatorname{Cn}_{\mathcal{M}}^{(0,l)}(\rho_{\mathcal{T}}(\iota(F)))$$
(2)

THEOREM 1. There is an L-sequential \Im -table of rank (k, l) for \mathcal{M} .

PROOF: Consider any $F \in L$ of arity $n \geq 1$ and any $\iota \in \mathfrak{F}$ such that the (\mathfrak{F}, L) -type $\iota(F)$ is \mathfrak{F} -complex. For every $a \in A$, set $\mathfrak{F}_a^+ := \{\mu \in \mathfrak{F} \mid \mu^{\mathcal{A}}(a) \in D\}$ and $\mathfrak{F}_a^- := \{\mu \in \mathfrak{F} \mid \mu^{\mathcal{A}}(a) \notin D\}$. Choose arbitrary enumerations Θ_a^+ and Θ_a^- of the sets \mathfrak{F}_a^+ and \mathfrak{F}_a^- , respectively. Since \mathfrak{F} is an equality determinant for \mathcal{M} and $\mathfrak{F}_a^+ \cup \mathfrak{F}_a^- = \mathfrak{F}$ for all $a \in A$, we have

$$\forall a, b \in A : a = b \Leftrightarrow \forall \mu \in \mathfrak{S}_a^+ : \mu^{\mathcal{A}}(b) \in D \text{ and } \forall \mu \in \mathfrak{S}_a^- : \mu^{\mathcal{A}}(b) \notin D.$$
(3)

Using (3), Proposition 1, the finiteness of A, the fact that $\mathfrak{S}_a^+ \cap \mathfrak{S}_a^- = \emptyset$ for all $a \in A$ and the fact that $\mathfrak{S}(p) \cap \mathfrak{S}(q) = \emptyset$, it is easy to check that

$$\begin{split} \lambda_{\mathcal{T}}(\iota(F)) &:= & \{ \Theta_{a_1}^+(p_1), \dots, \Theta_{a_n}^+(p_n) \vdash \Theta_{a_1}^-(p_1), \dots, \Theta_{a_n}^-(p_n) \mid \\ & a_1, \dots, a_n \in A, \iota^{\mathcal{A}}(F^{\mathcal{A}}(a_1, \dots, a_n)) \in D \} \\ \rho_{\mathcal{T}}(\iota(F)) &:= & \{ \Theta_{a_1}^+(p_1), \dots, \Theta_{a_n}^+(p_n) \vdash \Theta_{a_1}^-(p_1), \dots, \Theta_{a_n}^-(p_n) \mid \\ & a_1, \dots, a_n \in A, \iota^{\mathcal{A}}(F^{\mathcal{A}}(a_1, \dots, a_n)) \notin D \} \end{split}$$

are finite sets of $\Im(\{p_1, \ldots, p_n\})$ -simple *L*-sequents of ranks (k, 0) and (0, l), respectively, such that (1) and (2) hold. Thus, we get an *L*-sequential \Im -table \mathcal{T} of rank (k, l) for \mathcal{M} .

Remark that the proof of Theorem 1 is constructive and provides an effective method of constructing an L-sequential \Im -table of rank (k, l) for \mathcal{M} whenever L is finite.

From now on, we suppose that \mathcal{T} is an arbitrary *L*-sequential \Im -table of rank (k, l) for \mathcal{M} .

DEFINITION 1. $S_{\mathcal{M},\mathcal{T}}^{(k,l)}$ is the sequential *L*-calculus of rank (k,l) consisting of the following axioms and rules:

- (i) all axioms of the form $\Gamma, \phi, \Theta \vdash \Delta, \phi, \Xi$, where $\Gamma, \Delta, \Theta, \Xi \in \Im(\text{Var} \cup L_0)^*$ and $\phi \in \Im(\text{Var})$;
- (ii) all axioms of the form $\Gamma \vdash \Delta$, where $\Gamma, \Delta \in \Im(\operatorname{Var} \cup L_0)^*$, such that there are an \Im -simple $\Theta \vdash \Xi \in \operatorname{Cn}_{\mathcal{M}}^{(k,l)}(\emptyset)$ and a $v \in \operatorname{Var}$ such that $\Theta[p/v] \ (\Xi[p/v])$ is a subsequence of $\Gamma \ (\Delta)$;
- (iii) for each $c \in L_0$ and every $\iota \in \mathfrak{S}$ such that $\iota^{\mathcal{A}}(c^{\mathcal{A}}) \notin D$, all axioms of the form $\Gamma, \iota(c), \Theta \vdash \Delta$, where $\Gamma, \Theta, \Delta \in \mathfrak{S}(\operatorname{Var} \cup L_0)^*$ and $|\Delta| \ge l$;
- (iv) for each $c \in L_0$ and every $\iota \in \mathfrak{S}$ such that $\iota^{\mathcal{A}}(c^{\mathcal{A}}) \in D$, all axioms of the form $\Gamma \vdash \Delta, \iota(c), \Xi$, where $\Gamma, \Delta, \Xi \in \mathfrak{S}(\operatorname{Var} \cup L_0)^*$ and $|\Gamma| \geq k$;
- (v) for each \Im -complex (\Im, L) -type $\iota(F)$, where F is n-ary, all rules of the form

$$\frac{\{\Gamma, (\Gamma'[p_i/\varphi_i]_{1 \le i \le n}), \Theta \vdash \Delta, (\Delta'[p_i/\varphi_i]_{1 \le i \le n}) \mid \Gamma' \vdash \Delta' \in \lambda_{\mathcal{T}}(\iota(F))\}}{\Gamma, \iota(F(\varphi_1, \dots, \varphi_n)), \Theta \vdash \Delta}$$

where $\varphi_1, \ldots, \varphi_n \in Fm_L, \Gamma, \Delta \in Fm_L^*, \Theta \in \Im(\operatorname{Var} \cup L_0)^*$ and $|\Delta| \ge l$, and of the form

$$\frac{\{\Gamma, (\Gamma'[p_i/\varphi_i]_{1 \le i \le n}) \vdash \Delta, (\Delta'[p_i/\varphi_i]_{1 \le i \le n}), \Xi \mid \Gamma' \vdash \Delta' \in \rho_{\mathcal{T}}(\iota(F))\}}{\Gamma \vdash \Delta, \iota(F(\varphi_1, \dots, \varphi_n)), \Xi}$$

where
$$\varphi_1, \ldots, \varphi_n \in Fm_L, \Gamma, \Delta \in Fm_L^*, \Xi \in \Im(\operatorname{Var} \cup L_0)^* \text{ and } |\Gamma| \ge k$$
.

By $\widehat{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)}(\widetilde{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)})$ denote the sequential *L*-calculus of rank (k,l) obtained from $\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}$ by adding all sequential *L*-rules of rank (k,l) which are instances of Contraction (Cut, respectively), Enlargement and Exchange.

Theorem 2. $\operatorname{Cn}_{\mathcal{S}^{(k,l)}_{\mathcal{M},\mathcal{T}}}(\emptyset) = \operatorname{Cn}^{(k,l)}_{\mathcal{M}}(\emptyset).$

PROOF: Clearly, every rule in $S_{\mathcal{M},\mathcal{T}}^{(k,l)}$ is satisfied in $\operatorname{Cn}_{\mathcal{M}}^{(k,l)}$. Therefore, by induction on the length of $S_{\mathcal{M},\mathcal{T}}^{(k,l)}$ -derivations from \emptyset , one can easily check that $\operatorname{Cn}_{\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}}(\emptyset) \subseteq \operatorname{Cn}_{\mathcal{M}}^{(k,l)}(\emptyset)$. The converse inclusion is proved by induction on the *degree* $\partial(\Gamma \vdash \Delta)$ of an arbitrary $\Gamma \vdash \Delta \in \operatorname{Cn}_{\mathcal{M}}^{(k,l)}(\emptyset)$ which is defined as follows. First, by induction on the length of *L*-formulas, define a mapping $\partial_{|\mathfrak{S}|}: Fm_L \to \omega$ setting, for each $\varphi \in \operatorname{Var} \cup L_0$, $\partial_{|\mathfrak{S}|}(\varphi) := 0$ and, for each $F \in L$ of arity $n \geq 1$ and all $\psi_1, \ldots, \psi_n \in Fm_L$, $\partial_{|\mathfrak{S}|}(F(\psi_1, \ldots, \psi_n)) :=$ $1 + |\mathfrak{S}| \cdot \sum_{i=1}^n \partial_{|\mathfrak{S}|}(\psi_i)$. (Remark that $|\mathfrak{S}| \geq 1$, since $p \in \mathfrak{S}$. Therefore, for every $\varphi \in Fm_L$, $\partial_{|\mathfrak{S}|}(\varphi) = 0 \Leftrightarrow \varphi \in \operatorname{Var} \cup L_0$.) Next, we define a mapping $\partial^{\mathfrak{S}}: Fm_L \to \omega$ putting $\partial^{\mathfrak{S}}(\varphi) := \min\{\partial_{|\mathfrak{S}|}(\psi) \mid \psi \in Fm_L, \varphi = \iota(\psi), \iota \in \mathfrak{S}\}$ for all $\varphi \in Fm_L$. (Since $p \in \mathfrak{S}$, the minimum is taken over a non-empty set of natural numbers, and so $\partial^{\mathfrak{S}}(\varphi)$ is defined correctly. It is easy to see that $\partial^{\mathfrak{S}}(\varphi) = 0 \Leftrightarrow \varphi \in \mathfrak{S}(\operatorname{Var} \cup L_0)$.) Finally, define a mapping $\partial : \operatorname{Seq}_L^{(k,l)} \to \omega$ setting $\partial(\phi_1, \ldots, \phi_m \vdash \psi_1, \ldots, \psi_n) := \sum_{1 \leq i \leq m} \partial^{\mathfrak{S}}(\phi_i) + \sum_{1 \leq j \leq n} \partial^{\mathfrak{S}}(\psi_j)$ for all $\phi_1, \ldots, \phi_m \vdash \psi_1, \ldots, \psi_n \in \operatorname{Seq}_L^{(k,l)}$.

Assume $\partial(\Gamma \vdash \Delta) = 0$. Consider the following 4 cases:

- 1. Γ and Δ have a common *L*-formula in $\mathfrak{S}(\text{Var})$. Then, by Definition 1(i), $\Gamma \vdash \Delta \in \text{Cn}_{\mathcal{S}^{(k,l)}_{\mathcal{I}}}(\emptyset)$.
- 2. Γ contains an *L*-formula of the form $\iota(c)$, where $c \in L_0$, $\iota \in \mathfrak{F}$ and $\iota^{\mathcal{A}}(c^{\mathcal{A}}) \notin D$. Then, by Definition 1(iii), $\Gamma \vdash \Delta \in \operatorname{Cn}_{\mathcal{S}^{(k,l)}_{\mathcal{M},\mathcal{T}}}(\emptyset)$.
- 3. Δ contains an *L*-formula of the form $\iota(c)$, where $c \in L_0$, $\iota \in \mathfrak{F}$ and $\iota^{\mathcal{A}}(c^{\mathcal{A}}) \in D$.

Then, by Definition 1(iv), $\Gamma \vdash \Delta \in \operatorname{Cn}_{\mathcal{S}^{(k,l)}_{\mathcal{M},\mathcal{T}}}(\emptyset).$

- 4. Neither 1 nor 2 nor 3 holds.
 - For each $v \in \text{Var}$, by induction on the length of an arbitrary $\Theta \in \Im(\text{Var} \cup L_0)^*$ define $\Theta \downarrow v \in \Im(v)^*$ putting $\emptyset \downarrow v := \emptyset$ and

$$\langle \Xi, \xi \rangle {\downarrow} v := \begin{cases} \langle \Xi {\downarrow} v, \xi \rangle & \text{if } \xi \in \Im(v) \text{ and } \xi \not\in \Xi {\downarrow} v, \\ \Xi {\downarrow} v & \text{otherwise,} \end{cases}$$

where $\xi \in \Im(\operatorname{Var} \cup L_0)$ and $\Xi \in \Im(\operatorname{Var} \cup L_0)^*$. By contradiction prove that there is some $v \in \operatorname{Var}$ such that $(\Gamma \downarrow v) \vdash (\varDelta \downarrow v) \in \operatorname{Cn}_{\mathcal{M}}^{(0,0)}(\emptyset)$. Suppose that, for all $v \in \operatorname{Var}$, there is some $h_v \in \operatorname{hom}(\mathcal{F}m_L, \mathcal{A})$ such that $\Gamma \downarrow v \not\models_{\mathcal{M}}^{h_v} \varDelta \downarrow v$. Define an $h \in \operatorname{hom}(\mathcal{F}m_L, \mathcal{A})$ setting $hv := h_v v$ for all $v \in \text{Var.}$ Then, $\Gamma \not\models^{h}_{\mathcal{M}} \Delta$. This contradicts the assumption $\Gamma \vdash \Delta \in \text{Cn}_{\mathcal{M}}^{(k,l)}(\emptyset)$. Thus, there is some $v \in \text{Var}$ such that $(\Gamma \downarrow v) \vdash (\Delta \downarrow v) \in \text{Cn}_{\mathcal{M}}^{(0,0)}(\emptyset)$. Hence, $\Theta \vdash \Xi := (\Gamma \downarrow v)[v/p] \vdash (\Delta \downarrow v)[v/p] \in \text{Cn}_{\mathcal{M}}^{(0,0)}(\emptyset)$. Applying Proposition 1 with $X = \emptyset$, we conclude that $\Theta \vdash \Xi \in \text{Seq}^{(k,l)}$, and so $\Theta \vdash \Xi \in \text{Cn}_{\mathcal{M}}^{(k,l)}(\emptyset)$. Moreover, $\Theta \vdash \Xi$ is \Im -simple. Finally, $\Theta[p/v] = \Gamma \downarrow v \ (\Xi[p/v] = \Delta \downarrow v)$ is a subsequence of Γ (Δ). Then, by Definition 1(ii), $\Gamma \vdash \Delta \in \text{Cn}_{\mathcal{S}}^{(k,l)}(\emptyset)$.

Now assume that $\partial(\Gamma \vdash \Delta) > 0$. Then, there is some $\xi \in Fm_L$ belonging to either Γ or Δ such that $\partial^{\Im}(\xi) > 0$. First, suppose that $\xi \in \Gamma$. Then, $\Gamma = (\Theta, \varphi, \Xi)$, where $\Theta \in Fm_L^*$, $\Xi \in \Im(\operatorname{Var} \cup L_0)^*$, $\varphi \in Fm_L$ and $\partial^{\Im}(\varphi) > 0$. By definition of ∂^{\Im} , there are some $\phi \in Fm_L$ and $\iota \in \Im$ such that $\varphi = \iota(\phi)$ and $\partial^{\Im}(\varphi) = \partial_{|\Im|}(\phi)$. Then, $\partial_{|\Im|}(\phi) > 0$, and so $\phi = F(\psi_1, \ldots, \psi_n)$, where $F \in L$, $n \geq 1$ is the arity of Fand $\psi_1, \ldots, \psi_n \in Fm_L$. By contradiction prove that $\iota(F(p_1, \ldots, p_n)) \notin$ $\Im(\operatorname{Var})$. Suppose that $\iota(F(p_1, \ldots, p_n)) \in \Im(\operatorname{Var})$. Then, n = 1. In that case $\iota(F(p)) \in \Im$, $\phi = F(\psi_1)$ and $\varphi = \iota(F(\psi_1))$. Hence, $\partial^{\Im}(\varphi) \leq \partial_{|\Im|}(\psi_1) < \partial_{|\Im|}(\phi) = \partial^{\Im}(\varphi)$. This contradiction shows that $\iota(F(p_1, \ldots, p_n)) \notin \Im(\operatorname{Var})$. Hence, the (\Im, L) -type $\iota(F)$ is \Im -complex. Take any $\Gamma' \vdash \Delta' \in \lambda_T(\iota(F))$. By (1), we have $\Theta, (\Gamma'[p_i/\psi_i]_{1\leq i\leq n}), \Xi \vdash \Delta, (\Delta'[p_i/\psi_i]_{1\leq i\leq n}) \in \operatorname{Cn}_{\mathcal{M}}^{(k,l)}(\emptyset)$.

$$\begin{array}{lll} \partial(\Theta, (\Gamma'[p_i/\psi_i]_{1 \leq i \leq n}), \Xi \vdash \Delta, (\Delta'[p_i/\psi_i]_{1 \leq i \leq n})) &= \\ \partial(\Theta, \Xi \vdash \Delta) + \partial((\Gamma' \vdash \Delta')[p_i/\psi_i]_{1 \leq i \leq n}) &\leq \\ \partial(\Theta, \Xi \vdash \Delta) + \sum_{\iota \in \Im} \sum_{i=1}^n \partial^{\Im}(\iota(\psi_i)) &\leq \\ \partial(\Theta, \Xi \vdash \Delta) + |\Im| \cdot \sum_{i=1}^n \partial_{|\Im|}(\psi_i) &< \\ \partial(\Theta, \Xi \vdash \Delta) + \partial_{|\Im|}(\phi) &= \\ \partial(\Theta, \Xi \vdash \Delta) + \partial^{\Im}(\varphi) &= & \partial(\Gamma \vdash \Delta). \end{array}$$

By the induction hypothesis, Θ , $(\Gamma'[p_i/\psi_i]_{1 \le i \le n}), \Xi \vdash \Delta, (\Delta'[p_i/\psi_i]_{1 \le i \le n}) \in \operatorname{Cn}_{\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}}(\emptyset)$ for all $\Gamma' \vdash \Delta' \in \lambda_{\mathcal{T}}(\iota(F))$. By Definition 1(v), this yields $\Gamma \vdash \Delta \in \operatorname{Cn}_{\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}}(\emptyset)$. The case $\xi \in \Delta$ is analyzed in a similar way but with using (2).

Remark that the proof of Theorem 2 generalizing the proof of Theorem 3.2 of [10], which in its turn goes back to [9] and which has been used in [12], is constructive and, provided L is finite, gives an effective procedure which uses a given \mathcal{T} and enables us to determine the derivability of sequents in $\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}$ and (in case of the derivability) to search a derivation. By Proposition 4.3 of [12] and Theorem 2, we get

COROLLARY 1. Structural rules (including Contraction) are admissible in $\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}, \text{ and so } \operatorname{Cn}_{\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}}(\emptyset) = \operatorname{Cn}_{\widehat{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)}}(\emptyset) = \operatorname{Cn}_{\widetilde{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)}}(\emptyset). \text{ In particular, Cut} is admissible in \widehat{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)} \text{ and is eliminable from } \widetilde{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)}.$

It is easy to check that the sequential consequence $\operatorname{Cn}_{\widetilde{\mathcal{S}}^{(k,l)}_{i,i,\sigma}}$ is enlargable in the sense of p. 78 of [12]. Therefore, by Theorem 4.2 and Proposition 4.3 of [12], taking the finitarity of $\operatorname{Cn}_{\widetilde{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)}}$ (see p. 77 of [12]) and $\operatorname{Cn}_{\mathcal{M}}^{(k,l)}$ (see p. 79 of [12]) into account, Theorem 2 and Corollary 1 yield

COROLLARY 2. $\operatorname{Cn}_{\widetilde{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)}} = \operatorname{Cn}_{\mathcal{M}}^{(k,l)}$.

Since $\emptyset \neq D \neq A$, $\{\vdash; p \vdash; \vdash p\} \cap \operatorname{Cn}_{\mathcal{M}}^{(k,l)}(\emptyset) = \emptyset$. Therefore, $\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}$ and $\widehat{\mathcal{S}}_{\mathcal{M},\mathcal{I}}^{(k,l)}$ consist of connective-introducing rules (see Subsection 3.6 of [11]) and some structural rules except for Cut. Then, by Theorem 3.30 of [11], we have

PROPOSITION 2. Neither $\operatorname{Cn}_{\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}}$ nor $\operatorname{Cn}_{\widehat{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)}}$ is algebraizable.

Moreover, by Lemma 3.31 of [11], the instance $\frac{p \vdash q, p_1, p \vdash q}{p \vdash q}$ of Cut is derivable neither in $\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}$ nor in $\widehat{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)}$. Hence, we get

PROPOSITION 3. $\operatorname{Cn}_{\widetilde{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)}} \neq \operatorname{Cn}_{\widetilde{\mathcal{S}}_{\mathcal{M},\mathcal{T}}^{(k,l)}} \neq \operatorname{Cn}_{\mathcal{S}_{\mathcal{M},\mathcal{T}}^{(k,l)}}$

Clearly, every functionally-complete finitely-valued logic having both distinguished and non-distinguished values (in particular, every finitelyvalued logic of Post) has an equality determinant. (Notice that such a logic has neither 0- nor 1-subalgebras, and so k = l = 0.) Let us mention more denumerable classes of finitely-valued logics having an equality determinant.

EXAMPLE 1. (Two-valued logics) Let $A := \{f, t\}$, where f and t are different truth values, and $D := \{t\}$. Then, $\Im := \{p\}$ is an equality determinant for \mathcal{M} .

Example 1 covers the classical logic and its fragments.

EXAMPLE 2. (Three- and four-valued logics with constructive negation) Suppose that L contains a unary connective \neg treated as *constructive negation*. Let $\{f,t\} \subset A \subseteq \{f,t,n,b\}$, where f,t,n,b are different truth values, $D := A \cap \{t,b\}, \neg f \in D, \neg t \notin D, n \in A \Rightarrow \neg n \notin D$ and $b \in A \Rightarrow \neg b \in D$. Then, $\Im := \{p, \neg p\}$ is an equality determinant for \mathcal{M} .

Example 2 covers, in particular, 12 four-valued logics studied in [12], [11], [10]¹, including the logic of first-degree entailments in the relevance system [4], [5] known also as Dunn-Belnap's four-valued logic [4], [1], as well as three-valued logics studied in [11], [9], including the logic of first-degree entailments (in Dunn's sense [4], [5]) in Dummett's LC [2] (cf. Definition 4.80 of [11] and the paragraph after it). Notice that the calculi introduced in [12], [11], [10], [9] can be constructed upon the basis of some sequential tables with using Definition 1. And what is more, Theorem 2, Corollaries 1 and 2 as well as Propositions 2 and 3 generalize corresponding results of [12], [11], [10], [9]. As a one more logic covered by Example 2, we should like to highlight Dunn's RM3 [3], for which no appropriate cut-free Gentzen-style calculus has been known until the present paper.

EXAMPLE 3. (Finitely-valued Lukasiewicz logics) [7] Let $L := \{\wedge, \lor, \supset, \neg\}$, where \land (conjunction), \lor (disjunction) and \supset (implication) are binary infix connectives and \neg (negation) is a unary connective, $n \ge 2$, $A := \{\frac{i}{n-1} \mid i < n\}$, $D := \{1\}$, $a \land b := \min(a, b)$, $a \lor b := \max(a, b)$, $a \supset b := \min(1, 1-a+b)$ and $\neg a := 1-a$ for all $a, b \in A$. In case $n \ge 4$, \mathcal{M} falls into neither Example 1 nor Example 2. Nevertheless, \mathcal{M} has an equality determinant consisting of n-1 elements. Take any 0 < i < n-1. Consider the function $f_i : [0, 1] \rightarrow \mathbf{R}$ given by $f_i(x) := (n-1)x - (i-1)$ for all $x \in [0, 1]$. Then, by McNaughton's Lemma [8], there is some $\gamma_i(p) \in Fm_L$ such that $\gamma_i^{\mathcal{A}}(a) = \min(\max(f_i(a), 0), 1)$ for all $a \in A$. Remark that, for all j < n, $\gamma_i^{\mathcal{A}}(\frac{j}{n-1}) \in D \Leftrightarrow i \le j$. Finally, it is easy to check that $\Im := \{p\} \cup \{\gamma_i : 0 < i < n-1\}$ is an equality determinant for \mathcal{M} con-

¹In [12] the notations $\sim, 0, 1, \perp, \top$ are used instead of \neg, f, t, n, b , respectively.

sisting of n-1 elements. Notice that \mathcal{M} has neither 0- nor 1-subalgebras. Therefore, k = l = 0.

EXAMPLE 4. As logics with equality determinant covered by neither Example 1 nor Example 2 nor Example 3, we should like to highlight arbitrary fragments and expansions of the 16-valued trilattice logic suggested by Dunn, et al., in [6] with $D = \{a \in A \mid \mathbf{T} \in a\}, L \supseteq \{\sim_t, \sim_c\}$ and $\Im = \{p, \sim_t p, \sim_c p, \sim_t \sim_c p\}.$

References

[1] N. D. Belnap, A useful four-valued logic, [in:] Modern uses of multiple-valued logic, D. Reidel Publishing Company, J. M. Dunn and G. Epstein (eds.), Dordrecht, 1977, pp. 8–37.

[2] M. Dummett, A propositional calculus with denumerable matrix, Journal of Symbolic Logic 24 (1959), pp. 97–106.

[3] J. M. Dunn, Algebraic completeness results for *R*-mingle and its extensions, **The Journal of Symbolic Logic** 35 (1970), pp. 1–13.

[4] J. M. Dunn, Intuitive semantics for first-order-degree entailment and 'coupled tree', Philosophical Studies 29 (1976), pp. 149–168.

[5] J. M. Dunn, *Relevance logic and entailment*, [in:] Handbook of Philosophical Logic, vol. III, D. Reidel Publishing Company, D. Gabbay and F. Guenther (eds.), Dordrecht, 1986, pp. 117–224.

[6] J. M. Dunn, Y. Shramko and T. Takenaka, *The trilattice of con*structive truth values, **Journal of Logic and Computation** 11 (2001), pp. 761–788.

[7] J. Łukasiewicz, *O logice trójwartościowej*, Ruch Filozoficzny 5 (1920), pp. 170–171.

[8] R. McNaughton, A theorem about infinite-valued sentential logic, Journal of Symbolic Logic 16 (1951), pp. 1–13.

[9] A. P. Pynko, A structural semantic approach to constructing propositional logical systems (in Russian), Preprint Pr-1815 (Russian Academy of Sciences, Space Research Institute, Moscow, February 1992), 33pp.

[10] A. P. Pynko, Characterizing Belnap's logic via De Morgan's laws, Mathematical Logic Quarterly 41 (1995), pp. 442–454.

[11] A. P. Pynko, Definitional equivalence and algebraizability of generalized logical systems, Annals of Pure and Applied Logic 98 (1999), pp. 1–68. [12] A. P. Pynko, Functional completeness and axiomatizability within Belnap's four-valued logic and its expansions, Journal of Applied Non-Classical Logics 9 (1999), pp. 61–105.

[13] K. Schröter, Methoden zur Axiomatisierung beliebiger Aussagenund Prädikatenkalküle, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 1 (1955), pp. 214–251.

Department 100 Institute of Cybernetics Glushkov prosp. 40, Kiev-187 (GSP) 03680, Ukraine e-mail: pynko@hotmail.com