
Orchestration of E-Learning Services 
for Automatic Evaluation of Programming Exercises 

 
 

Ricardo Queirós 
(CRACS & INESC-Porto LA & DI-ESEIG/IPP, Porto, Portugal 

ricardo.queiros@eu.ipp.pt) 
 

José Paulo Leal 
(CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Portugal 

zp@dcc.fc.up.pt) 
 
 
 

Abstract:  Managing programming exercises require several heterogeneous systems such as 
evaluation engines, learning objects repositories and exercise resolution environments. The 
coordination of networks of such disparate systems is rather complex. These tools would be too 
specific to incorporate in an e-Learning platform. Even if they could be provided as pluggable 
components, the burden of maintaining them would be prohibitive to institutions with few 
courses in those domains. This work presents a standard based approach for the coordination of 
a network of e-Learning systems participating on the automatic evaluation of programming 
exercises. The proposed approach uses a pivot component to orchestrate the interaction among 
all the systems using communication standards. This approach was validated through its 
effective use on classroom and we present some preliminary results. 
 
Keywords: e-Learning; Interoperability; Service Oriented Architectures. 
Categories: D.3, L.1.2, L.3.0, L.3.6 

1 Introduction  

Learning programming involves more than the knowledge of programming language 
syntax and algorithms. It requires the development of skills in problem understanding, 
problem-solving, debugging strategies, and unit testing, among others. These skills 
are acquired by the resolution, on a regular basis, of programming exercises. 
However, programming exercises, like in any type of exercise, must be evaluated and 
students must receive feedback on their work. Otherwise students may consolidate 
false beliefs based on the exercises where they did not achieve the intended goal 
[Truong, 07], [Wang, 08]. 
    Creating, managing, accessing, evaluating and proving feedback on a large number 
of exercises, covering all the points in the curricula of a programming course, in 
classes with large number of students, can be a daunting task without the appropriated 
tools working in unison. The best tools for this job cannot be found on a single 
system. They are found on the best-of-bread for each category; whether it is tool for 
developing programs or a tool to automatically evaluate them.  

The architecture of e-Learning platforms is in fact moving away from centralised 
systems towards decentralised networks of heterogeneous systems [Leal, 10]. There 
are several types of systems participate in those networks ranging from existing e-

Journal of Universal Computer Science, vol. 18, no. 11 (2012), 1454-1482
submitted: 30/11/11, accepted: 15/5/12, appeared: 1/6/12 © J.UCS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357201353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Learning systems to supporting services for specialized tasks. These systems and 
services may participate in various learning processes that can be easily reconfigured 
to meet changing requirements and demands. We are particularly interested in 
networks of e-Learning systems providing services related to the automatic evaluation 
of programming exercises. Networks of this kind include heterogeneous systems such 
as Learning Management Systems (LMS), Evaluation Engines (EE), Learning Objects 
Repositories (LOR) and Integrated Development Environments (IDE). These types of 
systems have a completely different nature. Some expose their functions as web 
services, such as LOR or EE. Others have their own web interfaces for students and 
teachers, such as LMS. Some, as is the case with IDE - that we use as an exercise 
resolution environment - were not even designed to interact in the e-Learning realm 
and must be extended for that purpose. Modelling a network with such heterogeneity 
is rather complex and, at the same time, challenging. 

The main goal of the research described in this paper is to study the applicability 
of e-Learning specifications for designing and implementing an integration model for 
a network of services for programming languages learning. A network of this kind 
will help students to solve programming exercises and to receive automatic feedback 
on the quality of their solutions. The paper is based on previous work [Leal, 11] 
where we explore the possibility of embedding a pivot component in an LMS that 
acted as an exercise resolution environment and coordinated the communications 
between the LMS and a set of web services. In this work, the novel idea is the 
integration of an IDE in the e-Learning network, introducing the students to a 
programming tool that they will continue to use latter on their active life.  

The remainder of this paper is organized as follows: section 2 analyses e-Learning 
interoperability on several facets such as frameworks and specifications. Section 3 
presents the overall architecture of a network of e-Learning systems participating in 
the resolution and automatic evaluation of programming exercises. We highlight the 
interoperability features of the network based on content and communication 
specifications. In the former, we describe the approach used to define programming 
exercises as learning objects. In the latter we enumerate and explain the 
communication specifications used on the network to ensure a standard 
communication among all the network components. In section 4 we start by describe 
an early initiative that based our current work. Then, we present our current approach 
by identifying the systems used in the current network and how they relate to each 
other. In the end of this section we detail the effective use of this work on classroom 
and provide usage data to validate the feasibility of this network regarding the 
interoperability efforts made. Finally, the paper summarizes and point out the main 
contributions of this work while revealing some open challenges for research on this 
topic. 

2 E-Learning interoperability 

This section presents the state-of-the-art in e-Learning systems interoperability from 
different perspectives, starting with generic frameworks and proceeding with specific 
types of e-Learning systems involved in this research, such as automatic assessment 
systems, learning management systems and learning object repositories. 
 

1455Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



2.1 Frameworks  

The principles of Service Oriented Architecture (SOA) are an established trend in 
software design and development and there are several initiatives to adapt them to e-
Learning [Leal, 10]. These initiatives, commonly named eLearning frameworks, have 
a same common goal: to provide flexible learning environments for learners 
worldwide. While e-Learning frameworks are general approaches for e-Learning 
system integration, several authors proposed service oriented approaches specifically 
targeted to some of the previously mentioned types of e-Learning systems, such as the 
LMS and the LOR. Regarding the former, there are several references in the literature 
to middleware components for LMSs integration in SOA based e-Learning systems.  

Apostolopoulos proposes a middleware component [Apostolopoulos, 03] to 
address the lack of integration of e-Learning services. In this approach the e-Learning 
components are implemented as agents maintained in a local management 
information base, and can communicate with the agent manager through the Simple 
Network Management Protocol (SNMP).  

Casella developed an architecture based on a middleware component [Casella, 07] 
that uses Web Services to integrate different software components and to improve 
interoperability among different systems. The middleware component enables the 
student learning process traceability since it has been developed to be compliant with 
Sharable Content Object Reference Model (SCORM). 

2.2 Assessment systems 

Service-orientation has been proposed also specifically for assessment systems. Al-
Smadi presents a SOA [Al-Smadi, 10] for a generic and flexible assessment system 
with cross-domain use cases. There are several other assessment systems that support 
integration with specific LMS by providing the evaluation results on the LMS grade 
book. AutoGrader, CTPraticals and EduComponents are integrated with specific 
LMS, respectively, CascadeLMS, Moodle and Plone. All these approaches have in 
common the need of a modification of LMS for each specific vendor, with the 
implementation of a new module or building block. Alstes developed an assessment 
system called Verkkoke [Alstes, 07] that does not depend on a specific LMS and can 
be integrated on any LMS that supports the SCORM specification. To the best of the 
authors’ knowledge there are no more references in the literature to the use of 
common standards supported by the major LMS vendors as a means to integrate the 
LMS in a service oriented network of e-learning systems participating on automatic 
evaluation of programming exercises. 

2.3 Learning Management Systems 

SOA has been adopted in several e-Learning projects and from different perspectives 
within the e-Learning domain. An extensive review [Riad, 09] reveals that services 
based learning systems promotes integration, interoperability, and scalability and they 
are recommended in order to fulfil the demanding e-Learning systems architectural 
requirements. There have been several initiatives to join LMS to other applications. 
Those initiatives can be organized in three groups [Conde, 11]:  

1456 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



 LMS defined from scratch based on service-oriented architectures [Al-Smadi, 
10] and [Casquero, 10]; 

 Inclusion of web services layers within the LMS infrastructure [Conde, 10], 
[de-la-Fuente-Valentín, 08] and [Severance, 08]; 

 Support to interoperability specifications [Leal, 11]. 
Although web services open the LMS to other applications, they do not provide a 
standard solution among the broader range of LMS in the Web. In order to provide a 
real integration approach, interoperability specifications (e.g IMS LTI, OKI) must be 
taken into account [Severance, 08]. This would be the case for applications that 
require graphical interaction in order to be used. In this scope, IMS launched in 2011 
the IMS Learning Tools Interoperability (LTI) [IMS LTI, 11] aiming to provide an 
uniform standards-based extension point in LMS allowing remote tools and content to 
be integrated into LMSs. The main goal of the LTI is to standardize the process for 
building links between learning tools and the LMS. The LTI has 3 key concepts: the 
Tool Provider, the Tool Consumer and the Tool Profile. The tool provider is a 
learning application that runs in a container separate from the LMS. It publishes one 
or more tools through tool profiles. A tool profile is an XML document describing 
how a tool integrates with a tool consumer. It contains tool metadata, vendor 
information, resource and event handlers and menu links. The tool consumer 
publishes a Tool Consumer Profile (XML descriptor of the Tool Consumer's 
supported LTI functionality that is read by the Tool Provider during deployment), 
provides a Tool Proxy Runtime and exposes the LTI services. A LTI subset was 
launched in 2010 - called IMS Basic LTI – to expose a single (but limited) connection 
between the LMS and the tool provider. In this subset, there is no provision for 
accessing run-time services in the LMS and only one security policy (OAuth 
protocol) is supported. 

2.4 Learning Object Repositories 

Some interoperability efforts [IMS DRI, 03], [Eap, 04], [McCallum, 06], [Ternier, 10] 
address the interoperability issues on a specific component: the repository. A 
repository of learning objects can be defined as a ‘system that stores electronic objects 
and meta-data about those objects’ [Holden, 04]. The need for this kind of repositories 
is growing as more educators are eager to use digital educational contents and more of 
it is available. Several surveys on repositories [RSP, 10][Holden, 04] [Neven, 02] 
showed that the interoperability is a major issue that is not completely addressed by 
the existing systems. The IMS DRI specification appeared to overcome this issue. It 
was created by the IMS Global Learning Consortium (IMS GLC) and provides a 
functional architecture and reference model for repository interoperability. The IMS 
DRI provides recommendations for common repository functions, namely the 
submission, search and download of LO. It recommends the use of web services to 
expose the repository functions based on the Simple Object Access Protocol (SOAP) 
protocol, defined by W3C. Despite the SOAP recommendation, other web service 
interfaces can be used, such as, Representational State Transfer (REST) [Fielding, 
05].  

1457Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



3 Network architecture 

In this section we present the overall architecture of a network of e-Learning systems 
participating in the resolution and automatic evaluation of programming exercises. 
The architecture [Fig. 1] is composed by the following components:  

 
Learning Objects Repository (LOR) to store and retrieve exercises;  
Evaluation Engine (EE) to evaluate students’ exercises;  
Learning Management System (LMS) to present the exercises to students;  
Integrated Development Environment (IDE) to code the exercises. 
Pivot Component to mediate the communication among all components. 

 
In order to fulfil this goal, the integration of the pivot component with the other 

systems must rely on content and communication standards. Using content and 
communication standards we can abstract the use of specific systems for each type of 
system. For instance, we can use on this network any repository as long it supports the 
IMS CC specification to formalize the description of programming exercises and it 
implements the IMS DRI specification for communication with other services. 

 
 

Figure 1: UML components diagram of the repository. 

3.1 Pivot component 

The pivot component coordinates the communication among all the components of 
the network from the LMS where students start the instruction until the IDE where 
students solve the exercises. This pivot component orchestrates all the 
communications within a single instance of the network. Since it is distributed over 
each network use (they are replicated on the users' machines for each instance of the 
network) this approach prevents any single-point-of-failure issues that might occur. 

This pivot component will typically interface with two types of user profiles: 
teachers and students. In order to author and deploy a programming exercise using the 
pivot component teachers must perform the following three tasks: 

1458 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



 Create programming exercises; 

 Deploy programming exercises in a repository; 

 Configure programming activity in LMS. 

In order to solve programming exercises using the pivot component students 
performs the following two tasks: 

 Select an activity in the LMS; 

 Execute the activity using the IDE and the interface offered by the pivot 
component. 

In this scenario, the teacher sets a number of activities (exercises) in the LMS by 
selecting a set of relevant programming exercises from the LOR. Then, the learner 
tries to solve the exercises assigned by the teacher using the pivot component 
(launched by the LMS). The pivot component recovers the exercise description from 
the LOR and shows it to the student. After coding the program in the IDE the student 
uses the pivot component to send an attempt to the EE. The student may submit 
repeatedly, integrating the feedback received from the EE. In the end, the EE sends a 
grade to the pivot component and reports the LO usage data back to the LOR. This 
last task will provide data for future adaptability services that will adjust the 
presentation order in accordance with the effective difficulty of programming 
exercises (not the difficulty stated on the LO) and the needs of a particular student. 

This architecture can be reused in other contexts where automatic evaluation is 
needed to assess sutdents performence, where a place to store exercises is required 
and even where a tool to track students and gather their grades is mandatory. In this 
case, the pivot component needs to be reimplemented while preserving the 
interoperability specifications guidelines detailed in this paper.  

Regarding the evaluation of languages, this approach is not confined strictly to 
programming languages, and other languages can be used such as query languages 
(e.g. SQL), modeling languages (e.g. UML) and user interfaces (e.g. HTML).  
However, this architecture is not specific for the programming domain. This model of 
combining specialized services can be extended to competitive learning in other 
domains such as business training, for instance. In this domain teachers use business 
simulation games to improve the strategic thinking and decision making skills 
students in particular areas (e.g. finances, logistics, and production). Through these 
simulations students compete among them, as they would in a real world companies. 
A business simulation service fulfils a role similar to that of the EE in programming 
exercises and it also requires a repository containing specialized LO describing 
simulations. 

3.2 Data Model 

The concept of Learning Object (LO) is crucial for the standardization on e-Learning. 
The latest standard for LO is the IMS Common Cartridge (IMS CC). The IMS 
Common Cartridge specification defines an open format for the distribution of rich 
web-based content. Its main goal is to organize and distribute digital learning content 
and to ensure the interchange of content across any Common Cartridge conformant 

1459Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



tools. In its latest version (1.2) released in October 2011 [IMS CC, 11], the IMS CC 
package organizes and describes a learning object based on two levels of 
interoperability: content and communication. At the content level, the IMS CC 
distinguishes two types of resources:  
 Web Content Resources (WCR): static web resources that are supported on the 

Web such as HTML files, GIF/JPEG images, PDF documents, etc. 
 Learning Application Objects (LAO): special resource types that require 

additional processing before they can be imported and represented within the 
target system. Physically, a LAO consists of a directory in the content package 
containing a descriptor file and optionally additional files used exclusively by 
that LAO. Examples of Learning Application Objects include QTI 
assessments, Discussion Forums, Web links, etc. 

In the communication level the cartridge describes how the target tool of the 
cartridge (usually a LMS) should communicate with other remote web applications 
using the IMS Basic LTI specification. Both levels enhance the interoperability of the 
cartridge among a network of eLearning systems. In this scope a new IMS CC 
specification feature is introduced to support authorization at two levels: either the 
whole cartridge can be protected or individual resources can be protected. In the 
following subsections we detail the most important elements of the CC content 
hierarchy. 

A view of the CC manifest is depicted in [Fig. 2]. The manifest is composed by 
four sections: metadata, organizations, resources and authorizations. The Metadata 
section is used to store the cartridge metadata restricted to a loose binding of IEEE 
Learning Object Metadata (LOM) elements based on the Dublin Core (DC) 
specification. The Organization section will be used to represent the Common 
Cartridge Folder content type as a structural approach to organize content. The 
Resources section will be used to refer assets included in the cartridge. The 
authorizations section extends the manifest to protect the learning object (or a specific 
resource) as a whole. 

In order to describe a programming exercise as a LO we developed an XML 
dialect called PExIL [Queirós, 11], standing for Programming Exercises 
Interoperability Language. The aim of PExIL is to consolidate in a single document 
all the data required in the programming exercise life-cycle, from when it is created to 
when it is graded, covering also the resolution, the evaluation and the feedback. 
PExIL documents can be used for authoring LOs containing programming exercises. 
The generation of an LO is based on a valid PExIL instance. The Generator tool uses 
as input a solution file and produces automatically several resources (e.g. exercise 
description, test cases and feedback files) described by a valid IMS CC manifest and 
wrapped up inside a ZIP file. 

 
 
 
 
 

 
 
 

1460 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



 

 

Figure 2: The structure of an IMS CC package. 

3.3 Digital Repositories Interoperability (DRI) 

A learning objects repository (LOR) is a system that stores electronic educational 
resources in a technology-mediated learning process. The number of LOR is growing 
rapidly [Neven, 02] as more educators are eager to use digital educational contents 
and more of it is available. At the same time users become more demanding and 
concerned with issues that are not completely addressed by the existing systems, such 
as interoperability. Moreover, for some specialized domains, such as computer 
programming, the existing standards are insufficient and need to be extended. In this 
sub-subsection we detail the communication features of crimsonHex, a LOR 
developed to support the requirements of evaluating engines.  

The crimsonHex API exposes the functions of the repository to third party systems 
by adhering to the IMS DRI specification [IMS DRI, 03]. The IMS DRI specifies a 
set of core functions and an XML binding for these functions. In the definition of API 
of crimsonHex we needed to create new functions and to extend the XML binding 
with a Response Specification language. The complete set of functions of the API and 
the extension to the XML binding are also both detailed in this section. 

To comply with standards, the IMS DRI recommends the implementation of core 
functions as web services. We chose to implement two distinct flavours of web 
services: SOAP and REST. SOAP web services are usually action oriented, mainly 
when used in Remote Procedure Call (RPC) mode and implemented by an off-the-
shelf SOAP engine such as Axis. The web services based on the REST style are 
object (resource) oriented and implemented directly over the HTTP protocol, mostly 
to put and get resources (such as LOs and usage data). The reason to implement two 
distinct web service flavours is to promote the use of the repository by adjusting to 

1461Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



different architectural styles. The repository functions [Leal, 09] are summarized in 
[Tab. 1].  

 
Function SOAP REST 
Reserve URL getNextId() GET /nextId > URL 
Submit submit(URL loid, LO lo) PUT URL < LO 
Request LO retrieve(URL loid) GET URL > LO 
Search XML search(XQuery query) POST /query < XQUERY > XML 
Report Report(URL loid,LOReport rep) PUT URL/report < LOREPORT 
Alert RSS getUpdates() GET /rss > RSS 
Create XML Create(URL collection) PUT URL 
Remove XML Remove(URL collection) DELETE URL 
Status XML getStatus() GET URL?status > XML 

Table 1:  Core functions of the repository. 

Each function is associated with the corresponding operations in both SOAP and 
REST web services interfaces. The lines formatted in italics correspond to the new 
functions added to the DRI specification, to improve the repository communication 
with other eLearning systems. 

To describe the responses generated by the repository we defined a Response 
Specification as a new XML document type formalized in XML Schema. The 
advantage of this approach is to enable client systems to achieve more information 
from the server and be able to standardize the parsing and validation of the HTTP 
responses. [Fig. 3] depicts the elements of the new language and their types. 
 

 

Figure 3: The Response specification schema. 

The schema defines two top level elements: result and rss. The former will be 
used by all the functions except the Alert function that returns a feed compliant with 
the Really Simple Syndication (RSS) 2.0 specification. The result element contains 
the following child components: 

 base-url– defines a base URL for the relative URLs in the response; 
 request – contains the full request URL and an human readable request 

message; 
 error - contains an error message - client systems will search for this 

element to verify the existence of errors; 
 response – describes a successful execution of the function – it is composed 

by an human readable response message and, for some functions, by a 

1462 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



resources element that groups a set of resources  defined individually in 
resource elements. A resource element contains an identification of the 
collection absolute path (attribute idCol) and an identification of the LO 
itself (attribute idLo). 

In the remainder of this section we enumerate the Core functions of the repository, 
describing both the request and response data. For sake of simplicity we illustrate the 
requests using the REST interface since these can be used as command lines in a 
Linux system shell. 

The Register/Reserve function requests a unique ID from the repository. We 
separated this function from Submit/Store in order to allow the inclusion of the ID in 
the meta-data of the LO itself. This ID is an URL that must be used for submitting or 
retrieving an LO. The producer may use this URL as an ID with the guarantee of its 
uniqueness and with the advantage of being a network location from where the LO 
can be downloaded. This action is performed, for instance, by sending a GET HTTP 
request to the server, as in the following example. 
 
GET http://server/ch/lo?nextId > URL 

 
The HTTP response includes an XML file complying with the Response 

Specification and containing all the details of the response generated by the Core. 
Nevertheless, in this particular function and for convenience of programmers using 
REST, the HTTP Location header contains the URL returned by the server. 
 
Location: http://server/ch/lo/3 

 
The Submit/Store function uploads an LO to a repository and makes it available 

for future access. This operation receives as argument an IMS CP compliant file and 
an URL generated by the Reserve function. This operation validates the LO 
conformity to the IMS Package Conformance and stores the LO in the internal 
database. To send the LO to the server we could use, in the REST flavour, the PUT or 
the POST HTTP methods. An example using the POST syntax is the following. 
 
POST http://server/ch/lo/3 < LO 

 
The repository responds with submission status data compliant with the Response 

Specification. 
 

The Search/Expose function enables the eLearning systems to query the 
repository using the XQuery language, as recommended by the IMS DRI. This 
approach gives more flexibility to the client systems to perform any queries supported 
by the repository's data. After creating the XQuery file you can use the following 
POST request. 
 
POST http://server/ch/lo < XQUERY 

 
Alternatively, you can use a GET request with the searched fields and respective 
values as part of the URL query string, as in the following example.   
 

1463Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



GET http://server/ch/lo?author=Manzoor 
 

Queries using the GET method are convenient for simple cases but for complex 
queries the programmer must resort to the use of XQuery and the POST method. In 
both approaches the result is a valid XML document such as the following. 
 
<result base-url="http://server/ch/lo/"> 
 <request  
  source="http://server/ch/lo/" 
  message="Querying repository" /> 
 <response message="3 LOs found..."> 
<resources> 
   <resource idCol="" idLo="5"> 
     Hashmat the Brave Warrior 
   </resource> 
   <resource idCol="" idLo="123"> 

  Summation of Four Primes 
</resource> 

   <resource idCol="graphs/" idLo="2"> 
  InCircle 
</resource> 

</resources> 
 </response> 
</result> 
 

The Report/Store function associates a usage report to an existing LO. This 
function is invoked by the LMS to submit a final report, summarizing the use of an 
LO by a single student. This report includes both general data on the student's attempt 
to solve the programming exercise (e.g. data, number of evaluations, success); 
particular data on the student’s characteristics (e.g. gender, age, instructional level).  
With this data, the LMS will be able to dynamically generate presentation orders 
based on previous uses of LO, instead of fixed presentation orders. This function is an 
extension of the IMS DRI. 
 

The Alert/Expose function notifies users of changes in the state of the repository 
using a RSS feed. With this option a user can have up-to-date information through a 
feed reader.  
 
Next, we present an example of a GET HTTP request. 
 
GET http://server/ch/lo?alert+seconds > RSS 

 
The repository responds with an RSS document. 
 

The Create function adds new collections to the repository. To invoke this 
function in the REST interface the programmer must use the PUT request method of 
HTTP. The only parameter is the URL of the collection. 
 
PUT http://server/ch/lo/newCol 

 
The following is an example of the repository response to a create function. 
 

1464 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



<result base-url="http://server/ch/lo/" ...> 
  <request 
    source="http://server/ch/lo/newCol" 
    message="Creating new collection" /> 
  <response message="Collection created"> 
 <resource idCol="newCol" idLo=""/>           
  </response> 
</result> 
 

The Remove function removes an existent collection or learning object. This 
function uses the DELETE request method of HTTP. The only parameter is an URL 
identifying the collection or LO, as in the following example. 
 
DELETE http://server/ch/lo/123 

 
The following is an example of the repository response to a remove function. 

 
<result base-url="http://server/ch/lo/" ...> 
  <request source="http://server/ch/lo/123" message="Deleting a LO" /> 
  <response message="LO deleted"> 
 <resource idCol="" idLo="123" /> 
  </response> 
</result> 
 

The Status function returns a general status of the repository, including versions 
of the components, their capabilities and statistics. This function uses the GET request 
method of HTTP, as in the following example. 
 
GET http://server/ch/lo?status 
 

The repository responds with status data compliant with the Response Schema 
Specification. 

3.4 Learning Tools Interoperability 

An LMS is a software application for the administration, documentation, tracking, 
and reporting of training programs, classroom and online events [Ellis, 09]. In the 
majority of the cases an LMS integrates with other systems based in one of three 
levels: 

Data Level - is the simplest and most popular form of integration in content 
management. This type of integration uses the import/export features of both 
systems and relies on the support of common formats  
API level - allows client applications to use directly the functions of an 
eLearning system. These APIs foster client application development through 
data encapsulation and behavioural reuse.  
Tools level - a uniform standards-based extension point in LMS allowing 
remote tools and content to be integrated into LMSs. 

 
The three levels were analysed in [Queirós, 11:2] and the last two prove to be the 

most efficient. Tool integration is arguably the best choice in general since it provides 
a good balance between implementation effort and coupling and security. This is 
especially true if only unidirectional communication is required and Basic LTI is 

1465Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



used. This tool integration flavour is simple to implement and is already supported by 
most LMS vendors. If bidirectional communication is required then full LTI is needed 
but in this case the implementation is harder and few LMS vendors support this 
flavour of the specification. In both cases, tool integration has the added value of 
providing some basic security features based on the OAuth protocol aiming to secure 
the message interactions between the Tool Consumer and the Tool Provider.    

Based on our previous research [Queirós, 11:2] we decide to use the LTI 
specification for the integration of the LMS with the pivot component. The workflow 
for using Basic LTI starts when the Teacher (or LMS administrator) configures the 
pivot component as a basic LTI tool in the LMS Control panel. Then, the Teacher 
must add the pivot into the course structure as a Basic LTI tool. This requires setting a 
resource link URL, a secret, and key as metadata for the resource link. Later on, when 
a student select the tool, the LMS uses the URL, secret, and key information to launch 
the pivot component in the student’s running environment. The pivot component 
receives a launch request that includes user identity, course information, role 
information, and the key and signature. The launch information is sent using an HTTP 
form generated in the user's browser with the Basic LTI data elements in hidden form 
fields and automatically submitted to the external tool using JavaScript.  

The following is a subset of the information that the LMS (Tool Consumer) sends 
to the pivot (Tool Provider): 
 
resource_link_id=1 //An unique identifier for the resource in the LMS. 
resource_link_title= My First Exercise //Title of the resource 
resource_link_description= Description... //Description of the resource. 
user_id=2 // User identifier 
user_image=myPhoto.gif // Profile picture. 
roles= Instructor,Administrator //List of one or more user roles. 
context_title=Course Fullname 101 //A title of the context (e.g. course information). 
 

All these data items are included on the POST data when a Basic LTI launch is 
performed. These data items can be used, for instance, to personalize the frontend of 
the tool provider.  

The pivot component is launched as a Java Web Start (JAWS) application, a 
framework that allows users to start JAVA application software directly from the 
Internet using a web browser. The Java Network Launching Protocol (JNLP), defined 
with an XML schema, specifies how to launch JAWS applications. This approach 
facilitates the pivot component to interact with the students IDE by using commands 
over the shell (file system) of the students’ runtime environment. 

Since the LTI specification supports only web-based Tool Providers we need to 
inject the LTI variables on the pivot component. The approach used was the creation 
of an Adapter (coded as a JAVA servlet) to dynamically generate a JNLP file “on-the-
fly” based on the LTI variables. After the generation, the Adapter redirects the request 
to the generated JNLP file in order to launch the JAWS program (Core component) as 
depicted in [Fig. 4]. 
 
 
 
 

1466 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



 

 

Figure 4: LTI workflow. 

The JNLP file is composed by a root element called jnlp. This element has a 
codebase attribute that specifies an URL base for all the relative URLs specified in 
href attributes in the JNLP file. The value of the attribute is generated according to 
the current system path of the pivot component Adapter. The root element has four 
sub-elements: information, security, resources and application-desc. 

The information element holds the name of the application (name element), the 
vendor of the application (vendor element), the home page for the application 
(homepage element), a reference for an image file to appear during launch when Java 
Web Start presents the application to the user (icon element) and a short statement of 
the application (description element). The security element can be used to 
request unrestricted access. Each application runs (by default) in a restricted 
execution environment, similar to the Applet sandbox.  The inclusion of the all-
permissions element guarantees that the application will have full access to the 
client machine and local network. If an application requests full access, then all JAR 
files must be signed. After that the user will be prompted to accept the certificate the 
first time the application is launched. The following code shows an excerpt of the 
generated JNLP file: 
 
<?xml version="1.0" encoding="utf-8"?> 
<jnlp spec="1.0+" codebase="$codeBase"> 
 <information> 
    <title>Pivot Component</title> 
    <vendor>eclipse.org</vendor> 
    <homepage href="$codeBase" /> 
  <icon href="resources/icon.png" /> 
  <icon href="resources/logo.png" kind="splash"/> 

<description> 
Application for assist teachers and students 
to practice programming exercises solving. 

</description> 
 </information> 
 <security> 
  <all-permissions /> 
 </security> 
 <resources> 
  <j2se version="1.5+" /> 
  <jar href="resources/Pivot_Component.jar" /> 
  ... 
 </resources> 

1467Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



 <application-desc main-class="Pivot"> 
  <argument>$colId</argument> 
  <argument>$studentFirstName</argument> 
  <argument>$courseName</argument> 
  ... 
 </application-desc> 
</jnlp>  
 

The resources element is used to specify all the resources, such as Java class 
files and native libraries which are part of the application.  A jar element specifies a 
JAR file that is part of the application's classpath. The jar file is loaded into the JVM 
using a ClassLoader object.  The jar file contains Java classes and other resources, 
such as icons and configuration files (available through the getResource 
mechanism). The j2se element specifies what Java 2 SE Runtime Environment 
(JRE) versions are supported by the application. 

The application-desc element indicates that the JNLP file is launching an 
application (as opposed to an applet). The application element has an optional 
attribute, main-class, which can be used to specify the name of the application's 
main class, i.e., the class that contains the public static void main(String 
argv[]) method where execution must begin. Arguments can be specified to the 
application by including one or more nested argument elements.  

3.5 Evaluation service 

The purpose of a programming exercise evaluator is to mark and grade exercises in 
computer programming courses and in programming contests. By exposing its 
functions as services, an evaluator of this kind is able to participate in business 
processes integrating different system types. To formalize the definition of this 
service we used a particular e-Learning framework, the E-Framework. The new 
service - Evaluate Programming Exercise - models the evaluation of an attempt to 
solve a programming exercise defined as a LO and produces a detailed report [Leal, 
10:2]. This evaluation report includes information to support exercise assessment and 
grading by client systems. The three types of request handled by this service are: 

 
ListCapabilities - provides the client systems with the evaluator capabilities; 
EvaluateSubmission - allows the request for a programming exercise evaluation; 
GetReport - allows a requester to get an evaluation report using a ticket. 
 

Their syntax as SOAP and REST web services is summarized in [Tab. 2].  
 
Function WS Syntax 

ListCapabilities SOAP ERL ListCapabilities() 
REST GET /evaluate/ > ERL 

Evaluate SOAP ERL Evaluate (LO, Attempt ,Capability, Language) 
REST POST /evaluate/$CID?id=LOID&lang=LANG < PROGRAM > ERL 

GetReport SOAP ERL GetReport(Ticket) 
REST GET $Ticket > ERL 

Table 2: Core functions of the Evaluation Engine. 

1468 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



All these functions respond with an XML document complying with the 
Evaluation Response Language (ERL) [Leal, 10:2]. The ERL is formalized in XML 
Schema and covers the definition of the response messages for the three evaluator 
functions. The specification includes two main elements: request and reply. The 
former echoes the request function and its parameters as received by the evaluation 
service. It contains a different sub-element according to the function type. The reply 
element depicted in [Fig. 5] contains the output to that request.  

 

 

Figure 5: The reply element. 

The reply element includes the possible responses of the service, more precisely, 
the capabilities element for the ListCapabilities function and the token and 
report elements for the Evaluate function.  The former has several capability 
sub-elements each with several feature elements to describe it. The latter element 
includes a token element which holds a ticket to recover a report on a later date and 
the optional report element with the effective evaluation data.  

Next, we detail the three functions of the Evaluate service. 
 
The ListCapabilities function informs the client systems of the capabilities of a 

particular evaluator. In a computer programming evaluator the capabilities are related 
with the programming language compiler or interpreter. Each capability has a number 
of features to describe it and for a programming language they may be the language 
name (e.g. Java) its version (e.g. 1.5) and vendor (e.g. JDK). In this function, the 
request doesn’t accept any parameter and the response returns a list of all capabilities 
of the evaluator. Each capability is described by a list of features, with a name and a 
value. Using the REST API this operation is performed by sending a GET HTTP 
request to the evaluator, as in the following example.  

 
GET http://eval.domain.org/evaluate > ERL  
 
The following document is an example of the HTTP response complying with the  

ERL specification.  
 
<message date="2001-12-31T12:00:03"> 
 <request date="2001-12-31T12:00:03"/> 

1469Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



 <reply date="2001-12-31T12:00:05" > 
   <capabilities> 
    <capability id="MyService.C">  
  <feature name="Compiler" value="gcc"/> 

 <feature name="Compile" value="/usr/bin/gcc -lm $file"/> 
  ... 
 </capability> 
   </capabilities> 
 </reply> 
</message> 

 
The EvaluateSubmission function allows the request of an evaluation for a 

specific exercise. The request includes a reference to an exercise represented as a LO 
held in a repository and a single attempt to solve a particular exercise. The request 
also includes a specific evaluator capability necessary for a proper evaluation of the 
attempt. The request may also include a specific ISO 639-1 language for the 
evaluation report. The response returns a ticket for a later report request and may 
return also a circumstantial report about the respective evaluation of the requester 
attempt. A sequence diagram of this function is shown in [Fig. 6]. 

The service endpoint provides the interfaces for the requests and responses for the 
evaluation functionality. Internally the service implementation may include several 
features (indexing, queuing, transforming, flow control, etc.) needed to provide the 
defined functionality and a connection with a remote data source holding the objects 
such as a LOR. The evaluator returns an evaluation report, if completed within a 
predefined time frame. 
 

 
Figure 6: Sequence diagram of the Evaluate function. 

 
Using the REST API this operation is performed by sending a POST HTTP 

request to the server, as in the following example.  
 
POST http://eval.domain.org/evaluate/java1.6?  

id=http://lor.domain.org/lo/123&lang=pt < PROGRAM > ERL  
 

The HTTP parameter id is a reference to a LO with the programming exercise. 
The lang attribute defines the language for the report. The PROGRAM is an attempt to 
solve it. The ERL is the content of the HTTP response to the above request. It includes 
a ticket and may include an evaluation report. The following is the respective 
response including only a ticket to later recover of the evaluation report. 
 

1470 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



<message date="2001-12-31T12:00:03" >  
  <request date="2001-12-31T12:00:03">  
    <capability=”MyService.C”/> 
    <learningObject=http://lor.domain.org/lo/123/>  
    <program><![CDATA[  … program code here …  ]]></program>  
  </request>  
  <reply date="2001-12-31T12:00:05"> 
    <token id=”https://eval.domain.org/report/123/xpto”/>  
  </reply>  
</message> 
 

The id attribute of the token element can be used to recover the report on a later 
date. The GetReport function allows a requester to get a report for a specific 
evaluation using a previous ticket. The report included in this response may be 
transformed in the client side based on a XML stylesheet. This way the client will be 
able to filter out parts of the report and to calculate a classification based on its data. 
The request of this function includes a ticket sent previously by the service in 
response to an evaluation. The response returns a report about an evaluation. The 
evaluation report does not compute a grade, points or classification, nor produces a 
feedback for any particular scenario. Using the REST API this operation is performed 
by sending a GET HTTP request to the evaluator, as in the following example.  
 
GET https://eval.domain.org/report/123/xpto > ERL 
 

The URL is the ticket obtained in the last request. The following is an example of  
the HTTP response. 
 
<message date="2001-12-31T12:00:00">  
 <request date="2001-12-31T12:00:00">  
  <token id=”https://eval.domain.org/report/123/xpto”/>  
 </request>  
 <reply date="2001-12-31T12:00:00">  
   <token id=”https://eval.domain.org/report/123/xpto”/>   
   <report  

date="2001-12-31T12:00:00" 
evaluationServer=”https://eval.domain.org/”> 
<capability id="MyService.C"/>  

    <exercise href="http://lor.domain.org/lo/123”>  
      A very simple Problem 

</exercise>  
<compilationErrors/> 

     <tests>  
       <test executionTime="100" mode="program">  
           <input><![CDATA[/home/…/R43/tests/T1/in-1.txt]]></input>  
           <expectedOutput>4</expectedOutput>  

    <obtainedOutput>4</obtainedOutput>  
    <outputDifferances></outputDifferences>  

           <classify>Memory Limit Exceeded</classify> 
        <mark>0</mark> 

    <feedback/>  
    <environmentValues>  

        <environmentValue name="memory" value="12kb" />  

1471Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



    </environmentValues>  
         </test>  

 </tests>  
 <summary>...</summary> 

    </report>  
  </reply>  
</message> 

 
The response contains a detailed evaluation report but should not reach to any 

conclusion. 
 

 

Figure 7: The report type on the ERL specification. 

The element report depicted in [Fig. 7] from the ERL specification contains the 
raw data sent to the client and can be used as input for other systems (e.g. 
classification systems, feedback systems). It has a single mandatory 
evaluationServer attribute representing the URL of the evaluator. This element 
also includes the following sequence of sub-elements:  

 capability: a specific evaluator capability used to evaluate this attempt; 
 programmingLanguage – the language used to code the solution;  
 exercise: a reference to the Learning Object and the title of the exercise; 
 compilationErrors – compilation error messages of the user’s code;  
 tests: contains a set of tests for the evaluation of the submitted attempt. 

Each test element represents a test case describing resources supplied to 
evaluate the submitted program; 

 summary – the synthesis of the assessment;  
As shown in Fig. 6, each test corresponds to a single test case that can be repeated 

to create a test set. The submitted program is executed once for each test element, 
receiving as input the content of the input element. The resulting output, stored in the  
obtainedOutput element, is compared to the expected output contained in the  
expectedOutput element. The outputDifferences element describes the 
differences between the two previous elements using the syntax of the Unix diff 
command. The test element contains also data for grading and correcting programs. 
This element includes a mark element to assign a mark for a successful execution. 
The client may compute a grade for the submission as the sum of the marks of 
successful executions. The optional feedback element contains detailed feedback for 
an unsuccessful execution. The environment values are a list of property-value pairs 

1472 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



that may be supplied by the execution environment. For instance, if the execution 
environment is able to report the memory usage of a program execution then this data 
is recorded in this element 

3.6 Integrated Development Environment 

Experimenting environments – environments for practicing on a learning subject to 
consolidate learning – are an important type of specialized services to be integrated in 
learning processes. These environments need a user interface to interact with learners 
and application interfaces to be integrated on the learning process. In some cases they 
will have to be developed for specific domain, while in other they can be adapted 
from existing systems. In the computer language programming domain an IDE 
[Nourie, 05] is arguably the best place for a student to practice by solving 
programming exercises, definitely better than any tool available on a LMS. 
Unfortunately, the available IDEs lack the features to communicate with other 
specialized services. In extensible IDEs (e.g. Eclipse1, Visual Studio Express2) this 
shortcoming may be overcome using plug-ins. However a plug-in for a certain IDE 
vendor will not work on an IDE from a different vendor, which raises an 
interoperability issue. For this reason we opted for a somehow easier but more general 
solution: to interact with the IDE via shell commands. 

Since both the pivot component and the IDE run on the machine of the student it is 
easy for the pivot to interact with the IDE using shell commands. These commands 
are used, for instance, to create a skeleton of the project or to execute locally the 
student program. Due to the nature of this we formalized the interface between the 
pivot and the IDE using the programming language in which the pivot is 
implemented. Since it is implemented in Java we abstracted in a Java interface the 
type of operations that must be executed on the IDE. Table 3 enumerates the four 
methods that need to be implemented. 

 
Method Description 
makeProject(path:String, 
language:String) 

Creates a project on the IDE. The path argument includes the 
location and the name of the project. The language argument 
is the programming language for the project. 

getWorkspace() Returns a string with the workspace location of the project. 
getProjectName() Returns a string with the name of the project. 

getName() Returns a string with the IDE name. 
 

Table 3: ProjectCreator interface methods. 

For each IDE vendor there is an implementation of this interface. This 
implementation executes shell commands to modify the file system, execute programs 
or activate IDE functions. Currently, there are implementations for Eclipse and for 
Visual Studio.   

 

                                                           
1 http://www.eclipse.org/ 
2 http://www.microsoft.com/express 

1473Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



4 Case Study 

In this section we start by making a brief description of an early initiative that based 
our current work. Then, we present a learning scenario where our current approach 
may fit including the identification of the systems used and how they relate to each 
other. Finally we detail the effective use of this work on classroom and provide usage 
data to validate the feasibility of this network regarding the interoperability efforts 
made.  

4.1 PERE 

As a proof of concept of the pivot component we developed a component called 
Programming Exercises Resolution Environment (PERE) [Leal, 11]. The task of this 
component is twofold: to coordinate the communications between the LMS and a set 
of web services; and to act as an exercise resolution environment where students solve 
their programming exercises assignments, in replacement of the IDE. The PERE 
component is organised in two main packages: the back-end (used by the teacher) and 
the front-end (used by the student). In the back-end the teacher configures an 
assignment by searching for programming exercises in the repository and associating 
the most relevant. In the front-end, the student reads the exercise description, solves it 
in PERE and gets the evaluation report that will help him to refine the exercise and, if 
necessary, resubmit it. Despite the success of this approach some issues raised 
regarding the use of an ad-hoc environment for the resolution of the exercises. We 
consider the IDE as as far better environment for a student to practice computer 
programming and solving programming exercises. This issue led to the integration of 
the IDE on this network to enrich the environment of the student.  

4.2 PETCHA 

One of the distinctive features of this new approach was the integration of an IDE in 
the current architecture. This integration was a huge challenge since IDEs were not 
designed to interact in the e-Learning realm and must be extended for that purpose.  
In order to enhance interoperability we decided to abstract the use of the IDE for 
solving programming exercises, rather than creating a plug-in for a specific IDE. To 
accomplish this task we changed the deployment of the pivot component from a web 
based solution running on the LMS side to a local JAVA application (JWS) running 
on the user’s environment side. Using this approach the pivot component – now 
called Programming Exercises Teaching Assistant (PETCHA) - is launched by the 
LMS and runs locally (on the user’s environment) to facilitate the communication 
over the shell with a supported IDE.  

In this context, the pivot component acts as an automatic TA with two main tasks: 
to assist teachers in the authoring exercises and to help students in solving them. 
Although complementary, these two tasks share a number of requirements. Both 
teacher and student need to: code and test programs in an IDE; send and retrieve 
learning objects from a Learning Objects Repository (LOR); check program code 
against test cases. Thus, although the graphical user interface of both user profiles 
shown in [Fig. 8] is apparently very different, they actually share many internal 
functions of the pivot component.  

1474 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



 

 

Figure 8: The GUI of the pivot component with teacher and student modes. 

One of the most important tasks of both user profiles is the exercise coding: the 
teacher needs to code the program solution and the student needs to code an attempt 
to solve it. Both require the use of an IDE. Thus, Petcha uses the ProjectCreator 
interface [Tab. 3] to abstract the use of specific IDEs on Petcha. After the definition 
of this interface class, developers should implement it in order to provide support for 
other IDEs.  

For instance, when a student starts solving an exercise, the Petcha component 
automatically creates a project on the IDE of the student invoking the makeProject 
method.  Currently Petcha supports "out of the box" the creation of JAVA and C# 
projects in Eclipse and Visual Studio Express. Beyond this built-in support, 
developers can extend Petcha to other IDEs and languages. For this extension one 
must require attention for the makeProject method. A project contains source code 
and related files for building a program in a specific programming language. Thus, a 
set of predefined files need to be generated for the project creation. These files are 
related with the IDE foundations and the chosen programming language. 

After the automatic creation of the project the student reads the exercise 
description in Petcha’s GUI and solves it on the IDE. The student should test the code 
locally by executing the teachers’ test cases and is encouraged to create new ones. If 
new test cases are created, a validation step is performed to verify that they meet the 
specification defined by the teacher in the authoring phase. The right window on 
Figure 8 shows an example where the student’s code did not pass all the local tests 
(two provided by the teacher and one new test created by the student). Even so, the 

1475Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



student decided to submit the code to the evaluator and received a feedback message 
indicating an input data that generated a wrong answer. After testing, the student 
should submit the solution to the Evaluation Engine (EE) where the submission is 
checked against the complete test set provided by the teacher. The report on the 
evaluation returned by the EE is presented to the student. The student may submit 
repeatedly, integrating the feedback received from the EE. In the end of this cycle, 
Petcha reports the exercise usage data back to the repository. 

Another important point was the choice of the systems that comprise the current 
network. Since we made several efforts to address interoperability issues, the 
selection of the tools was straightforward as shown in [Tab. 4]. 

 
System Version Type Supports Requirements 
Moodle 1.9 LMS Basic LTI 1.0 Windows/Linux + XAMP 1.7.7 
CrimsonHex 0.8 LOR CC 1.1 & DRI 1.0 Windows/Linux + XAMP 1.7.7 
Mooshak 1.6a2 EE Evaluate Service Linux + Apache + TCL 
Eclipse 3.7.1 IDE - Windows/Linux 
     

Table 4:  Network selected systems. 

On the LMS side we choose Moodle since it is a popular and open source LMS 
[Davis, 09], arguably the most popular LMS nowadays. We used the version 1.9 that 
supports the Basic LTI specification with the further installation of an IMS bLTI 
consumer3. Currently, the version 2.2 supports the IMS LTI 1.1 (a merge version of 
basic and full LTI) and import IMS CC packages. The exportation of CC packages 
will come in version 2.3. We successfully tested also the Sakai LMS on this network 
evidencing the interoperable characteristics of the proposed approach. 

For the LOR selection, we had more difficulties to find a system that supports the 
defined content and communication specifications respectively the IMS CC and IMS 
DRI specifications. The final choice fell on a home-made system called CrimsonHex - 
a repository of programming exercises described as learning objects and complying 
with the IMS CC specification. The repository also adheres to the IMS DRI 
specification to communicate with other systems. 

The EE system selected was Mooshak. Mooshak is an open source system for 
managing programming contests on the Web including automatic judging of 
submitted programs. The current version (1.6a2) supports the Evaluate service (E-F). 

On the IDE side we selected Eclipse. Eclipse is a free and open source multi-
language software development environment comprising an integrated development 
environment (IDE) and an extensible plug-in system. We tested also the Visual Studio 
Express IDE on this network with success for C# assignments. In this case we need to 
install Mono to run .NET applications on the Mooshak server. Mono is a free and 
open source project to create a standard compliant .NET-compatible set of tools 
including a Common Language Runtime, C# compiler and others. 

The requirements to recreate the proposed network are few. For the LMS and 
LOR installation it was necessary to install the XAMPP package that comprises a 
Web server (Apache), a servlet container (Tomcat), a database (MySQL) and a 
                                                           
3 http://code.google.com/p/basiclti4moodle/ 

1476 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



server-side scripting language (PHP). For the Mooshak instalation we use a Linux 
distribution (Ubuntu) with a Apache version 1.2 (or better) and Tcl version 8.3 (or 
better). 

The diagram shown in [Fig. 9] could be applied to a typical pedagogical learning 
process such as a classroom assignment in a Computer Science course. 

 

 

Figure 9: Sequence diagram. 

4.3 Experiment and usage data 

In order to validate the feasibility of this network we conducted an experiment at 
ESEIG - a school of the Polytechnic Institute of Porto. Students from the first-year of 
the course Algorithmic and Programming (degree in Mechanical Engineering) 
participated in a two-month experiment (6 classes). The course aims to widen the 
students’ programming skills using the C# programming language. The course has an 
average enrolment of 40 students per year organized in two classes and delivered 
through two lectures of one hour each and one lab session of 4 hours per week. The 
final grade has two components: 30% for course work (e.g. exercises) carried out 
during the year, and 70% for one interdisciplinary work. The experiment 
methodology was the following: only one class used the system while the other class 
kept the traditional learning approach. In the end of the experiment we compared both 
classes regarding, for instance, the number of solved exercises, the coverage of the 
syllabus by the exercises or the feedback level. We conducted also a survey to collect 
the opinion of students and teachers involved in this experiment. From this data, we 
present here only what is meaningful to evaluate the interoperation of the systems in 
the network. [Tab. 5] summarizes the communication between pairs of systems. 
These results were gathered from 6 lab sessions. In each session a class of 21 students 

1477Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



had 3 exercises to solve. Based on these figures we computed the following expected 
values: the expected number of accesses to the system that is given by multiplying the 
number of students with the number of assignments (21 * 6 = 126); and the expected 
number of accesses to the exercises by all the students that is given by multiplying the 
number of students with the number of assignments and with the number of exercises 
by assignment (21 * 6 * 3 = 378). 
 

Observation point Expected Real 
# accesses to the system (LMSPETCHA) 126 135 
# exercises requested to the repository (PETCHALOR) 378 345 
# exercises that students try to solve (PETCHAIDE) 378 342 
# submissions (PETCHAEE) 378 819 
# exercises requested to the repository (EELOR) 18 18 
# exercises in which the students got feedback (EEPETCHA) 378 810 

Table 5: Statistical data on interoperability of the network components. 

The first line of the table indicates that the system worked well since only nine 
extra sessions were used. These extra values were mainly due to the accidental 
closing of the application by students. 

The number of exercises requested by PETCHA measures the number of times 
that students got an exercise statement from the repository. This action triggers an 
automatic request from PETCHA to the repository. From the collected data, we can 
observe that not all exercises were actually read by all the students. There are two 
possible justifications: either the students did not have time to read all the available 
statements or some students may have given up after reading the exercise title. 

The following line is the number of exercises that students tried to solve. We 
considered that a student tried to solve an exercise when (s) he ran locally a set of 
tests to validate his/her code. The real number is less than the expected and less than 
the number of exercise statement readings. Most probably some student read an 
exercise statement but did not have time to code a solution or run the tests, or just 
gave up solving it. 

The number of submissions is the number of requests for evaluation that the EE 
receives. The obtained values show an average of approximately two submissions per 
exercise for each student. 

The number of exercises requested by EE to the LOR reflects the need of the 
Evaluation Engine to obtained the fully LO from to repository given its reference. 
Since the EE has a cache mechanism the expected and real values are identical thus 
showing that the EE cache feature is working as expected and is accelerating the 
evaluation process. 

The number of exercises in which the students got feedback should be similar to 
those of the number of submissions. Since they are almost identical (error margin of 
9) we can conclude that the communication among the two systems (PETCHA and 
EE) works well. The value in the expected column is due to the fact that in a optimal 
scenario students will submit their solutions and they will got accepted at the first 
attempt.  

The figure presented in Table 4 shows that the proposed approach for e-Learning 
system orchestration is useful in practice. The figures collected during the experiment 

1478 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



are within reasonable bound from the expected values. With these results we conclude 
that the network is stable enough to handle a much larger number of students and 
exercises and to be used in a more demanding setting. 

The results and analysis of the experiment (using a quasi-experimental design) 
regarding the use of the system from a qualitative point of view can be read in 
[Queirós, 12]. 

5 Conclusion 

In this paper we presented an approach for a standard based integration of several 
systems involved in the automatic assessment of programming exercises. The design 
and implementation of the integration model was based on a pivot component that 
acts as an orchestrator in the network and implements several communication 
standards. In order to validate the feasibility of this approach we tested the system on 
a actual classroom and this paper presents results of that experiment related to system 
interoperability. 

The main contribution of this paper is twofold: the creation of an environment that 
fosters the practice on solving programming exercises and the design of an integration 
model using communication standards that can be used or reused in similar scenarios. 

This network is currently being used in the practical classes of an undergraduate 
programming course. The experiments designed to assess the impact of this tool at an 
interoperability level were presented in this paper. These experiments showed that the 
interoperability efforts made in the design and implementation phase of the network 
were rewarded. Firstly, the reliability of the network was validated taking into 
account the number of launches of the pivot component from the LMS. Then, 
systematic tests were made to guarantee the effectiveness of the communication 
between the network components. For systematic accesses to components (e.g. 
evaluator) cache features were implemented lowering the number of accesses and 
accelerating the evaluation process. Based on these figures one can conclude that the 
network is stable enough to handle a much larger number of students and exercises 
and to be used in a more demanding setting. 

The proposed architecture can be used in other problem-based e-learning 
scenarios. As further work the challenge is to use the proposed architecture in other 
domains. One interesting domain is serious games applied to management courses 
where students can train management processes through simulation. In this domain 
teachers use business simulation games to improve the strategic thinking and decision 
making skills students in particular areas (e.g. finances, logistics, and production). 
Through these simulations students compete among them, as they would in a real 
world companies. A business simulation service fulfils a role similar to that of the 
assessment systems in programming exercises and it also requires a repository 
containing specialized LO describing simulations. Thus, this specific domain poses 
challenges not only in the development of the network pivot component , but also in 
the refinement of other systems (e.g. repository, assessment system) to meet the new 
evaluation domains requirements. 

Other future work includes the integration of a sequencing and adaptation 
component that controls a specific learning workflow by guiding the student on a set 
of expository and evaluation resources; a plagiarism detection component to prevent 

1479Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



inappropriate coding practices; and also increase the range of assessment scenarios for 
the evaluation of new languages such as query languages (e.g. SQL), modeling 
languages (e.g. UML) and user interfaces (e.g. GUI). 

References 

[Al-Smadi, 10] Al-Smadi & Gütl: SOA-based Architecture for a Generic and Flexible E-
assessment System. In EDUCON’10, 2010. 

[Alstes, 07] Alstes, A. and Lindqvist, J.: VERKKOKE: learning routing and network 
programming online, In Proceedings of The Twelfth Annual Conference on Innovation and 
Technology in Computer Science Education, ITiCSE'07: University of Dundee, Scotland, 25-
27 June 2007. 

[Apostolopoulos, 03] Apostolopoulos, T. K., & Kefala, A.: An e-learning service management 
architecture. In Proceedings of the 3rd IEEE International Conference on Advanced Learning 
Technologies (pp. 140-144). Athens, Greece, 2003. 

[Casella, 07] Casella, G., Costagliola, G.,Ferrucci, F., Polese, G.,  Scanniello, G.: A SCORM 
Thin Client Architecture for e-learning Systems based on Web Services. In International 
Journal of Distance Education Technologies, Vol. 5, No. 1, January-March, IDEA Group 
Publishing, pp.: 13-30, 2007. 

[Casquero, 10] Casquero, Oskar, Javier Portillo, Ramón Ovelar, Manuel Benito, and Jesús 
Romo. 2010. iPLE Network: an integrated eLearning 2.0 architecture from University's 
perspective. Interactive Learning Environments 18 (3):293-308, 2010. 

[Conde, 10] Conde, M. Á., García-Peñalvo, F. J., Casany, M. J., & Alier, M. (2010). Applying 
Web Services to define Open Learning Environments. Paper presented at the Twenty-First 
International Workshops on Database and Expert Systems Applications – DEXA 2010. Third 
International Workshop on Social and Personal Computing for Web-Supported Learning 
Communities – SPeL 2010, Bilbao, Spain, 30 August - 3 September 2010. 

[Conde, 11] Conde, Miguel A., García, Francisco J., Alier, M. and Casany, María J. (2011) 
Merging Learning Management Systems and Personal Learning Environments. In: Proceedings 
of the The PLE Conference 2011 , July 2011, Southampton, UK. 

[Davis, 09] Davis, B., Carmean, C. and Wagner, E.D. The Evolution of the LMS: From 
Management to Learning - Deep Analysis of Trends Shaping the Future of eLearning, Sage 
Road Solutions, LLC, 2009. 

[de-la-Fuente-Valentín, 08] de-la-Fuente-Valentín, L., Leony, D., Pardo, A., & Kloos, C. D. 
(2008). Mashups in Learning Design: pushing the flexibility envelope. Paper presented at the 
Mash-Up Personal Learning Environments - 1st Workshop MUPPLE’08, Maastricht, The 
Netherlands. 

[Eap, 04] Ty Mey Eap, Marek Hatala, and Griff Richards. Digital repository interoperability: 
design, implementation and deployment of the ecl protocol and connecting middleware. In 
Proceedings of the 13th international World Wide Web conference on Alternate track papers \& 
posters (WWW Alt. '04). ACM, New York, NY, USA, 376-377, 2004. 

[Fielding, 05] Fielding, R.T. and Taylor, R.N.: Principled Design of the Modern Web 
Architecture, ACM Transactions on Internet Technology (TOIT) (New York: Association for 
Computing Machinery) 2 (2): pages: 115–150, doi:10.1145/514183.514185, ISSN 1533-5399, 
2005. 

1480 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



[Holden, 04] Holden, C. and Academic A. D. L. Staff: What we mean when we say 
“repositories”: User expectations of repository systems. Technical report, The Academic ADL 
Co-Lab, Madison, WI, July 2004.  

[IMS CC, 11] Common Cartridge Overview v1.2 Final Specification, 2011, 
http://www.imsglobal.org/cc/ccv1p2/imscc_profilev1p2-Overview.html. 

[IMS DRI, 03] IMS Digital Repositories Interoperability. [On-line]. Available at: 
http://www.imsglobal.org/digitalrepositories/driv1p0/imsdri_bestv1p0.html 

[IMS LTI, 11] Learning Tools Interoperability v1.1 Public Draft Implementation Guide, 2011, 
http://www.imsglobal.org/lti/v1p1pd/ltiIMGv1p1pd.html. 

[Leal, 09] José Paulo Leal, Ricardo Queirós, CrimsonHex: a Service Oriented Repository of 
Specialised Learning Objects, in Joaquim Filipe and José Cordeiro (Eds.) Proceedings of 
ICEIS'09: 11th International Conference on Enterprise Information Systems, pages 102-113, 
Milan, Italy, May 2009, ISBN: 978-3-642-01346-1, DOI: 10.1007/978-3-642-01347-8_9 

[Leal, 10] Leal, J.P. and Queirós, R.: eLearning Frameworks: a survey. Proceedings of 
International Technology, Education and Development Conference - Valencia, Spain, 2010. 

[Leal, 10:2] Leal, J.P., Queirós, R. and Ferreira, D.: Specifying a programming exercises 
evaluation service on the e-Framework, in Xiangfeng Luo, Marc Spaniol, Lizhe Wang, Qing 
Li, Wolfgang Nejdl and Wu Zhang (Eds), Advances in Web-Based Learning - ICWL 2010 - 
9th Internation Conference, Shanghai, China, December, 2010, LNCS 6483, pp. 141-150, ISBN 
978-3-642-17406-3, DOI.  

[Leal, 11] Leal, José Paulo and Queirós, R.: Using the Learning Tools Interoperability 
Framework for LMS Integration in Service Oriented Architectures, in Technology Enhanced 
Learning, TECH-EDUCATION'11, Springer Verlag, May 2011.  

[McCallum, 06] S. H. McCallum. A look at new information retrieval protocols: Sru, 
opensearch/a9, cql, and xquery. In In World Library and Information Congress: 72nd IFLA 
General Conference and Council - IFLA, 2006. http://archive.ifla.org/IV/ifla72/papers/102-
McCallum-en.pdf. 

[Neven, 02] Neven, F. and Duval, E.: Reusable learning objects: a survey of LOM-based 
repositories. In MULTIMEDIA ’02: Proceedings of thetenth ACM international conference on 
Multimedia, pages 291–294, New York, NY, USA, 2002, ACM Press. 

[Nourie, 05] Nourie, Dana. "Getting Started with an Integrated Development Environment". 
Sun Microsystems, Inc. 2005. Retrieved 9 September 2008. 

[Riad, 09] Riad, A.M. et al. Review of e-Learning Systems Convergence from Traditional 
Systems to Services based Adaptive and Intelligent Systems. Journal of Convergence 
Information Technology (JCIT), Advanced Institute of Information Technology, Volume 4, 
Number 2, June 2009  

[RSP, 10] Repositories support project: Repository Software Survey, Reviewed 11 November 
2010, http://www.rsp.ac.uk/documents/Repository-Software-Survey-2010-11.pdf.  

[Queirós, 11] Queirós, R. and Leal, J.P.: PExIL: Programming Exercises Interoperability 
Language", in Alberto Simões and da Cruz Daniela and Ramalho José Carlos (eds) "XATA 
2011 –- 9ª Conferência Nacional em XML, Aplicações e Tecnologias Aplicadas", Junho 2011. 

[Queirós, 11:2]  Queirós, R., Oliveira, L., Leal, J.P. and Moreira, F.: Integration of ePortfolios 
in Learning Management Systems, in B. Murgante, O. Gervasi, A. Iglesias, D. Taniar, B. 
Apduhan (Eds.) Computational Science and Its Applications - ICCSA 2011, 11th International 

1481Queiros R., Leal J.P.: Orchestration of E-Learning Services ...



Conference on Computational Science and Its Applications June 20-23, Santander, LNCS 
6786/2011, pp 500-510, DOI: 10.1007/978-3-642-21934-4. 

[Queirós, 12] Ricardo Queirós and José Paulo Leal, PETCHA - A Programming Exercises 
Teaching Assistant, ITiCSE 2012 - ACM SIGCSE 17th Anual Conference on Innovation and 
Technology in Computer Science Education, Haifa, Israel, 3-5 July 2012  

[Severance, 08] Severance, C., Hardin, J., & Whyte, A. The coming functionality mash-up in 
Personal Learning Environments. Interactive Learning Environments, 16(1), 47-62. doi: 
2134561, 2008. 

[Ternier, 10] S. Ternier, D. Massart, M. Totschnig, J. Klerkx, and E. Duval. The simple 
publishing interface (spi). D-Lib Magazine, 16(9/10), 2010. http://www.dlib. 
org/dlib/september10/ternier/09ternier.html. 

[Truong, 07] Truong, N. A web-based programming environment for novice programmers. 
PhD thesis. Queensland: University of Technology, 2007. 

[Wang, 08] Wang, F. L., & Wong, T. Designing programming exercises with computer assisted 
instruction. Lecture Notes in Computer Science, 5169, 283–293, 2008. 

 

1482 Queiros R., Leal J.P.: Orchestration of E-Learning Services ...


