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Summary
We describe a number of early efforts to make use of
the Message-Passing Interface (MPI) standard in appli-
cations, based on an informal survey conducted in
May-June, 1994. Rather than a definitive statement of
all MPI developmental work, this paper addresses the
initial successes, progress, and impressions that appli-
cation developers have had with MPI, according to the
responses received. We summarize the important as-
pects of each survey response, and draw conclusions
about the spread of MPI into applications.
An understanding of message passing and access to

the MPI standard are prerequisites for appreciating this
paper. Some background material is provided to ease
this requirement.

1 Introduction

In this paper we describe a number of early efforts to
make use of the Message-Passing Interface (MPI) stan-
dard in real applications (MPI Forum 1994a, b). An
informal survey of efforts is reported here, together
with our commentary. We summarize the responses,
highlighting important facets of each contributed ap-
plication survey, and give an overall impression of the
state of MPI applications.

1.1 A BRIEF HISTORY OF MPI

MPI was developed as part of a multinational effort
(supported partially by the U.S. National Science Foun-
dation, Advanced Research Projects Agency, and the
European Strategic Programme for Research and De-
velopment in Information Technology) to replace the
many, marginally compatible vendor and portability
systems currently in use with a coherent system that
exploits the experience of these previous message-
passing systems while providing greater functionality,
unified design, and an emphasis on user access to high-
performance protocols and hardware. Participants in-
cluded a core of 40 or so forum members, including
developers of all the major message-passing systems
then in existence (e.g., p4, PVM, NX), as well as com-
puter vendors and application developers. MPI encom-
passes and extrapolates the best ideas from existing
practice and adds features designed to secure high per-
formance for applications on the hardware that exists
today and for hardware expected in the next few years.

The initial round of that MPI standardization ef-

fort began in April 1992 and culminated at Supercom-
puting ’93 (November, 1993), where the standard was
presented to the public. By the time of its public intro-
duction, several implementations were already under
way, notably the Argonne/Mississippi State &dquo;model im-
plementation&dquo; (also known as MPICH) (Doss et al.,
1993), which was also demonstrated at Supercomputing
’93; other portable implementations have followed (e.g.,
LAM (Burns, Daoud, and Vaigl, 1994), and CHIMP

1. However, the standard document was finalized only in May,
1994, with on-going errata, so the existence of several applications
at the writing of this paper in June, 1994 is quite significant.
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MPI (Edinburgh Parallel Computer Centre)). During
the first half of 1994, IBM launched a commercial MPI
effort (Franke et al., 1993); IBM demonstrated its ex-
perimental MPI-F at Supercomputing ’93 as well. Cray
Research, through an alliance with the Edinburgh Par-
allel Computing Centre, is working to support MPI on
the CRAY T3D. NCUBE has made MPI the native mes-

sage-passing system for its next generation systems. In-
tel, Meiko, and others also have implementation efforts
or plans; the MPICH and other portable implementa-
tions run on virtually all the machines for which com-
mercial versions remain to be created.

1.2 SOME FEATURES OF MPI RELEVANT
TO APPLICATIONS

In order to make our discussion more accessible, it is

helpful to describe certain features of MPI. The first of
these is the dual concept of process groups and com-
municators. Here we draw on the results of MPI Forum

1994a,b.

Groups and Communicators. MPI designates com-
municating processes with communicators (intra-
communicators and inter-communicators). An intra-
communicator consists of a group «f processes, de-

scribed first, and &dquo;context&dquo; described thereafter.
An MPI program currently gets the communicator
MPLCOMM_WORLD when it starts executing; this com-
municator defines the initial group and communication

space for processes to use. Other communication rela-

tionships can then be created during the course of pro-
gram execution.

A group is an ordered collection of processes. Pro-

cesses in a group, therefore, have a unique integer rank
(starting from zero). Once created, a group never
changes size (hence, MPI groups are sometimes called
&dquo;static groups&dquo;). A process group provides the rank
property for send-and-receive communication and in-
dicates which processes participate for collective com-
munication (synchronization, global sum, etc.). MPI’s
concept of designating groups as boundaries for com-
munication is extremely important to its ability to scope
messages. Scoping of messages allows any parallel code
to insulate itself from user code or other libraries in the

same application.

Intra-communicators include the notion of mes-

sage context. A context keeps messages sent by a pro-
cess from arriving in the wrong scope of a receiving
process. Think of planes of message passing, with pro-
cesses belonging to as many hypothetical planes as
makes sense for application requirements, but any mes-
sage is restricted to a single plane. This naming conven-
tion leads to simple scoping rules for parallel libraries
with simple-to-use techniques for assuring that a library
has safe communication space (lexical scoping of mes-
sages). Finally, communicators guarantee that pending
sends and receives cannot foul up a collective commu-

nication operation. This further simplifies parallel pro-
gramming. Intra-communicators are the dominant
programming idiom at present, so the word &dquo;commu-
nicator&dquo; is often used loosely to refer to them.

An inter-communicator involves a &dquo;local&dquo; and a &dquo;re-

mote&dquo; group, and appropriate context information,
and is consequently a simple generalization of the intra-
communicator. The intra-communicator allows a local

set of processes to describe point-to-point communica-
tion to a remote group, and vice versa. MPI emphasizes
point-to-point communication for inter-communica-
tors, though extensions are possible (Skjellum, Doss,
and Viswanathan, 1994).

Virtual Topologies. Virtual topologies allow the
application programmer to attach numerical names
other than group ranks to processes, so that the domain

decomposition or other appiication-relevant mapping
of data to processes is intuitive and convenient. MPI

provides such mappings for the convenience of the ap-
plication programmer; both Cartesian grids and gen-
eral graph mappings are supported. As examples, Car-
tesian grids of one-, two-, and three-dimensions are
quite useful for linear algebra codes and solution of
PDEs. Graph topologies might be useful for the solu-
tion of problems with sparse connectivity or for combi-
natorial problems (see Gropp, Lusk, and Skjellum,
1994, for more details).

Datatypes. M PI provides basic datatypes as part of
communication calls. In the simplest case, the first-class
types of each language are available as datatypes to per-
form sends, and end receives, as well as collective com-
munication calls. MPI programmers send arrays of
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types and do not normally send arrays of bytes, unless
they choose to do so. These datatypes encapsulate any
heterogeneous conversion needed. Hence, an MPI
programmer does not worry about XDR conversion,
as this is part of the user program (in fact, some-

thing faster than conventional XDR is likely in efficient
implementations).

In addition to predefined datatypes, MPI supports
aggregate or derived datatypes (ideally defined once
and used repeatedly). These allow arbitrary gather-
scatter patterns to be created. In this mode, the appli-
cation programmer does not explicitly &dquo;buffer up&dquo; data
into a contiguous area of memory prior to calling MPI
send, nor does the programmer have to scatter a con-

tiguous buffer on the receive end, unless they prefer to
work in this pattern. Such a strategy can reduce the
number of copies needed to effect data transfer. As
such, it both simplifies and possibly speeds up message
passing.

1.3 APPLICATIONS REPRESENTED

Application programmers were informed of the oppor-
tunity to contribute to this paper through an informal
survey mechanism published on popular mailing lists,
and in USENet groups. The responses described here

represent all but one of the respondents during the
period allotted for the survey (one response was too
preliminary to contain any reasonable information
about the work undertaken). Responses came in the
following categories:
w Applications:
- many-body methods for light nuclei
- solution of unsteady incompressible viscous flows
- NAMMU-groundwater modeling for

continuous media
- PARA MICS-MP-microscopic traffic simulation
- volume visualization
- reservoir simulation (not included)

. Application-Enabling Libraries:
- fast particle summation library
- PRISM Eigensolver library
- CVL-C Vector library
- ParX (parallel X environment)

&dquo;Communicators guarantee that pend-
ing sends and receives cannot foul

up a collective communication oper-
ation. This further simplifies parallel
programming. Intra-communicators
are the dominant programming idiomafe ~e ~o~wanf pfo~fammm~ ~/om

at present &dquo;
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&dquo;We asked respondents to provide
anecdotal information describing the
process of converting from other
message-passing systems, including
their level of effort motivation for

conversion, and degree of satisfac-
tion.&dquo;

1.4 ORGANIZATION

This paper is organized as follows. First, we outline the
survey itself. Then, each of the surveyed applications is
described; for clarity, we have not followed the format
of the survey in reporting the application responses.
Next is an interpretation of the responses to the survey,
followed by a summary, conclusions, and discussion of
future directions.

2. The Survey
To collect data from the widest possible source of ap-
plication programmers, consistent with a short dead-
line, we posted requests for application work in major
USENet newsgroups (comp.paraliel, comp.parallel.pvm),
as well as to the MPI reflectors maintained by the Uni-
versity of Tennessee (mpi-camm@’cs.utk.edu) and Ar-
gonne National Laboratory (mpi-users (Ctmcs.ani.gov).
Responses were solicited for applications that were un-
der way, completed, or even just getting started.

The following information was requested for con-
tributions to the survey: a description of the MPI-based
application, areas of interest of researchers who were
actively involved, and the experiences thus far. In ad-
dition, we requested a description of the application
area, the goals of the application project (high speed,
cheap cycles, new physics, and so on), proper citations
to the project, and the techniques employed in the proj-
ect.

We asked respondents to provide anecdotal infor-
mation describing the process of converting from other
message-passing systems (if applicable), including their
level of effort, motivation for conversion, and their de-

gree of satisfaction. We asked them to determine which

features of MPI have proven most helpful in applica-
tions development and/or conversion, such as

~ intra-communicators (single-process group
communication)

~ inter-communicators (two-process group
communication)

w virtual topologies (naming conventions for
processes)

w pack/unpack capabilities (PVM compatibility)
w datatypes (gather-scatter specifications)
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We also asked respondents to state those parts of MPI
that were most understandable and those that were the
most confusing. We asked them to show early indica-
tions of performance results and specify which MPI im-
plementation or implementations they have used in
conjunction with the applications. Finally, respondents
were invited to provide miscellaneous feedback from
application programmers and users, if relevant. For in-
stance, we asked them to discuss whether they felt there
was a need for revised and/or additional features in
MPI.

3 Applications
In this section, we describe five responses to the survey,
each a pure application project.

3.1 MANY-BODY METHODS FOR
LIGHT NUCLEI

Researchers (Steven Pieper and Robert Wiringa) in Ar-
gonne’s Physics Division, in collaboration with Vijay
Pandharipande at the University of Illinois at Urbana-
Champaign, are computing the properties of light (up
to 40 neutrons and protons) nuclei using realistic two-
and three-nucleon interactions. This research involves

developing many-body methods for reliably computing
the properties of a nucleus for complicated forces that
are strongly dependent on the spins and charge states
of the nucleons.

Unlike the Coulomb force used in atomic or con-

densed-matter calculations, there is no useful funda-
mental theory that tells us what this force might be. The
two-body force can be partially constrained by fitting
nucleon-nucleon scattering data, but many-body calcu-
lations are required to test other properties of this force
as well as the three-body interaction. Thus the research-
ers are refining their knowledge of the forces and at the
same time using this knowledge to make predictions
about nuclei.

3.1.1 GOAL OF PROJECT

The goal of the application project is to reveal new

physics: that is, to compute binding energies more ac-
curately than before. New calculations being done on
the IBM SPI parallel computer at Argonne are using a

new nuclear interaction and are obtaining much better
results for the binding energy and density profile of
oxygen than had previously been obtained in experi-
ments. In particular, physicists are now able to find the
values of the parameters of the minimal-energy solu-
tion for 16 nucleons much more precisely than ever
before. Before this computation, theory did not clearly
predict that the nucleus of an oxygen atom would re-
main stable; the previous computational results would
have allowed it to disintegrate into four helium atoms.
Work on the calcium atom (40 nucleons), which could
not be contemplated before, is now also in progress.

3.1.2 DETAILS

The program was originally written for portable paral-
lel execution using p4; it took one afternoon to convert
it to MPI. The authors’ motivation was to learn about

MPI and prepare the code for continued portability on
high-performance machines as further MPI implemen-
tations become available. The parallel algorithm used
was straightforward as no advanced features of MPI
were needed. Understandably, the most helpful aspect
of MPI was that it is similar to existing message-passing
systems, rendering porting straightforward as well.

This application used the portable model MPI im-
plementation developed at Argonne National Labora-
tory and Mississippi State University. One feature that
the p4 implementation provided that was unavailable in
MPI is a form of broadcast that is received by an ordi-
nary receive instead of a corresponding broadcast op-
eration ; this was missed by the developers. Table 1 con-
tains information about the size and performance of
this application on the 128-node SP-1 at Argonne.

3.2 SOLUTION OF UNSTEADY

INCOMPRESSIBLE VISCOUS FLOWS

Computation of flow regimes over complex configura-
tions entails the numerical solution of a system of cou-

pled nonlinear partial differential equations, the
Navier-Stokes equations. Researchers in the Computa-
tional Fluid Dynamics Laboratory at the Mississippi
State University-NSF Engineering Research Center for
Computational Field Simulation have developed an im-
plicit, finite-volume code (known as UNCLE) for solv-

 at PENNSYLVANIA STATE UNIV on October 5, 2016hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


84

Table 1

Summary of the
Argonne Nuclear
Structure Code

ing the unsteady three-dimensional incompressible
Euler and Navier-Stokes equations using dynamic
multiblock grids (Taylor et al., 1993; Taylor and Whit-
field, 1991; Whitfield and Taylor, 1991). The flow
solver can be used in a variety of applications ranging
from maneuvering underwater vehicles to the design of
centrifugal compressors. Ramesh Pankajakshan and W.
Roger Briley have undertaken the scalable paralleliza-
tion research and development of this solver.

Long runtimes and large memory requirements re-
strict the size and complexity of the problems that can
be handled using the sequential version of the UNCLE
code. Therefore, a scalable portable parallel version is
being developed that can take advantage of existing as
well as emerging parallel platforms. The goal is to use
parallel computing to enable solution of large-scale field
simulation problems on both parallel supercomputers
and idle and/or dedicated workstation clusters. The

message-passing interface required for the parallel im-
plementation has to support collective operations within
user-defined groups as well as provide safe communi-
cation contexts for overlapping sets of collective opera-
tions. Motivations for the use of’ MPI include these fea-

tures, as well as portability, ease of software develop-
ment, and high-performance expectations, while the
broad base of participants in the MPI effort guarantees
continued access and evolution as hardware progresses.

3.2.1 DETAILS

The parallel formulation (Pankajakshan and Briley,
1994) employs spatial decomposition of the overall grid
into sub-blocks assigned to separate processes, and ex-
ploits coarse-grained parallelism and message passing
within sub-iterations of an implicit time-dependent so-
lution algorithm. The solution at points shared by
neighboring processes is updated between each sub-
iteration by means of a message exchange.

Key areas of the parallel implementation include:

. initialization of the flow field
~ duplication of stored data for points near block

interfaces
. exchange of data during sub-iterations for points

having duplicated storage
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0 treatment of line searches and integrals along
coordinates emanating from solid boundaries (the
latter arise from the particular algebraic turbulence
model used)

In the parallel implementation of this code (ibid.), the
domain is partitioned into several nearly equally sized
sub-domains, each of which is assigned to a node of the
multicomputer. The local data dependencies at the
boundary of each block are taken into account by a
two-cell-deep layer of buffer cells whose values are up-
dated from the appropriate neighboring block. Data
duplication and updating at the block boundaries are
implemented using the MPI_sendrecv routine. The
connectivity of the processes gives rise to a Cartesian
virtual topology with empty nodes. Each process is

tagged using an ordered triplet representing its coordi-
nate on the virtual Cartesian grid (topology). These co-
ordinates are then used to define communicators for

processes that are oriented along any of the three
axes of the grid. This involves repeated use of the
MPI-Comm_split routine. The line searches and inte-

grals of the turbulence model are implemented using
the MPI_Beast routine and user-defined MPl~4llreduce

operations over subsets of processes.
Work has progressed to the point of a working (but

as yet preliminary) MPI application. Constructing this
MPI code from an existing serial Fortran-77 code took
about three weeks by one of the researchers (Pankajak-
shan) with a working knowledge of MPI and C pro-
gramming and who was already familiar with the exist-
ing serial code. From their experience, they have found
that MPI appears well suited for this application. It was
especially useful in performing collective operations on
subsets of processes. This is important in line searches
and integrals in the algebraic turbulence model. Com-
municators and datatypes are features of MPI that have
been or will be helpful in developing this application.
However, datatypes were seen as the most confusing
aspect of MPI.

The parallel code has used both the IBM’s MPI-F
and Argonne/Mississippi State implementations of
MPI. The code has run on the IBM-SPI at the High
Performance Computing Research Facility, Mathemat-

ics and Computer Science Division, Argonne National
Laboratory and on an MSU Sun workstation/ethernet
cluster.

3.3 NAMMU-GROUNDWATER MODELING

NAMMU is a package for predicting groundwater flow,
heat, and mass transport through continuous porous
media. The application is based on an efficient imple-
mentation of the finite-element method, which in turn
makes heavy use of the Harwell Frontal Direct matrix
solver routine MA42. The work described here is a par-
allelization of the solver through domain decomposi-
tion of the mesh. NAMMU was developed by AEA
Technology, while modification of the MA42 package
was done by Harwell, and the message passing (in MPI)
was done by the Edinburgh Parallel Computing Centre.
NAMMU was written by Hon W. Yau (Edinburgh Par-
allel Computing Centre), K. Andrew Cliffe (AEA Tech-
nology, Harwell), Jennifer A. Scott (Atlas Centre, Har-
well), and David Brear (AEA Technology, Harwell).
Hon Yau is the designer (and one of the implementors)
of the parallelized version of NAMMU.

The goal of this work is to produce a portable, par-
allelized version of NAMMU that best exploits parallel
architectures. Together with two other AEA Technol-
ogy safety assessment codes, this will form a suite of
parallelized groundwater simulation codes.

3.3.1 DETAILS

The conversion effort was found to be considerably
eased by the availability of a high-quality in-house im-
plementation of the MPI specifications. Moreover, a
’toy’ MPI implementation of the solver using MA42 had
already been successfully demonstrated prior to work
on the NAMMU package. It took approximately three
months to go from the design of the NAMMU imple-
mentation to successful execution of the available test

cases, including roughly 20 person-days for the conver-
sion of NAMMU to the use of domain decomposition,
and one person-month to write and debug the neces-
sary MPI message-passing constructs.

The purpose in converting to MPI was to achieve a
portable implementation that would demonstrate good
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scalability within the limitations of the parallel algo-
rithm. A high degree of satisfaction with the current
MPI specifications was reported, particularly as regards
the abundance of features, and on the whole it was felt
that MPI was a thoroughly well-thought-out product.
Note that only a duplicate of the global group of pro-
cesses (represented in MPP_COMM WORLD) was used
in the application, since the intention was to use one or
more of the collective communications functions. De-

rived datatypes were heavily used as an efficient alter-
native to multiple messages and packing/unpacking;
this feature had much to be commended.

The most obvious source of problems has to do
with the Specifications Document (MPI Forum 1994a).
As the only then available introduction to MPI it is seen
by the developers as daunting-particularlj< to those

with no prior message-passing experience. It is, how-
ever, also seen as reasonably complete, though in need
of more Fortran examples and a glossary of terms.

An in-house EPCC implementation of MPI based
on CHIMP was used. This version of MPI runs on a

variety of machines, including Sun and Silicon Graphics
workstations, as well as the Meiko CS- l Ii860.

3.4 PARAMICS-MP-MICROSCOPIC
TRAFFIC SIMULATION

PARAMICS-MP builds on earlier work in the PARAM-

ICS project in which a PARAllel MICroscopic traffic
Simulator was developed. In its current state, the

PARAMICS system can simulate over 250,000 vehicles
at speeds faster than real time, on a road network based
on real data for the Scottish Trunk Road Network.

According to the researchers, this is the largest
microscopic traffic simulation ever implemented.
PARAMICS-MP is being developed by Gordon Cam-
eron, Gordon Duncan, and David NIcArthur of the Ed-

inburgh Parallel Computing Centre.
The primary goal for PARAMICS-MP is to port the

existing PARAMICS simulator, originally developed as
a data-parallel implementation for the Connection Ma-
chine CM-200, to a message-passing version running on
the recently purchased 256-processor CRAY T3D lo-
cated in Edinburgh. The MP version will use the MPI
library currently under development at EPCC.

It is expected that the T3D’s superior computa-
tional power will enable integration of a significantly
more detailed vehicle-dynamics model to the simulator
than is currently possible. In addition, more advanced
simulation features will be added, such as the effects of

dynamic routing as proposed by reactive road traffic
information systems.

Currently a prototype version of the MP simulator
is running on a distributed system using EPCC’s own
message-passing system CHIMP. The application is to
be connected to the MPI implementation being devel-
oped locally for the T3D as soon as it becomes available.
This move is part of an EPCC organization-wide policy
of migration to the MPI standard in all forthcoming
applications.

3.5 VOLUME VISUALIZATION

Volume visualization techniques were created to allow
researchers to examine the data and spatial relation-
ships contained in volume data sets, but, in general, the
algorithms are relatively slow on even moderately sized
data sets. The problem is compounded with increasing
data size, and additional problems with memory size
may be encountered in generating a visualization for
large data sets on a conventional machine. It is thought
that some of these problems can be addressed by dis-
tributed memory parallel computers, by allowing the
parallel machine to perform the calculation of the scene
and employing conventional machines to display that
scene. Parallel computers have added potential over
conventional machines for scene rendering in that a
large data volume can be distributed over the proces-
sors in the machine and operated on concurrently, re-
ducing at once the computational time and memory
requirement per processor (scalability) (Lorensen and
Cline, 1987; Westover, 1990; West, Stephens, and Tur-
cotte, 1994b; West, Stephens, and Turcotte, 1994a).

John E. West, Michael Stephens, and Louis Tur-
cotte of the Waterways Experiment Station (WES) are
investigating the application of MPI to the development
of algorithms for performing volume visualization of
large data sets on parallel machines. The goal is to cre-
ate preliminary versions of volume visualization algo-
rithms for parallel machines both to investigate the use
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of a specific machine for this type of application, the
nCUBE/2 at WES, and to gain insight into the issues
surrounding parallel visualization in general. The algo-
rithms under examination represent the two general
classes of algorithms available for extracting informa-
tion out of 3-D data sets: marching cubes, which is pro-
totypical of surface-extraction algorithms, and splat-
ting, a volume-rendering technique.

It is expected that after the preliminary study is

completed, some or all of the algorithms will be ported
to other parallel machines and evaluated for hardware-
specific performance features. Using MPI it is expected
that the cost of this software port will be reduced dra-

matically and code development simplified.

3.5.1 DETAILS

Conversion issues do not apply to this project, since the
code is being created from scratch using MPI. Accord-
ing to the researchers, this represents a distinct advan-
tage, in that not only will this reduce the initial devel-
opment time, but also reduce the time it will take for

subsequent ports of the code to different platforms.
Thus far, features of MPI that have proven most

helpful are communicators and topologies. Having de-
veloped codes for varying platforms in the past using
native message-passing constructs (NX, Vertex, etc.),
these researchers state the communicators and utility
functions available for their manipulation greatly sim-
plify the development of a communication protocol
within the application. The topology functions have
also been useful in performing data distribution, and
the authors have suggested that a process topology
matching the original data topology could be created in
only a few simple steps. This further simplifies the data
distribution and communication problems typically en-
countered in other message-passing protocols. It is ex-
pected that datatypes, and, in particular, strided data-
types, will also prove especially useful in the future.

4 Application-Enabling Libraries
In this section, we describe application-related re-

sponses to the survey. Each of these responses repre-
sents a project that is either part of an application, or
enables a class of applications.

-Thus far the features of MPI that
have proven most helpful are com-
municators and topologies. The to-

pology functions have been useful in

performing data distribution. It is

expected that data types will a/so

prove especially useful in the fu-
ture.&dquo;
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&dquo;Of all the features the authors were

interested in, the multiple comple-
tion functions proved to be much
less flexible than they desired They
would have preferred functions that
act upon dynamic sets or collec-
tions of communication objects
which can be updated efficiently.&dquo;

4.1 A FAST PARTICLE SUMMATION LIBRARY

A general-purpose Fast Particle Summation library that
is in turn used in several applications,2 is under devel-
opment by John K. Salmon of Caltech, Michael S. War-
ren of Los Alamos and David J. Edelsohn of Syracuse
University. The code itself and its original application in
gravitational N-body simulations has been described by
Salmon, Winckelmans, and Warren (1994), Warren
and Salmon (1993), and Warren and Salmon (1994).

4.1. 9 D ETAI LS

The application is currently written to the researchers’
own set of message-passing primitives (e.g., asynchro-
nous send, asynchronous receive, exchange, etc.).
These primitives are, by design, extremely simple. They
are implemented using the message-passing program-
ming interface of each system. Because the primitives
previously had been ported to the IBM MPL (EUI),
converting to MPI was greatly simplified in view of the
similarities between the two message-passing defini-
tions. The most difficult element was in adapting to
system peculiarities for querying about the status of out-
standing operations and statistics about received mes-
sages. The researchers ported to MPI because it ex-

panded their target environments and improved flexi-
bility and maintenance for future systems on which this
application will run, as well as being simple to accom-
plish. At the moment the authors only use the lowest
level of MPI functionality. Using inter-communicators
for interactive, real-time control and display of simula-
tion results is their long-term goal.

Of all the features the authors were interested in,
the multiple completion functions proved to be much
less flexible than they desired. They would have pre-
ferred functions that act upon dynamic sets or collec-

2. A description of an application solving potential-flow problems
and another involving generation of Gaussian random fields is in
preparation. All the relevant papers, including some with an em-
phasis on astrophysics rather than computation are available by
anonymous ftp in ftp://ftp.ccsf.caltech.edu/nbody, or on Mosaic
(HTML) as http://www.ccsf.caltech.edu/johns/papers.html. Papers
describing the evolution and interaction of disk galaxies by David
Edelsohn (NPAC, Syracuse University) and Bruce Elmegreen (IBM
Research) are in preparation.
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tions of communication objects which can be updated
efficiently and then used by a generalized POSIX
selecto function. This would have made possible the
rapid discovery that one of many outstanding commu-
nication operations (there may be hundreds of such
outstanding operations in their implementation) had
completed. Their conclusion is that the current MPI

array semantics does not allow for efficient implemen-
tation of the functionality they desire for their applica-
tions and is of limited usefulness for applications with a
relatively short and mostly static list of communication
handles.3 3

The IBM MPI-F prototype implementation run-
ning on an IBM SPl with the High Performance Switch
achieves a latency of 30 microseconds and a bandwidth
of 8.7 MBytes per second. This implementation is an
early research prototype developed within IBM Re-
search that conforms to and implements the entire,
final MPI document (MPI Forum 1994a). They ob-
served no significant change in performance when they
compared the application running with MPI-F and
MPL/p (EUI-H) on the IBM SPI (Franke, Hochschild,
Pattnaik, and Snir, 1993).

4.2 CVL--C VECTOR LIBRARY

CVL (C Vector Library) is a library of low-level vector
routines callable from C. It is used as a basis for imple-
menting NESL, a portable nested data-parallel lan-
guage (Blelloch et al., 1994) and also by the Proteus
project at the University of North Carolina to imple-
ment the parallel prototyping language Proteus. The
library includes a wide variety of vector operations such
as elementwise function applications, scans, reductions,
and permutations. Most CVL routines are defined for
both segmented and unsegmented vectors, since seg-

mentation is critical for implementing nested data par-
allelism. Previously, CVL has been ported to each new
parallel machine architecture (CRAY, CM-2, CM-5,
MasPar, etc.) using the manufacturer’s own low-level
communication routines. The main goal of this project
is the development of a portable, interactive environ-
ment for programming a wide range of supercomput-
ers, using a very high-level data-parallel language that
supports nested parallelism. We are especially inter-
ested in the implementation of algorithms with irregu-
lar or dynamic structures.

The MPI port of CVL took approximately two per-
son-months. It benefited from the use of algorithms for
a distributed memory architecture initially developed
for the CM-5 port, although these had to be adapted to
use coarse-grain rather than fine-grain communication.
The overwhelming motivation for writing an MPI port
of CVL was the developer’s wish to avoid having to
perform any additional ports in the foreseeable future.
Porting to any other machines in the future would only
mean tuning the MPI port to best fit a particular man-
ufacturer’s implementation of MPI. The developer has
been satisfied with MPI’s portability and ease of use;
this was declared to be the easiest of all the CVL ports to
MPP architectures.

The developer notes that the most helpful features
of MPI for the CVL implementations are as follows:

. built-in support for scans and reductions, although
this is not as complete as it could have been

~ non-blocking sends and receives to overlap
communication and computation

. choice of send semantics with respect to blocking
and buffering, making it easy to get a
quick-and-dirty version running that can then be
refined to increase performance.

Complete performance results are given by Hard-
wick (1994). MPI CVL comes close to the performance
of a machine-specific CVL implementation on the CM-
5, the only platform on which the developers can cur-
rently perform a comparison. Furthermore, the devel-
oper noted that better support in MPI for fine-grained
communication (e.g., put/get, active messages, or dy-
namic all-to-all communication) would simplify the

3. In our experience, many applications do not have more than a
handful of outstanding communication operations pending, unlike
the algorithms considered by these researchers. The alternative
functionality proposed by these researchers near the end of the
MPI standardization process was consequently rejected as an alter-
native. Had it been proposed as a supplement to the easy-to-use
arrays of status objects, rather than a replacement, its inclusion
would have been much more likely. Undoubtedly, we will revisit
this issue for MPI2.
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&dquo;The developers have used communi-
cators to allow our library to work
in a safe communication space.

They also use topologies to define a
logical 2D grid/torus that they work
on as well as row and column sub-

groups for collective communica-

tions. -

code for MPI CVL and could also improve its perfor-
mance. It was also noted that it would be helpful if MPI
could support exclusive scans as well as the inclusive

variety: it is trivial to convert an exclusive scan into an

inclusive scan, but the reverse involves extra communi-

cation for operations with no inverse (e.g., max, min).
Segmented scans and reductions, as supplied by High
Performance Fortran, would also be an advantage, al-
though these can be implemented together using com-
municators or user-defined scan operators in MPI.

4.3 PRISM-5CALABLE EIGENSOLVERS

The PRISM (Bischof et al., 1994) project is investigating
scalable eigensolvers for parallel distributed-memory
computers. The goal is to produce a public domain li-
brary that runs on a variety of platforms. To achieve
this goal the project has looked at various issues includ-
ing linear algebra kernels such as matrix multiplication
and matrix factorization, data layout, and communica-
tion optimization. Christian Bischof, Steven Huss-
Lederman, Xiaobai Sun, Anna Tsao, and Thomas
Turnbull are working on PRISM. The PRISM project is
aimed at producing a library to solve eigenproblems on
a variety of distributed-memory computers. The library
will be used by a variety of groups (e.g., computational
chemists) to supply more computational power to the
problem-solving process.

4.3.1 DETAILS

The developers found the effort needed to convert to
MPI to be modest. A simple port was found to be rea-
sonably easy. A slightly harder task has been taking ad-
vantage of features available in MPI which they could
not previously access. The developers of the PRISM
project wanted a package that runs efficiently on a large
number of parallel systems rather than having to be tied
to a specific vendor or national laboratory for message-
passing software.

The developers have used communicators to allow
our library to work in a safe communication space.
They also use topologies to define a logical 2D grid/
torus that they work on as well as row and column sub-
groups for collective communications. They have only
made limited use of derived datatypes, because proper
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use of this feature requires modest rewriting of these
sections of the code. However, they anticipate using de-
rived datatypes to a greater extent in the future. They
also plan on utilizing persistent communication handles
since they have to perform operations such as shifting
to the next processor repeatedly.

The developers have found the performance of
MPI to be satisfactory and found that the performance
of MPI improves with time. They are particularly inter-
ested in collective operations. Details can be found in
the report by Bischof et al. (1995). The PRISM devel-
opers have used the MPI implementation from Ar-
gonne National Laboratory/Mississippi State (MPICH)
on Sun clusters, Intel Delta and Paragon, TMC CM5,
IBM SP1, and Meiko CS2. They have also used the MPI
implementation from IBM (MPIF) on the SP1.

4.4 ParX

Steve Ball, of Australian National University, is the de-
veloper of ParX. ParX is a port of the X Window Sys-
tem to a distributed-memory multicomputer (in the
first instance, the Fujitsu API 000). Both the Xlib library
and an X server are to be ported. This will allow an
application running on the multicomputer to display
graphics on a local framebuffer or a remote display
using the same application programmer interface with-
out having to off-load data to a host processor subse-
quently to generate X calls. There will be an implemen-
tation of the Xlib library allowing an application pro-
gram to connect to an X server (local or remote) as well
as an implementation of an X server for a distributed
framebuffer. The server will itself be distributed across

the multicomputer.
The developer was just starting a re-write of the

Xlib implementation when X 11 R6 was released as an
implementation of MPI for the AP1000. Thus no extra
effort has been necessary to convert to MPI, apart from

learning about MPI itself. In the not-too-distant future,
the developer will be porting ParX’s Xlib to the CM5
(CMMD), as CM5 users require MIMD X (as opposed
to CMXI 1, which is SIMD). MPI allows code to be writ-
ten portably to the CM5 as well as to other distributed
systems. MPI has satisfied all of the developer’s require-
ments, apart from the semantics of broadcasting which

the developer believes could be overcome by a non-
blocking, non-synchronizing broadcast. The developer
noted that intra- and inter-communicators are vital for

this project, as the project is actually a library that needs
to insulate itself from the user’s application. Pack/
unpack may be useful later for optimizing memory
access.

The point-to-point and collective operations are
fairly straightforward (the author skipped over the
datatype features). Communicators took a little while to
work through, but they also turned out to be straight-
forward. The MPI release 0.1 for the Fujitsu AP1000
(port done by Australian National University) was ap-
parently based in part on the Argonne/Mississippi State
University portable implementation.

5 Interpretation of the Survey
We interpret responses here in three categories: con-
version to MPI, target architectures, and needed im-

provements to MPI.

5.1 CONVERSION TO MPI

The applications we have surveyed reported a variety of
effort levels in conversion. Conversion periods ranging
from a few hours, to person-weeks, to person-months
were reported. The applications used either C or For-
tran-77, with no particular bias.

In addition to using simple features (send, receive),
some of the applications exploited advanced MPI fea-
tures, notably virtual topologies. Some applications
used topologies, but only simple communicator strate-
gies (copes of MPI_COMM_WORLD). Others exploited
topologies as well as multiple communicators. In many
cases datatypes were not used but those surveyed in-
tended to use them in the future. We attribute this to

the early stage of development of the implementations
that were available when this report was written; in sev-
eral cases datatypes were not fully implemented by the
time the responses were received. However, respon-
dents who tried datatypes found them almost univer-
sally confusing.

Although only limited performance results were
described, it is clear that researchers are already getting
good results on MPI-based applications. The light nu-
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dei project of Pieper and Wiringa was the only one
whose performance is quantified here, but it is evident
that timings have been made in other projects too, for
example, the Fast Summation Library, where research-
ers mention comparable performance to the fastest
non-MPI message-passing system available on the IBM
SPI. For other researchers, portability and develop-
ment have preceded application tuning, so that detailed
performance results will come only later. In any event
optimization of MPI implementations will make perfor-
mance results obtained in 1995 much higher than those
that might have been quoted here.

Portability was a universal theme in all the re-

sponses received. Only positive comments were re-
ceived concerning the process of converting to MPI,
except for some researchers who had specific needs for
collective operations that were not addressed in the ini-
tial version of MPI. Furthermore, the complexity of the
datatype feature of MPI was shown repeatedly. The
interface was seen to be confusing.

5.2 TARGET ARCHITECTURES

The variety of machines mentioned by the researchers
was extremely interesting. Researchers target the IBM
SPI, CM-5, and nC;UBEl2, newer machines like the
CRAY T3D, and less well known machines, like the

Fujitsu AP-1000. All are currently able to run a portable
version of MPI and some will have commercial versions

of MPI in 1994, and many others in 1995. This indi-
cates significant penetration of the MPI standard after
only a few months. Furthermore, the variety of imple-
mentations of MPI in use (the Argonne/Mississippi
State implementation, IBM implementation, and Edin-
burgh Parallel Computing Centre implementation) was
significant. It is clear that at least two commercial MPI
versions will emerge in 1995. Thus, application devel-
opment is not at all premature in MPI.

It is interesting to note that several surveys men-
tioned using MPI on clusters of workstations, but there
was no mention of high-performance networks. Al-
though we know of a working version of MPI for Fi-
berchannel, the availability of MPI for high-speed net-
works is probably not yet significant, as gauged by the
applications we have surveyed. We expect that in the

future MPI will nonetheless have a wide audience on

high-performance clusters.

5.3 NEEDED IMPROVEMENTS TO MPI

Respondents spoke to the issues of needed improve-
ments to MPI. In the area of communication primitives,
a common request was for a broadcast primitive to be
matched up with a simple receive. Furthermore, non-
blocking (or asynchronous) collective communication
operations were requested. Currently, all such opera-
tions block the participating processes. The interface to
derived datatypes was found unclear and more docu-
mentation and examples of such datatypes was re-
quested. The desire to have more documentation and
examples (of varying difficulty, in both C and Fortran-
77) was also raised widely. Finally, one set of authors
noted that MPI has limited scalability when a huge
number of request objects are employed. They suggest
that a more efficient mechanism for request objects be
added to MPI. Finally, when respondents commented
on the standards document, they indicated that it needs
to be made more understandable, have more examples
(in Fortran as well as C), and that other simpler expla-
nations are needed. We noted that several such projects
(such as an annotated ref~erence manual) are fortu-

nately underway.

6 Summary, Conclusions,
Future Work

We surveyed application programmers concerning
early applications in the Message-Passing Interface
(MPI), and received ten responses, nine of which are
described in this paper. Five of the responses were

purely application projects, a sixth aimed at a class of
applications, and the last four responses were generic,
application-enabling libraries.

We were not able to get extensive performance
feedback at this early stage. However, the variety of
application efforts and target architectures is extremely
positive. We expect that many projects will be reporting
performance results during 1995 and beyond, so that
this paper will serve as a supplement to such detailed
case studies.

This paper is necessarily the first step of an ongoing
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study of the progress of these (and, hopefully, addi-
tional) key applications under MPI. As the number of
applications continues to grow, we expect that a paper
of this kind would continue to evolve, showing applica-
tion classes that MPI impacts and describing MPI at
work with other major software systems on such appli-
cations.
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