
RESTful Write-oriented API for Hyperdata in Custom RDF Knowledge Bases

Jacek Kopecký, Carlos Pedrinaci
Knowledge Media Institute
The Open University, UK

j.kopecky@open.ac.uk, c.pedrinaci@open.ac.uk

Alistair Duke
Research and Technology

BT Innovate & Design, UK
alistair.duke@bt.com

Abstract

The Linked Data movement has been very successful in
bringing large amounts of open RDF data on the Web. Much
research and development work has been done on publish-
ing Linked Data, while update access to linked data sources
has been neglected. This paper presents a configurable ap-
proach to creating custom RESTful APIs for writing and up-
dating linked data. In the spirit of hypertext, the approach
fully embraces hyperlinking and resource descriptions, re-
sulting in an update-enabled hyperdata.

1. Introduction

The success of the Linked Data movement [2] is marked
by the availability of large amounts of RDF data sources
openly on the Web. However, the Linked Data principles are
aimed at making data available for reading; the publishing
of write-oriented APIs has been neglected so far.

The continued growth of the Linked Data cloud demon-
strates that many existing databases can be made openly
available. Much work has been done to support publishing
of data, leading for example to standardization efforts on lan-
guages for mapping relational databases to RDF datasets [6].
When publishing an existing database, a read-only RDF
view as linked data is quite sufficient — there must already
be processes and APIs in place for populating and maintain-
ing the underlying database.

In the cases when a new database is being created, it is
natural to consider whether the data (or its subset) should
be openly available as Linked Data. If so, it may be ap-
propriate to use RDF technologies for the back-end of the
new database. Then it is straightforward to follow the Linked
Data principles and publish the RDF data as a set of retriev-
able graphs, potentially with a SPARQL endpoint.

For writing into RDF-based data stores, there needs to be
an update API. Triple stores provide generic APIs (e.g. the
Sesame uploadData servlet1), and the W3C is working on
the SPARQL Update language and protocol [9].

1http://www.openrdf.org/doc/sesame/users/ch08.html

However, such generic update APIs including SPARQL
Update are aimed rather at the internal database update in-
terface, which should be wrapped in an application layer that
enforces consistency and security. There are several reasons
for this. First, a data update seldom remains only a simple
database write — it often also triggers custom actions, such
as propagation of changes into dependent data.

Second, imposing security limits on allowed types of up-
dates through a general-purpose update language requires
low-level access policy languages (e.g. [7]), while a custom
application wrapper layer can structure a security policy ac-
cording to the high-level (and coarse-grained) structure of
the underlying data.

Third, a custom API can validate the updates, and guide
(or constrain) its users in the structure of the accepted data
(for example preventing well-meaning users from using the
wrong ontology by mistake), while in generic triple stores,
update validation is an uncommon feature.

Finally, the application must be in charge of creating
the identifiers (URIs) for new pieces of data: according to
the Linked Data principles, the identifier of a piece of data
should be resolvable to its description, i.e., on a web site
of the application. SPARQL Update does not provide the
equivalent of an AUTO INCREMENT field in an SQL database,
and leaving the creation of identifiers to clients is undesir-
able due to the potential for conflicts, therefore the applica-
tion wrapper needs to handle the creation of new identifiers.

In this paper, we present a RESTful approach to defin-
ing such application-specific update APIs, driven by a sim-
ple declarative configuration. The approach focuses heavily
on discoverability of the update capabilities, so that when a
client reads some data, it learns also how to update it — how
to delete a particular piece of data, how to change it, or how
to add another one like it. Our approach is based on named
graphs with metadata that link the graphs to the contained
data. The resulting data enriched with named graph meta-
data can be called hyperdata,2 essentially meaning linked

2The term, predating the Web, has been used in connection to the Web
of Data, for example in http://www.novaspivack.com/technology/

the-semantic-web-collective-intelligence-and-hyperdata.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357199058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data with self-describing write support.
In Section 2 below, we introduce a use case that led us to

develop the customizable RDF update API. In Section 3, we
present our approach to defining custom hyperdata update
APIs, and in Section 4, we discuss our proof-of-concept im-
plementation used to realize the back-end data store of the
use case. Section 5 discusses works related to linked data and
update APIs. Finally, Section 6 concludes the paper, with re-
marks on future work.

2. Use Case: Offers4All Back-end Data Store

Our write-oriented hyperdata API approach was devel-
oped to support the back-end data storage for a case study
scenario in the research project SOA4All.3 The project was
concerned with supporting the creation and deployment
of service mashups, i.e., services that are themselves con-
structed from existing Web Services or APIs. SOA4All im-
plemented tools to simplify the discovery and composition
of existing Web Services and APIs and also the deploy-
ment and execution of the resulting service mashups. Within
the project, one case study focused on telecommunications-
based mashups with a particular emphasis on business pro-
cesses where telecommunications APIs (such as messaging,
call setup and control) are used to improve the flow of infor-
mation between companies and their customers.

The case study developed an illustrative scenario called
“Offers4All”. The Offers4All service allows companies
such as retail organisations, entertainment providers, travel
and hotel companies to advertise offers to subscribers of the
service. These offers might be “last-minute” travel or enter-
tainment deals or predefined campaign offers from retail or-
ganisations. The Offers4All service allows an offer provider
to create a new offer by describing what the offer is and who
it is targeted at. An appropriate set of subscribers are then
chosen and are made aware of the offer via their preferred
communication channel.

The Offers4All service is backed by a database that stores
the details of each offer that is created by an offer provider.
Details of an offer include a textual description that can be
sent to users, an offer category and a target profile indicating
what users should be targeted with the offer, and information
about how interested users can respond to the offer in order
to take it up. The target profile can include criteria such as lo-
cation dependency, i.e., is this offer targeted at people near a
location (which would be appropriate for example for offers
of restaurants or entertainment venues), or wealth / income
dependency i.e. is this offer targeted at people who are likely
to be wealthy (or not). Predictions of this nature can be made
from Linked Open Data sources such as the UK census data
which provides average income data for UK postcodes.

In addition to offer data, the database stores data about
3http://soa4all.eu/

offer providers and users. Offer providers have contact de-
tails and locations to which their offers can be related, and of
course the actual offers. Users also have contact details (po-
tentially for multiple devices or locations) and preferences
about these. They can specify what offer categories they are
interested in, and they can also choose to “like” an offer
which allows social-networking-style recommendations to
be used to increase the uptake of offers.

Finally, the database stores offer consumption data,
which includes events such as a user being informed about
an offer, a user choosing to respond to an offer, or a user for-
warding an offer to another user. The storage of such events
is important e.g. for billing or for determining the success
statistics of offers and offer providers.

The data in the database is in RDF, structured according
to the Linked Data principles. Two distinct roles access and
modify the data: offer providers and consumers; they natu-
rally have different access rights over the data.

To support the database interactions common in the sce-
nario, such as new offer providers or users registering with
the system, or the launching, distribution and consumption
of offers, the database is façaded by three custom APIs:
a Users API that stores information about users and offer
providers, an Offers API for storing information about of-
fers, and a Consumption API that handles the consumption
data. To illustrate the structure of the APIs, the following is
an operation-oriented view on a part of the Users API, listing
the functionalities available for managing users:

• listUsers() returns a list of the known users
• addUser(data) creates a new user record
• getUser(id) returns a user record
• getUserLikes(id) returns the offers liked by the user
• addUserLike(id, uri) adds a new liked offer
• deleteUserLike(like-id) removes a liked offer
• deleteAllUserLikes(id) clears the list of liked offers
• Dislike — similar four operations as above, manipulat-

ing the list of offers explicitly disliked by a user
• Interest, Disinterest — similar operations, for offer cat-

egories of interest to the user, and for those categories
that the user prefers to filter out
• Contact — similar operations for contact information
• addUserInformation(id, data) amends a user record

with new arbitrary data
• deleteUserInformation(val-id) removes an arbitrary

statement about the user
• replaceUserInformation(val-id, data) updates an arbi-

trary statement about the user

The last two operations handle data that is not foreseen in
the API. In Offers4All, we used these two operations to write
and update the estimate of the user’s wealth status, when the

scenario was extended this way.
The remainder of the three APIs has the same general

structure of operations. In the following section, we abstract
from these operations to a generic configurable update API.

3. Write-oriented Hyperdata API

Each API in the use case is a container for instances of
one or more classes. In this section, we will use the Users
API, which manages the instances of the classes uc:User and
uc:OfferProvider, to illustrate the concrete hyperdata struc-
ture and operations of the API.

Below, in Section 3.1 we define the types of resources that
make up our hyperdata API, then in Section 3.2 we describe
the metadata used to describe the named graphs that make
up the API, and in Section 3.3 we specify the methods that
should be supported by the various resources.

In the text, we use a typewriter font to write example
URIs, abbreviated by stripping the common location prefix,
e.g. http://example.com/data. For instance, /users

should be read as http://example.com/data/users.
Further, we use a sans-serif font when mentioning RDF iden-
tifiers, with several namespace prefixes: uc: for the ontology
developed for the use case, ex: for example data, and g: for a
graph vocabulary.

3.1. Resource Structure of the API

The principles of REST [4] call for structuring an appli-
cation around its main resources. We have identified the fol-
lowing types of resources (with examples from the use case)
that should be represented by a custom write-oriented API
for RDF data:

• class resources (/users, /providers) for every
class managed by the API, with methods to list all the
instances of the given class, and to add new instances;

• instance resources (/users/{id}) for every instance
of a given class, with methods to get information about
the instance, and to add new information (triples)
about the instance;

• property resources (/users/{id}/likes) for se-
lected significant properties (as discussed later), with
methods to get, add and remove the value(s) of the
given property;

• value resources (/users/{id}/likes/{like-id})
for the property values of the instances, with methods
to delete or update the particular value.

The resources above are RDF named graphs [3]. Class
and property resources act as collections where new items
can be added, creating the IDs used in the URIs. Instance
and value resources are concrete items in those collections.

Figure 1. Hyperdata structure of the API

Figure 1 illustrates the structure of the data managed by
the Users API, especially including the named graph re-
sources for manipulating the statements. When a new user
record is submitted to /users, a new ID is created, in the fig-
ure /users/1345. To follow the Linked Data principles, the
submitted instance must itself be identified through a URI
that is dereferencable and leads to the appropriate named
graph; therefore, the API assigns instance URIs of the form
of the instance resource URIs with the appended fragment
identifier #this, such as /users/1345#this.

In the figure, the following information was submitted
about the new user:

:x a uc:User;

uc:likes ex:Amazon, ex:Google;

uc:hasInterest ex:Cars;

uc:hasWealth ”56”.

For the purpose of the illustration, we use ex:Amazon and
ex:Google as the identifiers of two offers that the user likes,
and ex:Cars as an offer category.

The various graph resources are interlinked: class re-
sources link to the contained instance resources; instance re-
sources link to all their property and value resources; and
property resources link to all the value resources for the
given property.

The concrete structure of a given API is guided by a sim-
ple configuration which names the classes whose instances
are managed by the API, and for each class, the significant
properties. Every configuration item also has a manually
chosen short name that is used in the URIs. Table 1 shows
the configuration that defines the Users API.

Note the last configuration entry, which we call a wild-
card property. Its presence in the configuration lets the API
accept any other properties that are not explicitly mentioned

Config. entry Ontology element Short name
class uc:User users

property uc:likes likes

property uc:dislikes dislikes

property uc:hasInterest interests

property uc:hasDisinterest disinterests

property uc:hasContact contacts

property ∗ v

Table 1. Configuration for the Users API

in the configuration; in the use case, we use this for the
uc:hasWealth property. There is no property resource for the
wildcard property, but the short name of the wildcard prop-
erty is used in the name of the concrete value resources, e.g.
/users/1345/v/5943 in Figure 1.

3.2. Named Graph Metadata

To indicate the relation between the actual data and the
named property and value graphs, we employ a vocabu-
lary for graphs along with the RDFS reification vocabulary.
For illustration, the data in /users/1345 would include the
triples in Listing 1, where lines 1–4 contain the actual data
about the particular user (/users/1345#this), and the fol-
lowing lines show a subset of the graph metadata.

Line 7 indicates that the graph is the description of the
user instance, making it possible for a client to infer that an
HTTP DELETE request can remove the instance.

Line 8 links the instance graph with one of the prop-
erty graphs (/users/1345/likes) and a wildcard property
value graph (/users/1345/v/5943) — other graphs that
would be linked here are omitted for brevity. Line 9 links
the instance graph with the high-level class graph.

Lines 11–18 describe a property graph: it contains a con-
crete value graph, and a reified triple pattern (lines 14–17)
that indicates that the graph includes statements of the form
/users/1345#this uc:likes something (note the blank node
on line 17). The triple pattern is meant to indicate what kind
of data can be POSTed to the property resource, and what
subset of the data about the user can be expected when GET-
ting the property resource.

Finally, lines 20–26 and 28–34 describe the two concrete
value graphs. The client can use PUT or DELETE on these
graphs to update or remove a particular statement.

Such graph descriptions and links support discoverability
of the update API in the true spirit of hypertext, and turn the
underlying RDF data into what we call hyperdata. In fact,
the API also has a root resource (/) intended for further
discoverability — it lists the class resources managed by the
given API, describing them with triple pattern like some-
thing rdf:type uc:User, which indicates the ontology class
whose instances are managed by the resource.

1 </users/1345#this> a uc:User ;
2 uc:likes ex:Amazon, ex:Google ;
3 uc:hasInterest ex:Cars ;
4 uc:hasWealth ”56”.
5

6 </users/1345> a g:Graph ;
7 g:defines </users/1345#this> ;
8 g:contains </users/1345/likes>, </users/1345/v/5943> ;
9 g:isContainedIn </users> .

10

11 </users/1345/likes> a g:Graph ;
12 g:contains </users/1345/likes/43905> ;
13 g:contains [
14 a rdf:Statement ;
15 rdf:subject </users/1345#this> ;
16 rdf:predicate uc:likes ;
17 rdf:object []
18] .
19

20 </users/1345/likes/43905> a g:Graph ;
21 g:contains [
22 a rdf:Statement ;
23 rdf:subject </users/1345#this> ;
24 rdf:predicate uc:likes ;
25 rdf:object ex:Amazon
26] .
27

28 </users/1345/v/5943> a g:Graph ;
29 g:contains [
30 a rdf:Statement ;
31 rdf:subject </users/1345#this> ;
32 rdf:predicate uc:hasWealth ;
33 rdf:object ”59”
34] .

Listing 1. Example graph description triples

3.3. API Methods

We’ve already touched on the HTTP methods allowed by
the various types of resources in our API. Below, we specify
the main allowed methods in more detail.

Class resources support GET to list the instances, and
POST to add a new instance. The RDF data sent to POST
must describe a single instance of the appropriate class. The
instance will get a new assigned ID; if it already has a URI
(i.e., it is not a blank node), the old URI will be added to the
data as owl:sameAs the newly assigned ID.

The POST data can contain any statements about the sub-
mitted instance, and also further statements that are forward-
reachable from the instance. (A statement is forward-
reachable from a node if its object is the node, or if its ob-
ject is the subject of another statement forward-reachable
from the node.) However, the submitted data must not con-
tain statements about other instances managed by the same
API; this ensures that data managed by the API is submitted
through the appropriate resources. Further, if the API does
not allow the wildcard property, the submitted data can only
contain statements about the instance that use one of the ex-
plicitly configured properties.

Allowing arbitrary statements forward-reachable from
the instance means that the data about the instance is not
limited to simple literal values or bare URIs: for example in
our use case, the contact information for a user may include
structured data for a mailing address.

Instance resources support GET to retrieve all the infor-
mation about an instance, DELETE to remove the instance,
and POST to add new statements. The POSTed RDF data
must use the correct ID assigned to the instance and only
contain statements forward-reachable from it.

Property resources support GET to retrieve all the val-
ues of the given property for the given instance, DELETE
to remove all the values, and POST to add new values. The
POSTed RDF data must use the correct property and only
contain statements forward-reachable from the instance.

Value resources support PUT to replace the current value
(with the same input data structure as POST on property re-
sources), and DELETE to remove the current value (along
with the value resource graph itself).

Whenever data is deleted or replaced, the operation also
removes all data in the instance’s graph that is no longer
forward-reachable from the instance. In effect, a DELETE
on a value resource would normally remove the triple de-
scribed as a reification in the resource’s metadata and any
further statements about the removed triple’s object.

In summary, the API has a configurable four-level hierar-
chical structure: i) class resources manage instances; ii) in-
stance resources are the main Linked Data resources, sup-
porting some manipulation of the instance data; iii) property
resources simplify access to and creation of property values;
and iv) value resources manipulate concrete property values.
The resources are interlinked and support the appropriate
HTTP methods; in effect, the API gives read-write access to
Linked Data in a RESTful and self-describing manner that
we call hyperdata.

4. Implementation
We have developed a proof-of-concept configuration-

driven triple-store wrapper called “Hyperdata API”,4 writ-
ten in Java with the Jersey framework for building RESTful
Web services, and with RDF2Go as an abstraction over a
triple store, in our case OWLIM.5

Each of the 5 types of resources is implemented in a sep-
arate stateless Java class. Since the structure of the imple-
mentation is very simple and mirrors the structure of the
hyperdata API, it can easily be extended with configurable
security policies and application code triggers for validation
and data handling actions. Such extensions are part of our
planned future work.

Compared to the description in the preceding section, our
implementation has several notable limitations: i) we use a

4http://kmi.open.ac.uk/technologies/name/hyperdata
5http://www.ontotext.com/owlim

custom vocabulary for graphs because there is no widely
accepted standard (this is under discussion in the W3C6);
ii) application data cannot include the graph vocabulary or
RDFS reification vocabulary because it might conflict with
our uses in the hyperdata graph links and descriptions; and
iii) the implementation contains no security mechanisms
apart from what is available through Web server configura-
tion. None of these limitations harms the functionality and
applicability of the API in our use case.

The resource descriptions and links in the API are ex-
pressed as RDF triples in the returned data, and our im-
plementation also materializes them in the underlying triple
store. In effect, the triple store must handle significant over-
head on top of the size of the application data managed by
the API. In our deployment, the overhead has not proved
detrimental to the performance of the system, but we have
not conducted scalability testing.

Beside the issues of scalability, the materialization of the
hyperdata linking and graph description metadata also com-
plicates potential reconfiguration. Changes in the configu-
ration of the API, such as an addition of explicitly con-
figured properties, or changes in short names, necessitate
a rebuilding of the metadata, and possibly changes to the
identifiers of graphs and instances in the data. In practice,
such changes are virtually unavoidable. Our implementa-
tion currently provides no support for handling configura-
tion changes.

Finally, our experience with the API implementation has
shown that RDF/XML is not the most convenient format for
API access, and should be complemented by alternative data
formats, such as custom XML or JSON. The issue is likely
mainly the result of the relative complexity of handling RDF
graph data in client software, in contrast to handling XML
or JSON tree data. In response to this concern, the method
POST on property resources in our implementation also ac-
cepts two other media types beside RDF/XML: text/uri-list

allows a simple way of adding one (or more) URIs directly
as the new value(s) of the given property on the given in-
stance, and text/plain is a simple way of adding one untyped
literal value. The same two extra media types are also sup-
ported by PUT on value resources, meaning the replacement
of the current value.

5. Related Work

Update APIs for Linked Data commonly either use a
query language such as SPARQL Update [9], or they sim-
ply use HTTP methods for updating named graphs.

Works that do direct updates to named graphs rely on a
division of the whole data set into resources according to
the Linked Data guidelines. Among such works is [5], which
supports graph collections and individual named graph re-

6http://www.w3.org/2011/rdf-wg/wiki/TF-Graphs

sources. While its configuration capabilities are extensive,
[5] does not seem to support subgraphs and subcollections
such as the property and value resources in our approach.
In effect, in terms of our use case, either the update API
would not support partial update operations such as the ad-
dition or removal of individual property values within an
instance graph, or it would split user records into many ex-
plicit named graphs (where the interlinking would have to
be done by the client). This issue is shared by all the named-
graph-oriented approaches we know.

Also in this class of approaches, the W3C is working
on SPARQL Graph Store HTTP Protocol [8], which is a
straightforward recommendation on how to interpret HTTP
methods on named graph resources. Interestingly, it uses
POST for adding data to a graph (RDF merging); in ef-
fect, the protocol has no notion of a collection of graphs.
The Users API, implemented with the graph store proto-
col, would require the clients to assign identifiers to new in-
stances, which, as discussed in the introduction of this paper,
is undesirable.

In summary, we are aware of no related work that focuses
on simple configurability and discoverability of the resulting
update API, while supporting partial updates.

Among the works that employ SPARQL Update, we will
mention the extension of the RDF browser Tabulator with
writing capabilities in [1]. In this approach, a server may in-
dicate that a resource can be updated with either WebDAV or
SPARQL Update, and Tabulator will allow its user to edit the
data received from that server, and to send the update to the
server. While a public SPARQL Update endpoint may some-
times be available, we’ve argued in the introduction that cus-
tom APIs are often better. As far as we know, Tabulator cur-
rently cannot deal with custom update APIs, but it could be
extended to recognize the graph metadata provided by our
approach and to offer editing capabilities that would invoke
our API.

Finally, we noted in the preceding section that RDF
should be complemented in our API by alternative (and sim-
pler) data formats, such as custom XML and JSON. This can
be achieved by combining our approach with efforts such as
the Linked Data API.7 The LD-API focuses on developer-
friendly APIs for reading Linked Data, particularly with sup-
port for the JSON format. Our approach mainly focuses on
updates and API discoverability, and as such, it is comple-
mentary to LD-API and similar efforts.

6. Conclusions and Future Work

While publishing linked data is a heavily-researched task,
making linked data stores available for writing is a so-far
neglected aspect of the Web of Data. In this paper, we have
presented a proposal for structuring update-oriented custom

7http://code.google.com/p/linked-data-api/

APIs over RDF stores, with particular focus on hypertext-
like discoverability of update capabilities.

In its operation, our API enriches the application data
with metadata about named graphs that support read/write
access to the data and its subsets. We suggest the term hyper-
data to describe such update-enabled linked data, to contrast
it to simple linked data that is read-oriented.

As part of our future work, we plan to analyze the discov-
erability aspect of our approach, and to align the graph meta-
data vocabulary with emerging standards. One of the effects
that we are aiming for is that the discoverability, supported
by a standard vocabulary, will enable tools such as Tabula-
tor to provide edit/update capabilities over a wider range of
resources than they do currently.

Additionally, we plan to enhance the implementation
with support for security policies, strong data validation, and
application triggers.

Acknowledgments
This work was done as part of the case study activities

of the European research project SOA4All (soa4all.eu).

References

[1] T. Berners-Lee, J. Hollenbach, Kanghao Lu, J. Presbrey,
E. Prud’hommeaux, and mc schraefel. Tabulator Redux:
Browsing and Writing Linked Data. In Proceedings of the
WWW 2008 Workshop on Linked Data on the Web, Beijing,
China, 2008.

[2] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The
Story So Far. Intl Journal on Semantic Web and Information
Systems (IJSWIS), Special Issue on Linked Data, 2009.

[3] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs,
provenance and trust. In Proceedings of the 14th international
conference on World Wide Web, WWW ’05, pages 613–622,
New York, NY, USA, 2005. ACM.

[4] R. T. Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of Cali-
fornia, Irvine, 2000. Chair: Richard N. Taylor.

[5] A. Garrote and M. N. Moreno Garcı́a. RESTful writable APIs
for the web of Linked Data using relational storage solutions.
In Proceedings of the WWW 2011 Workshop on Linked Data
on the Web, Hyderabad, India, 2011.

[6] R2RML: RDB to RDF Mapping Language. Working Draft,
W3C, March 2011. Available at http://www.w3.org/TR/
r2rml/.

[7] P. Reddivari, T. Finin, and A. Joshi. Policy based access con-
trol for an RDF store. In Proceedings of the Policy Manage-
ment for the Web workshop, Chiba, Japan, May 2005. In con-
junction with the 14th International World Wide Web Confer-
ence.

[8] SPARQL 1.1 Graph Store HTTP Protocol. Working draft,
W3C, May 2011. Available at http://www.w3.org/TR/
sparql11-http-rdf-update/.

[9] SPARQL 1.1 Update. Working draft, W3C, May 2011. Avail-
able at http://www.w3.org/TR/sparql11-update/.

