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Fig. 1. Application of our visualization technique on a hierarchical data set, zooming from overview (left) to a region of interest (right).
The density-based node aggregation field (blue color) guides edge aggregation (orange/red color) to reveal visual patterns at different
levels of detail.

Abstract— We propose a technique that allows straight-line graph drawings to be rendered interactively with adjustable level of detail.
The approach consists of a novel combination of edge cumulation with density-based node aggregation and is designed to exploit
common graphics hardware for speed. It operates directly on graph data and does not require precomputed hierarchies or meshes.
As proof of concept, we present an implementation that scales to graphs with millions of nodes and edges, and discuss several
example applications.

Index Terms—Graph visualization, OpenGL, edge aggregation.

1 INTRODUCTION

We present methods for the interactive visualization of large graphs.
We say a graph is large if it fits into video memory but cannot be
rendered as node link diagram without significant over-plotting, thus
we define size relative to the computing environment. For the inter-
active exploration of such graphs fast node and edge aggregation is
needed in combination with efficient rendering in different levels of
detail (LOD). Both is presented in the following. Our techniques en-
able us to show graphs with up to ∼ 107 nodes and up to ∼ 106 edges
at interactive rates.

Lampe and Hauser [20] describe a method for rendering large
graphs as density fields based on a GPU implementation of Kernel
Density Estimation (KDE). Our method extends their technique for
node aggregation by a two-pass seed point rendering that significantly
reduces geometry and scales to large graphs. Furthermore we present
a fast edge aggregation method that derives start- and endpoints of
multi-edge representatives from the underlying node density field in
image space. Our method is able to render a graph with a given layout
without preprocessing. No auxiliary data structures such as meshes or
node hierarchies are needed.

Our techniques allow to render large graphs on common graphics
hardware at interactive rates. In combination with a zoom based user
interface and flexible KDE bandwidth manipulations efficient graph
exploration is possible as well as interactive and intuitive node label-
ing. Additionally, our techniques provides flexible mechanisms to de-
fine the representation of aggregates by modifying the normalization
function and used colors as described below.

The paper is organized as follows. First we describe and discuss
the related work in Section 2. A detailed description of our meth-
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ods is given in Section 3, performance considerations are discussed in
Section 4. An interactive system based on the proposed techniques is
described in Section 5. We present its interaction paradigms and some
example applications. Finally, we summarize and propose future work
in Section 6.

2 RELATED WORK

We divide the problem of rendering large graphs on (comparatively)
small displays into two main problems: dense regions of nodes and
cluttering of edges. While the first is the general problem of dense
point sets commonly faced in visualization and computer graphics,
the second problem is more closely related to structure-aware methods
from information visualization and graph drawing.

2.1 Node Visualization Methods
Nodes can be displayed as small elements, at minimum a single pixel
can represent one node. Nevertheless, clutter and over-plotting are
common challenges in point data and scatterplot visualizations. One
solution to the problem is to slightly displace the nodes to reduce over-
plotting on the whole dataset [18]. Alternatively, optical distortion
techniques and zoomable user interfaces can improve the visualization
in a local area [6]. While both methods preserve the distinct node
representation they either distort the shape of node groups [18, 6] or
display only parts of the dataset [6].

Density-based visualizations avoid these problems and can be
applied to large datasets. Density can be measured by dividing the
visualization into bins and counting the number of data points that
fall into them. This approach is closely related to histograms and
color codes or symbols can be used to represent the local density [8].
For instance alpha blended scatterplots are an implicit form of this
technique with a bin sizes equal to one pixel and a color encoded
density representation. However similar to histograms the bin sizes
and binning borders introduce a bias to the visualization. Instead
of such discrete density representations basis functions can be used
to accumulate the point influences into a continuous density field.
Leeuw and Liere [28] propose a GPU-accelerated technique that
visualizes accumulated Gaussian basis functions as continuous field
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similar to a heat map. Cao et.al. [7] use Kernel Density Estimation on
nodes to derive a cluster hierarchy which is input to hierarchical edge
bundling [14].

2.2 Edge Visualization Methods
In many cases, graphs are visualized as node link diagrams. In addi-
tion to node clutter, such representations suffer also from over-plotting
of edges, since such elements cannot be displayed as efficiently. Node
layout algorithms serve as a global solution to untangle node link di-
agrams while distortion techniques provide local improvements, e.g.
fisheye lenses [24] generate more screen space for interesting areas.
Furthermore, the drawing paradigm can be altered to be more space
efficient. Becker [5] suggests to draw the links only half the way to
their targets. These “half lines” reduce edge clutter and crossings but
make tracking edges more difficult.

Apart from such improvements for edge rendering it is common to
shift the focus from single edges to edge aggregates. Such aggregates
can be loose edge bundles, edge replacements through meta edges
or edge density patterns. In either case single connections become
harder to read but overall patterns become more prominent. The
aggregation strategies are commonly classified into hierarchical
methods, confluent drawing, edge bundling techniques, and density
based methods.

Hierarchical methods define a pyramid of simplified versions
of a graph. This pyramid can be constructed by merging nodes
based on graph theoretic measures [13] or geometric clustering [22].
The edges are merged to meta edges, which are explicitly defined
and represented. The approaches are often designed as interactive
systems that allow the user to browse different aggregation levels
by expanding/collapsing nodes. Reducing the amount of visible
elements allows exploration of datasets with several million edges
[4] on current displays. The creation of the aggregates requires
offline computations, except for datasets that already contain natural
hierarchies.

Confluent Drawing represents graphs without edge crossings.
Dickerson et al. [10] present for instance a heuristic algorithm that
replaces clique and biclique edges with an explicit “traffic circle”
aggregation metaphor. However confluent drawing can not be
applied on general graphs and “the complexity of deciding whether
a general graph is confluent or not still remains an open problem” [10].

Edge Bundling techniques share a common metaphor: they join
similar parts of edges to bundles. Single nodes and edges remain in
the visualization, while visual bundles highlight higher level patterns.
The aggregates are often defined explicit by a hierarchy [14], a mesh
[9, 19] or based on clustering techniques [12, 11, 21]. However,
the standard representation here is implicit with loose bundles of
variable diameter indicating the aggregates [15, 11, 14]. Still there
are some exceptions like edge to edge force based implicit bundling
strategies [15] or flow like explicit representations [21] and clustering
based post processing techniques [26]. Edge bundling scales for
graphs of medium size (∼ 1−10k edges), the algorithms are designed
to optimize bundling with allowance for non realtime execution.
Gansner et.al. [12] use a proximity graph and an “ink saving” measure
to allow fast hierarchical edge bundling of large graphs. Recently,
Hurter et.al. [17] described an iterative approach which operates on
a hight field created from applying KDE on edge sample points. In
each iteration step, the sample points are moved along the gradients
towards local maxima. With each repetition, the kernel bandwidth is
decreased, which sharpens the density field and results in tighter and
more separated bundles.

Density Based approaches transform the discrete node link
diagram into a continuous representation. Leeuw and Liere [28]
represent graphs with node density fields and Lampe and Hauser
[20] extend the method to edges, using line kernels. Density based

techniques use a pure implicit aggregation that exists only as visual
pattern in the visualization. The implicit aggregation allows fast
rendering without preprocessing and the techniques can be applied to
streaming data [20].

2.3 Discussion of Related Work
Bundling approaches, like Gansner et.al. [12] or Hurter et.al. [17], re-
duce visual complexity by grouping edge segments to bundles. Lampe
and Hauser [20] use a line kernel method to visualize an edge density
field. Although using different metaphors, these approaches aim at
highlighting edge patterns. In contrast, we focus on relationship pat-
terns between node density clusters. And thus extend the well known
density representation [20, 28] of point data sets with a closely cou-
pled visualization of inter-cluster connections. FacetAtlas [7] relates
to this idea, but addresses smaller magnitudes of elements.

Similar to Lampe and Hauser our approach operates in image space
for fast processing using OpenGL. The method generates implicit edge
aggregates which appear as a series of pixel values and do not link
back to the edges they are aggregating. Object space approaches
(like [12]) retain this mapping between explicit edge aggregates and
edges and benefit from additional rendering options (e.g. changes of
aggregate geometry or per aggregate shading). But image space al-
gorithms can reduce the computational complexity and enable us to
achieve the required rendering rates for interactive exploration.

3 METHODS

The core of our contribution for visualizing large graphs is a new
density-based node and edge-aggregate representation that addresses
the cluttering problem. Our approach works completely in image
space, does not use complex spatial data structures and utilizes var-
ious features of today’s graphics hardware.

We start by describing the generation of continuos node density
fields in Subsection 3.1. Such fields provide an overview of large
amounts of data without neglecting the influence of a single node.
Then we propose a hill climbing approach that uses the obtained node
density field to guide the positioning of aggregated edges in combi-
nation with the aggregated nodes. Furthermore, Subsection 3.2 ad-
dresses a common problem of overdraw-based edge aggregation: col-
ors change at edge crossings and distort the visual appearance. We
solve this problem by a new drawing routine that takes edge orienta-
tion into account.

In the following we refer to nodes and node coordinates in object
space, while using pixel and pixel positions to describe elements in
image space (screen space).

3.1 Kernel Density Estimation for Node Aggregation
As mentioned above, we use density fields to visualize node aggre-
gates. Lampe and Hauser [20] propose a fast algorithm that generates
such fields by utilizing the features of todays graphics hardware. Their
approach is inspired by kernel density estimation (KDE) and has the
advantage of very naturally aggregating the node details, as Silverman
says “..the data will be allowed to speak for themselves...” [25]. In the
following we introduce their method with our adaption and describe
our extensions that allow scaling to large node sets.

The 2D kernel density estimator for n data points xi i ∈ 1,2, ..,n is
defined as:

fKH (x) =
1

n

n

∑
i=1

KH(x− xi) (1)

with kernel function KH . We adjust the formula such that each point
contributes a weight of one at its position and a decreasing influence
to its neighborhood. Similar to other publications [20, 28] we choose
a 2D Normal Kernel for K with influence matrix H. For simplicity
we use an isotrope influence of the kernel in all directions and thus
can restrict H to multiples of the identity matrix. A scalar parameter
h is used to control the bandwidth of the kernel function. Additive
blending of textured rectangles is used to determine fKH (x) for each
pixel. Each node coordinate xi is mapped from object space to a pixel

2487



position x′i in image space. For every node a geometry shader creates
a rectangle at position x′i. The rectangle is filled with a precomputed
floating point texture that approximates the kernel function. The con-
tribution of the nodes to the density field is accumulated with additive
blending of the rectangles in the rasterization pipeline (Figure 2 (a)).

For large node sets, however, the described method is time ineffi-
cient because the amount of textured rectangles depends linearly on
the number of nodes within the screen area. Therefore, we extend
the method and significantly reduce rendering time by binning nearby
node coordinates into pixels. Instead of rasterizing multiple rectangles
at the same position, a single weighted rasterization step per bin is then
sufficient to create the same density field.

Typically, binning is done using spatial data structures such as a
Point Region Quadtree (PRQ) [23] which provides fast access queries
while (offline) construction is cheap (Figure 2 (b)). PRQs represent
a point aggregation hierarchy by recursively dividing the viewport.
When querying the Quadtree, the hierarchy is cut at an appropriate
level of detail and the next smaller aggregation level is returned. How-
ever, in most cases the Quadtree regions do not exactly fit pixel sizes,
thus causing geometric overhead for non-merged nodes. Furthermore,
the induced storage requirements for meta nodes add up to significant
amounts for large graphs.

Therefore we propose the Seed Point Method, a technique that uses
two render-passes: one to merge the nodes in their pixel-sized bins and
one to create the actual density field. In the first pass the node coor-
dinates xi are mapped to pixel positions x′i of an Accumulation Field.
The Accumulation Field is a frame buffer object (FBO) in screen res-
olution. Node coordinates that fall into the same pixel position are
cumulated by additive blending.

After the first render pass, the value of each pixel therefore repre-
sents the amount of accumulated nodes within its screen space area.
The second render pass binds the Accumulation Field as a texture and
creates a weighted textured rectangle for every pixel of value ≥ 1 using
a Geometry Shader (Figure 2 (c)). Doing so, our approach determines
for a given viewport resolution the optimal input set to create a density
field and minimizes the overhead during the kernel blending. More-
over it does not need any additional storage and fits directly into the
OpenGL pipeline.

a

b

c

pixel size
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1

Quadtree

Direct

Seedpoint

Fig. 2. Rendering KDE kernel textures for points in a dataset to create a
continuous density field. a) the direct approach: place a texture for each
point; b) use a pre-calculated Point Region Quadtree to bin points; c) the
Seed Point method uses a two-pass rendering to first accumulate points
per pixel and secondly uses a geometry shader to render parametrized
kernel textures.

3.2 Hill Climbing for Edge Aggregation
In the next step we use the node Accumulation Field as input for a new
edge aggregation approach that is visually coupled to aggregated node
clusters. Our method bases on the idea that the aggregation of edges
between peaks of the node field is an intuitive visual metaphor. In
contrast to other edge aggregation techniques our technique operates
in image space and therefore does not rely on precomputing supporting
data structures.

original nodes
and edges
cluster cen ers

aggregated edges
effect of the
EvaluationField

�

�

Fig. 3. The hill climbing method is shown as a lateral cut of a height
field (our interpretation of the node density). The original edge points
(indicated in black at the bottom of the figure) are translated to the near-
est hilltops (blue). The edges cumulate to aggregates (orange) which
connect the cluster centers (hilltops).

We interpret the node density field as height field and use a hill
climbing algorithm to move starting and end points of the edges to the
highest point of their visual cluster (the local maximum). The edges
whose start points fall into the same cluster and whose end points share
another cluster are implicitly aggregated. As result, inner-cluster con-
nections are vanished while inter-cluster connections are emphasized.
Figure 3 demonstrates the effect. The graph is shown in the lower part
of the figure. The original edges are given in black while the aggre-
gated versions are in orange. The density field is shown as hills in the
upper part. The blue points are the aggregate edge points, the orange
edges the remaining aggregate edges. The edge points correspond di-
rectly to the highest peaks in the node aggregate visualization.

Generally, hill climbing moves points towards a local maximum
which is what we want. If the density field contains several small
local maxima within a large plateau, the corresponding “inner-cluster”
edges are drawn. To avoid this line clutter within plateaus, the KDE
bandwidth h can be adjusted to retrieve less edges.

As mentioned above, hill climbing is implemented in OpenGL:
The Accumulation Field (see Seed Points method) is bound as tex-
ture tAF and a fragment shader operates on this texture as shown in
algorithm 1. Within the Accumulation Field for every start pixel the
associated hilltop-pixel is searched by iteratively tracking 3x3 neigh-
borhoods. As starting points we use every pixel that accumulates at
least one node. The result of this step serves as input for a geometry
shader that repositions the points on the GPU towards the hilltop posi-
tions. The outcome of the process is an edge aggregation texture where
each pixel value represents the number of edges that pass through it.

Algorithm 1 Hill climbing in image space

Require: texture tAF of the Accumulation Field
for all pixel positions p ∈ tAF do

ptemp ← p
if value(ptemp) �= 0 then

run ← true
while run do

K ← 3x3 neighborhood of ptemp
pmax ← pixel position in K with highest value
if pmax �= ptemp then

ptemp ← pmax
else

run ← f alse
end if

end while
end if
assign ptemp as hilltop to p

end for

It is important to note that the algorithm does not return explicit
meta edges but aggregation results for the edges in form of pixel
values. Along with these aggregation results, three visualization
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challenges arise: I) handling of edges that leave the viewport, II)
the rendering of approporiate line widths, and III) avoiding visual
hotspots on edge crossings. While the first problem only relates to
our method, the latter two are of general interest for density based
methods. We present solutions for all of them in the following.

Edges that leave the viewport: In a simple implementation the
Accumulation Field would not be defined outside the viewport and
thus edges that leave the visible area would not be aggregated. The
rendering subsequently becomes unstable and panning operations may
alter edge aggregates. These problems are reduced by aggregating
nodes beyond the viewport borders: we suggest combining the visible
Accumulation Field with an off screen field four times the visible
area. Since this context is not visible and only used for aggregation
we can work with a reduced resolution of the Accumulation Field
outside the screen window. Using half of the resolution outside the
visible window only doubles the total node aggregation costs but
is already sufficient to stabilize the edge renderings of most graphs
against panning and feathering out at the visible borders.

Rendering of thick edges: Edge coloring based on overdrawing
is a common way to visualize aggregate weights in implicit edge rep-
resentations. In contrast to explicit techniques the geometry of the
aggregate cannot be altered here. In particular, it is not possible to
render important edge aggregates with thicker lines because they con-
sist of many over-plotted single edges and the rendering pipeline is
not able to generate links between edges and aggregates. Therefore all
edges are treated equally and are rendered with the same line width.

We therefore propose a post-processing step using a fragment
shader that alters line thickness on the edge aggregate texture and
creates the illusion of explicit aggregate definitions. We define a dis-
tance function dist(pi, p j) between two pixels pi and p j and a function
width(value(px)) which maps a pixel value to a specific edge width.
To determine the color of a pixel pi the shader inspects a w×w neigh-
borhood S of pixel pi. All pixels p j ∈ S which fulfill the following
condition are further considered as candidates for coloring:

dist(pi, p j)≤
width(value(p j))

2
(2)

Among the candidates the shader chooses the p j with the highest value
to use it for coloring of pi. Using the maximum as selection criterion
implies that important lines are rendered on top of others. The param-
eter w defines the size of the neighborhood and thresholds the maximal
line-width. We chose a value of 5 to be sufficient for our approaches.

A natural choice for a distance function dist(di,d j) would be the
Euclidean distance. However, the symmetric character only allows
uneven edge widths of one, three, five, etc. Therefore we propose an
asymmetric pseudo Euclidean distance function that shifts the edge
centers slightly from their intended positions but complements the vi-
sualization with even edge widths. Figure 4 describes the distance
functions.

For example, given a pixel at position (xe,ye) and an attached edge
width of two. Measuring with Euclidean distance, the pixel to the left
(xe −1,ye) and to the right (xe +1,ye) would be colored, resulting in
a width of three. Using our pseudo Euclidean distance, only the left
pixel (xe − 1,ye) would be colored. The distance of the right pixel
(xe +1,ye) is two and therefore it does not satisfy the initial condition
of equation 2: 2 �≤ 1.

Avoiding hotspots on edge crossings: Measuring the overdraw for
computing edge widths and colors works well for isolated edges. If
multiple aggregates cross the same pixel, however, all involved edges
accumulate. Edge crossings therefore become hotspots and produce
disturbing artifacts in the visualization. Moreover the density peaks
distort the normalization for color mapping and width assignment and
constrain the visualization space for actual edges (Figure 5 left).

We propose to render edges separated by angles to reduce artifacts
of edge crossings. The result is a set of textures that is merged with
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a) Euclidean distance b) Pseudo-Euclidean distance 

Fig. 4. Euclidean and Pseudo Euclidean distance functions used for
widening edges. The aimed line width in the given example is two, i.e.
width(value(redpixel)) = 2. For the symmetric Euclidean distance the left
and right pixels are colored (they have distance 1). For the Pseudo Eu-
clidean distance only the left pixel is colored, the right pixel has distance
2 and fails the selection criterion 2 �≤ 2

2
.

a max value filter to eliminate the crossing artifacts (Figure 5 middle
and right).

This technique is implemented in OpenGL by adding two render
passes. In the first pass the edges of four different angle segments
are rendered into the four separate color channels of a texture. The
second pass uses a maximum filter to merge the obtained texture with
the edge aggregation texture. We suggest using 180 angle segments of
one degree (45 texture runs) for an undirected graph.

4 MEASURES & COMPLEXITY

The presented visualization system is based on image operations that
are executed in parallel on the GPU. Moreover, many render opera-
tions build upon cheap texture transformations and in particular only
three rendering steps depend on the input data. For each node a sin-
gle point has to be added to the AccumulationField, each edge has
to be rendered to the edge aggregation texture and the kernel rectan-
gles have to be created. The last step depends on the number of Seed
Points, which is limited by min(#pixels,#nodes). We denote the con-
stant render cost for one Seed Point with Rs, for one rectangle with Rr
and for one edge with Re. The worst case complexity for p pixels, n
nodes and m edges is defined as:

O(n ·Rs +min(n, p) ·Rr +m ·Re) (3)

Thus we are able to maintain a linear dependency towards the size
of the input data. Moreover, the architecture of GPUs compensates for
growing data sizes through parallelization. In practice, nearly constant
render times can be achieved for graphs with up to ∼ 106 edges on
common hardware (Figure 6).

Table 1 gives an overview of the test datasets and measured results.
The US air-traffic and US migration graph are well known examples
for edge bundling algorithms. The US census [27] data set provides
more migration data with weighted edges and at a bigger scale. Wiki-
Vote, Net50 and Net150 are available at the Sparse Matrix Collection
[2] and have been laid out with SFDP[16] to allow fair comparison to
results of MINGLE. The 4.5M graph and H3 graph (Figure 1) are arti-
ficial test datasets for edge aggregation and the Europe dataset serves
as node rendering benchmark. The latter one has been extracted from
OpenStreetMap [1] and includes one point for each tagged building.

Figure 6 compares the presented approach to the results of MIN-
GLE [12] and KDEEB [17], two of the, to our knowledge, fastest al-
gorithms for edge bundling. To allow a comparison to KDEEB on
large data sets we include a random graph of the same size as de-
scribed in [17]. The random graph is marked explicitly because of it’s
unusual properties: two times more nodes than edges and quasi-equal
node distribution . Overall the diagram shows a roughly linear corre-
lation between the number of edges and the render time for MINGLE.
The results for KDEEB are more difficult to interpret but the authors
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a) with hotspots b) hotspots removed with 
angle separated rendering

c) hotspots removed with 
angle separated rendering 
and color scaling corrected

Fig. 5. (a) Edge crossings become hotspots and distort the coloring and edge widening. (b) Angle separated rendering removes the artifacts, (c)
color scaling and edge widths assignment is corrected.

Table 1. Rendering times in seconds. The marked columns (*) have been reported in [12] (CPU approach) and in [17] (GPU GTX 580). The
remaining columns measure the average GPU time to create an overview of the whole graph (left) for 32px and 128px kernel size. The worst
rendering times found by manual inspection are given at the right columns. Resolution is 1500x750 pixel.

description overview bad case
dataset source #nodes #edges MINGLE* KDEEB* 32px 128px 32px 128px
US air-traffic [3] 275 1,925 0.1 0.5 0.3 0.3 0.3 0.3

US migration / 1702 9780 1.0 1.5 0.2 0.3 0.4 0.4

Wiki-Vote [2] 8,436 103,660 18.4 / 0.3 0.4 0.3 0.5

random graph / 200,000 100,000 / 18.0 0.4 2.2 0.4 2.2

net50 [2] 16,320 464,440 87.1 / 0.4 0.4 0.4 0.4

US census [27] 3075 545,882 / / 0.5 0.5 0.6 0.6

net150 [2] 43,517 1,538,840 355.0 / 0.4 0.4 0.7 0.8

4.5M / 99,965 4,551,564 / / 1.2 1.2 2.1 2.5

Europe [1] 37,612,093 / / / 0.2 0.5 0.4 2.4
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0.1

1

10

100

1000

1e+03 1e+04 1e+05 1e+06 1e+07

MINGLE

KDEEB

LaGO

U
S

ai
rtr

af
ic

W
ik

i-V
ot

e

ne
t5

0

ne
t1

50

number of edges

tim
e

in
se

co
nd

s

U
S

m
gr

at
io

n

ra
nd

om
gr

ap
h

Fig. 6. Log-log scale comparison of the results reported for MINGLE
[12] and KDEEB [17] with the presented approach (128px kernel). The
GPU implementation allows our approach to maintain nearly constant
rendering times below one second up to a graph size of ∼ 106 edges on
real world data. The two marked data points refer to the artificial random
dataset with special properties.

state that they achieve about the same speed as MINGLE for larger
graphs and a linear correlation can thus also be assumed. In contrast,
our algorithm achieves nearly constant results for all datasets ≤ 106

edges.

Our test system consists of a high end consumer graphics board
(Nvidia GTX590) and an i7 - 2600K CPU. The critical factor, how-
ever, is the GPU performance and similar results can be achieved with
several ATI graphics cards (HD6950 +).

An analysis of our measurements, the shader code and the outlined
data dependencies shows that the rasterization of the kernel rectangles

and the render costs for edges have the highest impact on the overall
performance and we therefore discuss these factors in the following:

Kernel Rasterization: The costs for kernel rasterization depend on
the number of Seed Points and the size of the rectangles. The amount
of Seed Points is difficult to estimate because it depends on the current
viewport and the image resolution. The above discussed border of
min(#pixels,#nodes) is used as upper limit. In practice, real world
datasets normally do not have a uniform node distribution (i.e. not all
pixels contain nodes) and the actual number of rectangles is thus often
much smaller than the amount of pixels or nodes. In the following
we will speak of a weak linear dependency that is relevant for some
data sets like the artificial random graph but often overestimates
the problem (e.g. Europe data set). We provide measurements of
an “overview” and a “bad case” viewport to illustrate the viewport
effects on our test data (Table 1). The second factor (the size of
the rectangles) relates quadratically to the selected bandwidth h and
determines the texturing costs for the kernels. Table 1 and figure 6
show results for a small kernel with diameter of 32px and a large
variant with 128px.

Rendering of Edges: The texture for the edge aggregation is cre-
ated by the already described angle-separated rendering of all edges of
the current viewport. The costs for edge rendering depend linearly on
the amount of edges m with a constant factor for the overhead caused
by our multi-pass rendering technique.

Despite the weak (nodes) and strong (edges) linear dependencies
on the data size the image based design of our approach allows us to
maintain near constant render times for large graphs and also point
datasets. At some point, however, the hardware limits are reached and
parallelization is no longer able to compensate the growth of data. On
today’s consumer hardware our approach scales well to graphs with
∼ 106 edges or point datasets with ∼ 107 nodes. Additionally it would
be straight forward to distribute the render steps on multiple GPUs to
deal with even bigger problem spaces.
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5 APPLICATIONS

In this section we describe LaGO (Large Graph Observer), an imple-
mentation of our methods and give examples of data sets visualized
using the tool.

5.1 LaGO
LaGO provides zoom and pan operations to support the interactive
exploration of visualized graphs. Similar to related density based ap-
proaches [20, 28] the bandwidth parameter h is bound to the viewport
to support semantic zooming. For instance increasing the zoom level
shrinks the viewport such that a smaller subset of the data is displayed
and reduces the bandwidth (world space) to decrease the aggregation
level. However, we not only shrink and expand the node clusters but
also adjust the closely integrated edge aggregates.

The interactive exploration leads to large variations of the visual-
ized density values and fixed color mapping cannot address sparse and
crowded viewports equally. We therefore provide an automatic nor-
malization of the densities with the maximal value of the current view-
port. The normalized density values are in the interval [0..1] and we
use them as texture coordinates such that the density to color mapping
can be defined with free choosable color schemes.

The automatic normalization is convenient, however in some cases
more control may be desirable for instance to maintain a consistent
color mapping during pan operations. We therefore provide an inter-
face for manual fine control that can be used to lock the normalization
devisor or to set it to a specific value. If a fixed devisor overshoots the
normalization interval the system clips the results and indicates the
potentially misleading color-mapping to the user by highlighting the
lock symbol.

The distribution of aggregated items might be uneven and hotspots
skew the normalization. We therefore provide a graphical user inter-
face that allows the application of scaling functions to the linear nor-
malized values. Normalization, scaling and the value to color mapping
can be used in combination to filter the data and balance weak against
strong visualization elements.

The described viewport control and filter mechanisms allow the ex-
ploration of large graphs at variable levels of detail. However apart
from geometry and connectivity information graph datasets often con-
tain node names. LaGO therefore provides a detail on demand imple-
mentation that allows the interactive labeling of the node density field.
The hill climbing approach from the edge aggregation can be used to
group the nodes according to their cluster center and provides an in-
tuitive cluster definition for prominent areas in the visualization. The
user selects a cluster by clicking onto it and the system retrieves the
cluster nodes and sorts them according to their degree or a dedicated
weight. Subsequently a list of the most prominent labels is displayed
and the user selects labels from the list to annotate the cluster nodes
(Figure 7).

5.2 Examples
US air-traffic data
Figure 7 shows an application of our method to the US air-traffic data
set. We selected all flights in the US from July 2011 (≥ 500.000) and
boiled them down to 1925 distinct connections. These connections
are interpreted as undirected weighted edges to create the visualized
graph. The weight of an edge is equivalent to the the number of flights
on the connection and the weight of a node is the sum of the connected
edge weights. The color scaling for edge and node aggregates is non
linear, as can be seen on the scaling bars in the right lower corner.
Furthermore the open lock, above the scaling bars, indicates that the
automatic normalization of data values is active. The applied color
scheme focusses on strong edges, while small edges are attenuated by
transparency. The prominent flight hubs (Atlanta, Chicago, LA, San
Francisco, East coast) appear immediately and strong connections like
LA ⇔ San Francisco are marked by color and width. When zooming
in (i.e. reducing the bandwidth) the aggregates split and smaller air-
ports like San Diego in the LA area or Sacramento near San Francisco
appear (Figure 8). The most detailed view reveals finally the three

different airports of the San Francisco Bay Area and their individual
connections to LA, which sum up to approximately one percent of all
flights in July 2011. In contrast to the edge density visualization of
Lampe and Hauser [20], the integration of nodes has the advantage
that airports and their relative importance can be clearly spotted in our
visualization and edge crossings with high densities cannot be misin-
terpreted as airports.

US migration data
Figure 9 and figure 10 visualize US migration data. The first data set
is commonly used to depict the effects of edge bundling algorithms
(e.g. [17]) and consists of 9,780 unweighted edges. In contrast the
second data set is much larger with 545,882 weighted edges and 3075
nodes. It is based on the Census 2000 and contains all county-to-
county migration flows in the United States between 1995 and 2000
[27]. Figure 9 shows strong migration flows at the East Coast and in
the South West of the United States. Moreover there are strong con-
nections near big cities like Chicago, Denver, Atlanta and Housten.
While these patterns get also highlighted in most edge bundling vi-
sualizations there remain interesting differences. The presented ap-
proach aggregates edges solely based on their start and end points and
near parallel edges are therefore often not aggregated. For instance
the East to West pattern which is strongly highlighted in bundling ap-
proaches like FDEB [15] and Winding Roads [19] is less obvious in
our visualization. However the clear mapping between aggregates and
their start and end clusters makes it easier to verify actual connec-
tions like New York ⇔ Florida. The second migration data set (Figure
10) has been rendered with edge weights equal to the number of total
movements between the different counties. Interestingly the weights
emphasize short cluster connections like those near Los Angeles, Dal-
las and Boston. One explanation for these patterns could be a tendency
towards local movements. For instance nine of the top ten connections
are between neighboring counties.

Fig. 9. US migration data set of recent publications visualized in LaGO.

Net 50 data
To enable a visual comparison with MINGLE; we applied our visual-
ization to the Net50 data set (Figure 11). Our method reveals that the
half-ring on the right side (I) connects homogeneously to cluster II. No
significant connection from the upper part of the half-ring (I) connects
to the lower part of the cluster and apart from one outlier all con-
nections end on the right side of cluster II. The cluster itself has two
highly interconnected peaks that seem to be the end points for most
of the connections from the rectangular cluster (III). Within cluster III
the connections reveal a cross pattern, the edges entering from the right
side are connected to the left half of the field and vice versa. Addition-
ally, the small outer clusters on the right side of the half-ring (I) are
not equally distributed and the main connections go to the half-ring (I)
and not to other parts of the graph. The described patterns are harder to
read from the MINGLE visualization [12] because the x-shaped edge
aggregates hinder tracking of connections and pure bundling cannot
sufficiently reduce the complexity of dense edge clusters. For instance
the homogenous characteristics of the half ring cannot be spotted and
cluster II appears as crowded heat balls in the visualization.
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Fig. 7. US air traffic data set. The node aggregation highlights important flight hubs, while edge aggregation shows e.g. a dense connection
between Los Angeles and San Francisco. A click in the Miami area (low right) highlights important nodes and a label list on the top left. From the
list the user can choose interesting labels, that are placed within the visualization. The color mapping scale is shown on the bottom right.

Fig. 8. Semantic zoom into the San Francisco Bay Area. The leftmost picture displays a high aggregation level where all airports in the region
around San Francisco and LA get merged. Zooming in reveals smaller nearby airports like Sancramento and San Diego however the main
connection remains between the two big cities. The rightmost picture shows finally the three Bay Area airports and their individual connections.
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Fig. 10. US census data set with 545,882 weighted edges depicting the county-to-county migration flow between 1995 and 2000. A zoomed per-
spective (right lower corner) shows connections between single counties while the overview aggregates nearby clusters and allows the observation
of higher level patterns like the connection between New York and Florida.

I 

II

III

Fig. 11. The Net 50 data set with the color scheme provided bottom left. The visualization reveals several interesting properties of the dataset. For
instance the homogeneously structure of the connection from the half-ring (I) to cluster II, the edge cross patterns in cluster III or the two highly
interconnected central peaks in cluster II.
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Random data
Figure 12 shows a random graph with 200,000 nodes and 100,000
edges which is similar to an example given in Hurter et.al. [17]. Two
snapshots are given for smaller (left) and larger (right) KDE band-
width. It can be seen, that in both aggregation levels no obvious pat-
tern occur. Since the graph is random and reflects a quasi-equal dis-
tribution, Fig. 12 can be seen as a valid representation which avoids
false positive graph patterns. The graph is also an extreme case for
our method as its nodes are nearly equally distributed over the canvas.
This reduces rendering speed, because nearly every node occupies an
own pixel and therefore becomes a seed point for a KDE texture (see
Section 4 and Table 1).

Fig. 12. A random graph with 200,000 nodes and 100,000 edges (simi-
lar to the example in [17] ). While bandwidth h is increased no patterns
occur; an effect wanted to avoid false positive patterns.

OpenStreetMap data
Figure 13 visualizes the Europe point dataset that has been extracted
from OpenStreetMap. The data contains one node for each tagged
building in Europe, a total of 37.6 million distinct nodes. The dis-
cussed improvements of the node rendering approach allow the inter-
active exploration of this dataset even on a low end consumer graphics
card (ATI HD5770).

6 CONCLUSION & FUTURE WORK

We have presented an new approach that integrates node density aggre-
gation and meta edge generation for the visualization of large graphs at
different levels of detail. The methods are optimized for fast process-
ing in OpenGL to allow interactive rates when using common graph-
ics hardware. We showed that by using a two-pass rendering method,
node aggregation can be accelerated without significant memory cost.
The edge aggregation on top of the node density field and the proposed
methods for post-processing allow fast rendering of implicit edge ag-
gregates with the look of explicit meta edges.

The methods are implemented in a software tool that is used for
applying our approach to large datasets . The tool allows panning
and zooming at interactive rates and is highly configurable w.r.t color
mapping and normalization scaling functions.

For future work, we plan to investigate if for a given zoom level a
best kernel size can be estimated dynamically. Therefore we want to
conduct a user study to evaluate what will be a best visualization for
different zoom levels. We furthermore plan to release a free version of
the described software tool.
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Europe

Arc de Triomphe

Fig. 13. Interactive zoom into the Europe dataset with 37.6 million nodes
that represent all tagged buildings from OpenStreetMap. The highest
aggregation level shows interesting data quantity differences at state
borders. Zooming into Arc de Triomphe area reveals scenic and archi-
tectural patterns (e.g. street structure).

Fig. 14. Wiki-Vote data set laid out with an MDS algorithm. Note that
our rendering reveals a prominent bipartite core rather than producing
the usual clutter in the center of a small-world graph.
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