

Parallel Indexing Scheme for Data Intensive Applications

Kenta Funaki, Teruhisa Hochin, Hiroki Nomiya

Department of Information Science, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki

Sakyo-ku, Kyoto, 606-8585, Japan

E-mail: m3622036@edu.kit.ac.jp, {hochin, nomiya}@kit.ac.jp

Hideya Nakanishi, Mamoru Kojima

National Institute for Fusion Science, Oroshi-cho

Toki, Gifu, 509-5292, Japan

E-mail: nakanisi@nifs.ac.jp

Abstract

This paper proposes a parallel indexing scheme of a large amount of data in order to resolve the issues about time

limitation. Three kinds of computing-nodes are introduced. These are reception-nodes, representative-nodes, and

normal-nodes. A reception-node receives data for insertion. A representative-node receives queries. Normal-nodes

retrieve data from indexes. Here, three kinds of indexes are introduced. These are a whole-index, a partial-index,

and a reception-index. In a partial-index, data are stored. In a whole-index, partial-indexes are stored as its data. In

a reception-index, additional data are stored. The reception-index is moved to a normal-node, and becomes a

partial-index. The proposed scheme is also a data distribution scheme for shortening the insertion time. A

reception-node accepts additional data even if the index is already built.

Keywords: Multi-dimensional index, Parallel processing, Insertion performance, Distributed index

1. Introduction

In recent years, information diversification grows the

importance of multimedia databases. As a multimedia

database contains a lot of data, its fast retrieval is

required. Feature values of multimedia data are usually

used in the fast retrieval. As they are represented with

multi-dimensional data, the multi-dimensional index is

inevitable for the fast retrieval of multimedia data. The

R-tree family is a popular index structure for the multi-

dimensional data.1, 2, 3 In the R-tree, an object is

represented with a minimum bounding rectangle (MBR)

International Journal of Networked and Distributed Computing, Vol. 3, No. 2 (April 2015), 89-98

Published by Atlantis Press
Copyright: the authors

89

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357198748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

K. Funaki et al.

in a multi-dimensional space. MBRs of objects are also

represented with an MBR. This recursive nature

constitutes a tree structure. By using this tree structure,

search space can efficiently be narrowed.

In addition, advances in measurement technology

and those of equipment make it possible to get big data

in a variety of fields easily. Therefore, a multi-

dimensional index having good performance in inserting

and retrieving data is required. For instance, in the

fusion experiment of National Institute for Fusion

Science,4 a large amount of measurement data are

generated every few minutes. This means that data must

be inserted within the limited time constraints.

The methods of implementing a large multi-

dimensional index by parallelization have been

proposed.5 The ends of the proposed methods are to

insert data within the limited time constraints, to

retrieve data quickly, and to store a large amount of

multi-dimensional data. It has experimentally been

revealed that data can be inserted within the limited

time by file splitting. It has also been shown that

parallel processing to indexes could accelerate the

retrieval performance. Parallel indexing could also

resolve the problem of the limitation of the file size.

Although it has been shown that parallel processing

of indexes could accelerate the retrieval performance,

the acceleration is limited under the configuration where

a storage is shared by many cores. Because many cores

give different requests to a disk storage, the overhead of

the movement of the magnetic head could not be

ignored.

This paper proposes a parallel indexing scheme that

is good for retrieval performance as well as insertion

one. In this scheme, data are sequentially inserted into

an index on a computing-node called a reception-node.

This index is called a reception-index. When a

reception-index becomes full, it is moved to another

computing-node for improving retrieval performance by

parallel processing. A reception-index is treated as an

entry in a multi-dimensional index on the computing-

node. A query is parallelly processed by computing-

nodes, each of which manages its own disk storage. As

a reception-node concentrates on the insertion of data,

and creates a reception-index in its disk storage, the

insertion performance may become good. As

computing-nodes parallelly search candidate data from

their own disk storages, the retrieval performance may

also become good.

Remaining of this paper is as follows. Section 2

describes related works. Section 3 proposes a parallel

indexing scheme. Section 4 gives some considerations.

Finally, Section 5 concludes the paper.

2. Related Works

Many spatial index structures for implementing multi-

dimensional indexes have been proposed. The R-tree2 is

one of the most popular methods. The R*-tree3 is an

improvement to the R-tree. Improving the split

algorithm makes a tree efficient.

2.1. Parallel R-tree

Many parallel spatial indexing methods based on the R-

tree have been proposed. The elementary idea of the

parallel R-tree is dividing data to multiple disks.1 Whole

data are divided into several data and stored to each

disk. In each disk, independent R-trees are created using

allocated data. On the other hand, the method of

dividing whole R-tree structure into several nodes and

storing them to each disk is called disk stripping. In the

R-tree with supernodes,1 every node of an R-tree is

divided into several subnodes, and subnodes are stored

into several disks. In the Multiplexed R-tree (MX R-

tree),1 an R-tree is divided into subtrees. A subtree is

stored into a disk. Several dividing schemes have been

proposed.

Performance of the parallel R-tree can be

accelerated using multiple processors in addition to

multiple disks. In the leaf-based declustering scheme1

Published by Atlantis Press
Copyright: the authors

90

 Parallel Indexing Scheme

and Master-Client Rtrees,5 the master-server holds non-

leaf nodes, while leaf nodes are held by slave-servers.

The Global Parallel index R-tree (GPR-tree)6 uses a

global index tree shared by multi-computers. In the

method of the GPR-tree, each processor manages its

own subtree. It holds a copy of the other subtrees of the

whole tree, and exchanges the messages to maintain the

consistency. The Replicated Parallel Packed R-tree

(RPP-Rtree)7 replicates the whole R-tree across all the

computers. In this method, leaf nodes and inner nodes

are stored into each computer, but the actual data are

stored separately. The Distributed Parallel R-tree (DPR-

tree)8 partitions the whole data into partition sub-region,

and allocates the partition sub-region among each

computer. Each computer creates an independent R-tree

structure using allocated data.

From the point of view of the logical tree structure,

there are two approaches. One uses independent R-

trees.1, 8 The other uses one large logical R-tree.1, 5, 6, 7

When independent R-trees could make search space be

narrowed, the retrieval performance will be improved.

In the large logical R-tree, all of accesses begin with the

computer holding the root node of the R-tree. This will

degrade the retrieval performance. From the point of

view of holding data, there are also two approaches.

One holds a copy of an R-tree. The other does not hold

it. Holding a copy improves the retrieval performance.

The insertion performance, however, degrades in

general.

Faloutsos et al. have proposed and evaluated the

following node distribution methods.9

(i) Round Robin: This method distributes data to

multiple disk in rotation.

(ii) Minimum Area: In this method, each disk has same

and minimum area by data distribution.

(iii) Minimum Intersection: This method minimizes the

overlap of nodes in the same disk.

(iv) Proximity Index: In this method, each disk

calculates the proximity between the own MBR and

the MBR of the new data value. The new data value

is allocated to high proximity disk. Proximity of

two rectangles is measured by the proportion of

queries that retrieve both rectangles and calculated

by the following equation:

queriesofnumbertotal

bothretrievingqueriesofnumber

proximity 
 (1)

In practice, it is not calculated by the above

definition, but calculated by the following method.

First, each rectangle is divided into each dimension.

In the first dimension, whole section is normalized

to [0-1]. If two rectangles overlap with each other,

let “δ” be the length of overlap. The proximity of

ith dimension is calculated by the following

equation:

)21(
3

1 iproximity (2)

On the other hand, if two rectangles do not overlap

with each other, let “Δ” be the distance between

them. The proximity of ith dimension is calculated

by the following equation:

 2)1(
3

1
iproximity (3)

The proximity of each dimension is determined in

the same manner and the proximity of the two

rectangles is calculated by multiplying all

proximity of the dimension:

 
i

iproximityproximity (4)

Faloutsos et al. showed that the Proximity Index has

high retrieval performance by experimentation.9

Published by Atlantis Press
Copyright: the authors

91

K. Funaki et al.

2.2. Expansio

In genera

index, the no

searched, and

root node ma

capacity of th

the number

numbers of

integrated, an

the processin

increase. Wh

time, a numb

This constrai

applications,

stored in a few

In order

index, the tw

proposed.10 O

one by one.

limitation, a

method that

Data are ins

Round-robin

methods. Seq

there is no n

that it can ac

However, the

similar data

Round-robin

set. However

advance.

In Ref. 10

evaluated.

necessary to

determine the

on of the inde

l, when an obj

ode, which th

d the MBRs o

ay be modified

he number of

of objects st

nodes requi

nd to be divid

ng time of

hen there are

er of data inse

int can often

where mass

w seconds.10

to build a l

wo methods

One is the me

When the s

new index

several inde

serted into th

scheme. Fig.

quential crea

need to decide

ccept more da

e data in each

are continu

distribution c

r, the number

0, the perform

When inserti

o read the i

e insertion poi

ex by file split

ject is inserted

he object is

of nodes on th

d. When the n

f objects, the

tored in a tr

ired to be m

ded become l

insertion and

constraints o

erted into the

be required i

ive data are

large-scale m

by file split

ethod that an

size of an ind

is created. T

exes are crea

he indexes a

1 shows the

ation has the

e the number

ata than estim

h index are b

uously inserte

can avoid bia

of indexes mu

mance of the tw

ing data to t

index structu

int. Round-rob

t

d into an R*-t

inserted into,

he path from

node exceeds

node is split

ree is huge,

modified, to

large. Therefo

d retrieval w

on the insert

index is limit

in data intens

required to

multi-dimensio

tting have be

index is crea

dex reaches

The other is

ated in advan

ccording to

outline of th

advantage t

r of indexes a

ated in advan

biased when

ed. In contra

s in typical d

ust be decided

wo methods w

the index, it

ure in order

bin distributio

tree

, is

the

the

. If

the

be

ore,

will

ion

ted.

sive

be

onal

een

ated

the

the

nce.

the

ese

that

and

nce.

the

ast,

data

d in

was

t is

to

on

rea

rea

ad

ins

ind

seq

ins

thr

tha

fil

pa

ma

div

the

rea

str

tim

3.

W

div

F

ads all index

ads only one i

ddition, if the m

sert operation

dex data from

quential creat

sertion. In ret

reads. Howev

an serial retr

les and acce

arallel retrieva

agnetic head o

vision shorten

e main memo

ading time f

rongly and th

me from HDD

Proposed M

We try to add

viding the ind

Fig. 1. File split

xes for inserti

index to deter

main memory

n needs long

m hard disk

tion is faster th

trieval, these

ver, parallel re

rieval. Paralle

esses the mu

al requires a ba

of HDD and

ns retrieval ti

ory released th

from HDD

he time of dis

D.

Method

dress to the

dex.

tting methods.

ion but seque

rmine the inse

y has released

time in orde

drive (HDD

han Round-ro

methods can

etrieval needs

el retrieval r

ultiple HDD

ack-and-forth

a long time. M

me without m

he index data.

affects the r

sk seek affect

issue describ

ential creation

ertion point. In

the index data

er to read the

D). Therefore

obin scheme in

n use multiple

s a lot of time

reads multiple

fields. Thus

 motion of the

Moreover, file

multi-thread i

. Accordingly

retrieval time

ts the reading

bed above by

n

n

a,

e

e,

n

e

e

e

s,

e

e

f

y,

e

g

y

Published by Atlantis Press
Copyright: the authors

92

3.1. Overview

Fig. 2 shows

assumed that

Each compu

Computing n

bus.

A compu

node, has a r

node inserts

called a rece

data in the f

whole-index

partial-index

represented w

an R-tree-fam

normal-node.

The inser

additional dat

data are ins

insertion algo

of the data s

number deter

w

s the outline o

t the system h

uting-node h

nodes are conn

uting-node, w

role of receiv

the data rece

eption-index.

form of index

and partial-in

is managed

with an MBR,

mily index. Th

.

rtion algorithm

ta are inserted

serted into a

orithm of R-tre

stored into the

rmined in adv

of the propos

has several co

has its own

nected to one

which is call

ing data newl

eived into an

Other compu

xes. A compu

ndexes. In a

d as a recta

, and is an en

his computing

m is shown i

d to the system

a reception-in

ee (Line 1). W

e reception-in

vance (Line 2

ed method. It

omputing-nod

n disk stora

another throu

ed a receptio

ly inserted. T

index, which

uting-nodes st

uting node ha

whole-index

angle, which

ntry of a node

g-node is calle

in Fig. 3. Wh

m, the additio

ndex using

When the numb

ndex reaches

2), data insert

Fig. 2

t is

des.

age.

ugh

on-

This

h is

ore

as a

x, a

is

e of

ed a

hen

onal

the

ber

the

ion

is

rec

wh

de

no

wh

rec

rec

no

ma

ind

rec

no

wh

sea

no

ob

su

de

ind

mo

ha

3.

2. Method overv

interrupted.

ception-index

hole-indexes.

ecided (Line 3

ode is moved

hole-index (Li

ception-index

ception-index

ode. After that

ay still be rece

dex (Line 5),

ception-index

ormal-node is

hich is the mo

arched from t

odes. The n

btained is ret

uitability dep

escribed later

dex is shown

oved to the no

aving RI at Lin

This MBR is

view.

The MBR

x is compared

After the

3), the recepti

to the normal

ine 4). The no

x rebuilds

x becomes a p

t or in parallel

eiving new da

and inserts th

x. The algorith

s shown in

ost suitable fo

the whole-ind

normal-node

turned to the

pends on t

. The algorit

n in Fig. 5.

ormal-node N

ne 2. The MB

inserted into

Parallel

covering a w

d with the M

suitable wh

ion-index on

l-node that ha

ormal-node tha

the whole

partial-index o

l, the reception

ata, creates a n

hem into the

hm of decisio

Fig. 4. The

or the receptio

dexes of all o

having the

e caller. The

the distribut

thm of movi

The reception

NN from the r

BR of RI is ob

the whole-ind

l Indexing Schem

whole of the

MBRs of the

hole-index is

the reception

as the suitable

at receives the

-index. The

on the normal

n-node, which

new reception

newly-created

on of suitable

whole-index

on-index RI, is

of the normal

whole-index

e meaning o

ion schemes

ing reception

n-index RI is

reception-node

btained at Line

dex at Line 4.

e

e

e

s

-

e

e

e

-

h

-

d

e

x,

s

-

x

f

s

-

s

e

e

Published by Atlantis Press
Copyright: the authors

93

K. Funaki et al.

A computing-node, which is called a representative-

node, receives queries. When a query is posed to the

representative-node, all of the normal-nodes and the

reception-node search data suitable to the retrieval

condition specified in the query. The data retrieved are

sent to the representative-node from the normal-nodes

and the reception-node. This node puts the data together,

and returns them to a user. Fig. 6 and Fig. 7 show the

algorithms of retrieval at a representative-node and a

normal-node, respectively. The query Q is forwarded to

all of the normal-nodes and a representative-node as

shown in Fig. 6. At a normal-node, partial-indexes,

which may have candidate data, are identified by using

a whole-index. The candidate data are obtained from the

partial-indexes identified.

Up to here, a reception-node and a representative-

node are assumed to exist apart from the normal-nodes.

A computing-node may serve both as a normal-node

and a reception-node or representative-node. A

reception-node could also be a representative-node.

More than one reception-node can be introduced.

When two reception nodes exist, a reception-node can

Algorithm find_normal-node(reception-index RI)

/* search the normal-node that has suitable whole-

index WI for RI */

1. FOR each WI

2. IF WI suits for RI than candidate-index

3. candidate-index = WI

4. ENDIF

5. ENDFOR

6. RETURN candidate-node having candidate-index

Fig. 4. The algorithm of finding a normal node.

Algorithm move_index(reception-index RI, normal-

node NN)

/* move RI to NN */

1. partial-index = RI

2. NN.store(partial-index)

3. mbr = get_mbr(RI)

4. NN.whole-index.insert(mbr)

Fig. 5. The algorithm of moving reception-index.

Algorithm insert_data(data D, reception-index RI)

/* insert a data item D into the reception-node that has

reception-index RI*/

1. insert(D, RI)

2. IF the number of the data stored into RI reaches the

number determined in advance

3. NN = find_normal-node(RI)

4. move_index(RI, NN)

5. RI = new R-tree index

6. ENDIF

Fig. 3. The insertion algorithm at a reception-node.

Published by Atlantis Press
Copyright: the authors

94

 Parallel Indexing Scheme

receive data soon after the reception-index is built up by

the other one, which can move it to a normal-node.

Similarly, more than one representative-node can be

introduced. In this case, multiple queries can be

processed in parallel.

3.2. Distribution Scheme

In the proposed scheme, data are always inserted into

the reception-index that exists apart from the normal-

nodes. Therefore, there is no need to read the normal-

indexes. Insertion time is expected to be reduced. In

addition, reception-indexes are moved to the normal-

nodes in a distributed manner. This distribution would

reduce the number of hits per computing-node and the

retrieval time.

Two distribution schemes adopting the following

criteria are proposed.

(i) Maximum area: Each computing-node calculates an

expanded MBR area for receiving the reception-

index. The reception-index is allocated to the

normal-node whose MBR’s area expansion is the

maximum one. Fig. 8 shows three examples of area

expansion. In Fig. 8, each chain-lined rectangle

shows a node (normal-node), each white solid

rectangle shows the MBR of a whole-index, each

black solid rectangle shows the MBR of a

reception-index, and each dashed rectangle shows

area expansion, respectively. In these examples, the

case (a) has the largest area expansion of them and

the reception-index will be moved to the node

shown in Fig. 8(a).

(ii) Proximity: Each computing-node calculates a

proximity between the own MBR of whole-index

and the MBR of the whole reception-index. The

reception-index is allocated to the computing-node

whose MBR of the whole-index has low proximity

Algorithm search(query Q)

/* representative-node sends Q to normal-nodes and

reception-node */

1. answer = {}

2. FOR each normal-node NN

3. answer += search_normal(Q, NN)

4. ENDFOR

5. answer += retrieve(Q, reception-node)

6. RETURN answer

Fig. 6. The algorithm of search at a representative-node.

Algorithm search_normal(query Q, normal-node NN)

/* search in NN */

1. answer = {}

2. candidate = retrieve(Q, whole-index)

3. FOR each partial-index PI

4. IF candidate includes get_mbr(PI)

5. answer += retrieve(Q, candidate)

6. ENDIF

7. ENDFOR

8. RETURN answer

Fig. 7. The algorithm of search at a normal-node.

Published by Atlantis Press
Copyright: the authors

95

K. Funaki et al.

with the

three exa

in Fig. 9

each exa

are disj

rectangle

proximity

node sho

the case

examples

4. Consider

In the propos

file, which is

The overhea

because the o

This is based

et al.10

The prop

stored in an

improving th

node manage

caused by m

F

whole recep

amples of pro

9 are the same

ample, a whole

joint. Theref

es in each di

y is. The rec

own in Fig. 9(

e (c) have th

s.

ration

sed scheme, d

s for an inde

ad of the in

overhead of re

d on the resear

posed scheme

index to one

he retrieval p

es its own disk

multiple reques

Fig. 9. Examp

Fig. 8. Exampl

ption-index. F

oximity. The n

e as those sho

e-index and a

fore, the fa

imension are

eption-index

(c), because tw

he longest di

data are insert

ex, rather than

nsertion beco

eading data ca

rch result obt

e moves a se

e of the proce

erformance. A

k storage, ther

sts posed by

ples of proximit

les of area expa

Fig. 9 shows

notations sho

own in Fig. 8.

a reception-ind

arther the t

, the lower

is moved to

wo rectangles

istance in th

ted into a sin

n multiple fil

omes minimu

an be minimiz

tained by Fun

et of data ite

essing nodes

As a process

re is no overhe

multiple nod

ty.

ansion.

the

own

. In

dex

two

the

the

s of

ese

ngle

les.

um

zed.

naki

ems

for

ing

ead

des.

Th

pe

wh

tre

ite

If

ins

da

tak

de

ind

the

to

pla

ma

co

ret

ca

ne

so

a c

no

on

(M

In

ins

pro

rec

on

sit

of

gu

wh

no

his configur

erformance.

A reception

hole-index in

eated as a sin

ems. Only one

a set of data

sertions are r

ata items. In t

ken in the ins

egradation of t

When a rec

dex, the recep

e whole-one.

a normal-nod

aced in a dis

any normal-n

ould be highly

trieval perform

In the para

andidates sent

eck of the p

rted. Much tim

case, it is reco

ode is introduc

n the processin

This schem

MX R-tree).9

sertion time i

sertion is neith

oposed schem

ception-node

nce.

From the vi

tuation is that

f partial-index

uaranteed. So

hile others ha

ormal-node ha

ration could

n-index is mov

n a normal-n

ngle data item

e insertion is

items was ins

required, whe

this case, muc

ertion. The pr

the insertion.

ception-index

ption-index is

This will avo

de. The data s

tributed mann

nodes will joi

y paralleled. T

mance.

llel query pro

t from norma

processing. Th

me and much

ommended tha

ced. A recept

ng of its own q

me is similar

In Ref. 9, re

is, however,

her considere

me, additional

even if all i

iewpoint of p

every normal

xes. This si

ome normal-n

ave a few dat

as N - n parti

improve

ved to a norm

node, a recep

m rather than

required in a

serted into a w

ere n is the n

ch time is con

roposed schem

is inserted i

placed as far

id the concen

stored in parti

ner over norm

in the query

This will also

ocessing, the

al-nodes is of

he candidates

space are req

at more than o

tion-node coul

query.

to the Multi

etrieval time

not considere

d. On the othe

 data can be

indexes have

parallel proces

l-node has the

ituation is, h

nodes have a

a. The worst

al-indexes, an

the retrieva

mal-node. In a

ption-index is

a set of data

a whole-index

whole-index, n

number of the

nsidered to be

me avoids this

into a whole

as possible in

tration of data

ial-indexes are

mal-nodes. As

processing, i

o improve the

collection o

ften the bottle

s are usually

quired. In such

one reception

ld concentrate

plexed R-tree

is evaluated

ed. Additiona

er hand, in the

accepted by a

been created

ssing, the bes

e same number

however, no

a lot of data

case is that a

nd each of the

al

a

s

a

x.

n

e

e

s

-

n

a

e

s

t

e

f

e

y

h

-

e

e

d.

al

e

a

d

t

r

t

a,

a

e

Published by Atlantis Press
Copyright: the authors

96

 Parallel Indexing Scheme

others has only one partial-index, where there are totally

N partial-indexes on n+1 normal-nodes. This will

degrade the retrieval performance because only one

normal-node can process the query in most cases. The

initial placement of the whole-indexes may affect the

balance of data. Clarifying the method of keeping the

balance of data is in future work.

5. Conclusions

Information diversification grows the importance of

multimedia databases. As the fast retrieval of

multimedia data is required, the multi-dimensional

index for the fast retrieval using the feature values is

required. For instance, in the fusion experiment of

National Institute for Fusion Science, a large amount of

measurement data are generated every few minutes.

There is a major issue of the limitation of the insertion

time. Measured data must be inserted into a database in

a few minutes.

This paper proposed a parallel indexing scheme in

order to resolve the issue described above. This scheme

has three kinds of node; normal-node, reception-node,

and representative-node. This scheme has three kinds of

indexes; whole-index, partial-index, and reception-

index. Each whole-index manages the partial-indexes

that are stored into each normal-node. A partial-index

manages the actual data. A reception-index manages the

additional data until the additional data are moved to a

normal-node. A reception-node accepts the additional

data, and creates a reception-index. A representative-

node works in the retrieval. As a reception-node

concentrates on the insertion of data, and creates a

reception-index in its disk storage, the insertion

performance becomes good. As computing-nodes

parallelly search candidate data from their own disk

storages, the retrieval performance also becomes good.

Future work includes the implementation and

evaluation of this scheme. In this paper, two distribution

schemes are proposed. Comparing these schemes is also

included in future work.

References

1. Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos,

and Y. Theodoridis, R-trees:Theory and Applications

(Springer, 2006), pp.151-159.

2. A. Guttman, R-trees: A dynamic index structure for

spatial seatching, in Proc. 1984 ACM SIGMOD

International Conference on Management of Data,

(1984) pp. 47-57.

3. N. Beckmann, H. P. Kriegel, R. Schneider, and B.

Seeger, The R*-tree: an Efficient and Robust Access

Method for Points and Rectangles, in Proc. 1990 ACM

SIGMOD Conference on Management of Data, (1990)

pp. 322-331.

4. National institute for fusion science. [Online]. Available:

http://www.lhd.nifs.ac.jp/

5. B. Seeger and P. A. Larson, Master-Client R-trees - a

New Parallel R-tree Architecture, in Proc. 11th

International Conference on Scientific and Statistical

Database Management (SSDBM’99), (Cleveland, OH

1999) pp. 68-77.

6. X. Fu, D.Wang and W.Zheng, GPR-tree, a Global

Parallel Index Structure for Multiattribute Declustering

on Cluster of Workstations, in Proc. International

Conference on Advances in parallel and Distributed

Computing (APDC’97), (1997) pp. 300-306.

7. Mutenda. L, and M. Kitsuregawa, Parallel R-Tree Spatial

Join for a Shared-Nothing Architecture, in Proc. the 1999

International Symposium on Database Applications in

Non-Traditional Environments, (1999) pp. 423-430.

8. Y. Zhou, Q. Zhu, and Q. Liu. DPR-Tree: A Distributed

Parallel Spatial Index Structure for High Performance

Spatial Databases, in Proc. International Conference on

Earth Observation Data Processing and Analysis

(ICEODPA), (2008) pp. 72853A-72853A-7.

9. C. Faloutsos, and I. Kamel, Parallel R-trees, in Proc. the

1992 ACM SIGMOD International Conference on

Management of Data, (1992) pp.195-204.

10. K. Funaki, T. Hochin, H. Nomiya, H. Nakanishi, and M.

Kojima, Parallel indexing of large malti-dimentional

data, in Proc. 1st ACIS Inteructional Symposium on

Published by Atlantis Press
Copyright: the authors

97

K. Funaki et al.

Applied Computing and Information Technology (ACIT

2013), (2013) pp. 324-329.

Published by Atlantis Press
Copyright: the authors

98

