View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by CiteSeerX

Parallel Indexing Scheme for Data Intensive Applications

Kenta Funaki, Teruhisa Hochin, Hiroki Nomiya
Department of Information Science, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki
Sakyo-ku, Kyoto, 606-8585, Japan
E-mail: m3622036@edu.kit.ac.jp, {hochin, nomiya}@kit.ac.jp

Hideya Nakanishi, Mamoru Kojima

National Institute for Fusion Science, Oroshi-cho
Toki, Gifu, 509-5292, Japan
E-mail: nakanisi@nifs.ac.jp

Abstract

This paper proposes a parallel indexing scheme of a large amount of data in order to resolve the issues about time

limitation. Three kinds of computing-nodes are introduced. These are reception-nodes, representative-nodes, and

normal-nodes. A reception-node receives data for insertion. A representative-node receives queries. Normal-nodes

retrieve data from indexes. Here, three kinds of indexes are introduced. These are a whole-index, a partial-index,

and a reception-index. In a partial-index, data are stored. In a whole-index, partial-indexes are stored as its data. In

a reception-index, additional data are stored. The reception-index is moved to a normal-node, and becomes a

partial-index. The proposed scheme is also a data distribution scheme for shortening the insertion time. A

reception-node accepts additional data even if the index is already built.

Keywords: Multi-dimensional index, Parallel processing, Insertion performance, Distributed index

1. Introduction

In recent years, information diversification grows the
importance of multimedia databases. As a multimedia
database contains a lot of data, its fast retrieval is

required. Feature values of multimedia data are usually

used in the fast retrieval. As they are represented with
multi-dimensional data, the multi-dimensional index is
inevitable for the fast retrieval of multimedia data. The
R-tree family is a popular index structure for the multi-
dimensional data.” > * In the R-tree, an object is

represented with a minimum bounding rectangle (MBR)

Published by Atlantis Press
Copyright: the authors

89

https://core.ac.uk/display/357198748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

K. Funaki et al.

in a multi-dimensional space. MBRs of objects are also
represented with an MBR. This recursive nature
constitutes a tree structure. By using this tree structure,
search space can efficiently be narrowed.

In addition, advances in measurement technology
and those of equipment make it possible to get big data
in a variety of fields easily. Therefore, a multi-
dimensional index having good performance in inserting
and retrieving data is required. For instance, in the
fusion experiment of National Institute for Fusion
Science,” a large amount of measurement data are
generated every few minutes. This means that data must
be inserted within the limited time constraints.

The methods of implementing a large multi-
dimensional index by parallelization have been
proposed.” The ends of the proposed methods are to
insert data within the limited time constraints, to
retrieve data quickly, and to store a large amount of
multi-dimensional data. It has experimentally been
revealed that data can be inserted within the limited
time by file splitting. It has also been shown that
parallel processing to indexes could accelerate the
retrieval performance. Parallel indexing could also
resolve the problem of the limitation of the file size.

Although it has been shown that parallel processing
of indexes could accelerate the retrieval performance,
the acceleration is limited under the configuration where
a storage is shared by many cores. Because many cores
give different requests to a disk storage, the overhead of
the movement of the magnetic head could not be
ignored.

This paper proposes a parallel indexing scheme that
is good for retrieval performance as well as insertion
one. In this scheme, data are sequentially inserted into
an index on a computing-node called a reception-node.
This index is called a reception-index. When a
reception-index becomes full, it is moved to another
computing-node for improving retrieval performance by

parallel processing. A reception-index is treated as an

entry in a multi-dimensional index on the computing-
node. A query is parallelly processed by computing-
nodes, each of which manages its own disk storage. As
a reception-node concentrates on the insertion of data,
and creates a reception-index in its disk storage, the
insertion performance may become good. As
computing-nodes parallelly search candidate data from
their own disk storages, the retrieval performance may
also become good.

Remaining of this paper is as follows. Section 2
describes related works. Section 3 proposes a parallel
indexing scheme. Section 4 gives some considerations.

Finally, Section 5 concludes the paper.

2. Related Works

Many spatial index structures for implementing multi-
dimensional indexes have been proposed. The R-tree” is
one of the most popular methods. The R*-tree’ is an
improvement to the R-tree.

Improving the split

algorithm makes a tree efficient.

2.1. Parallel R-tree

Many parallel spatial indexing methods based on the R-
tree have been proposed. The elementary idea of the
parallel R-tree is dividing data to multiple disks.' Whole
data are divided into several data and stored to each
disk. In each disk, independent R-trees are created using
allocated data. On the other hand, the method of
dividing whole R-tree structure into several nodes and
storing them to each disk is called disk stripping. In the
R-tree with supernodes,’ every node of an R-tree is
divided into several subnodes, and subnodes are stored
into several disks. In the Multiplexed R-tree (MX R-
tree),' an R-tree is divided into subtrees. A subtree is
stored into a disk. Several dividing schemes have been
proposed.
Performance of the parallel R-tree can be
accelerated using multiple processors in addition to

multiple disks. In the leaf-based declustering scheme'

Published by Atlantis Press
Copyright: the authors

90

and Master-Client Rtrees,’ the master-server holds non-
leaf nodes, while leaf nodes are held by slave-servers.
The Global Parallel index R-tree (GPR-tree)’ uses a
global index tree shared by multi-computers. In the
method of the GPR-tree, each processor manages its
own subtree. It holds a copy of the other subtrees of the
whole tree, and exchanges the messages to maintain the
consistency. The Replicated Parallel Packed R-tree
(RPP-Rtree)’ replicates the whole R-tree across all the
computers. In this method, leaf nodes and inner nodes
are stored into each computer, but the actual data are
stored separately. The Distributed Parallel R-tree (DPR-
tree)® partitions the whole data into partition sub-region,
and allocates the partition sub-region among each
computer. Each computer creates an independent R-tree
structure using allocated data.

From the point of view of the logical tree structure,
there are two approaches. One uses independent R-
trees.” * The other uses one large logical R-tree." >’
When independent R-trees could make search space be
narrowed, the retrieval performance will be improved.
In the large logical R-tree, all of accesses begin with the
computer holding the root node of the R-tree. This will
degrade the retrieval performance. From the point of
view of holding data, there are also two approaches.
One holds a copy of an R-tree. The other does not hold
it. Holding a copy improves the retrieval performance.
The insertion performance, however, degrades in
general.

Faloutsos et al. have proposed and evaluated the
following node distribution methods.’

(i) Round Robin: This method distributes data to

multiple disk in rotation.

(i) Minimum Area: In this method, each disk has same
and minimum area by data distribution.

(iii) Minimum Intersection: This method minimizes the
overlap of nodes in the same disk.

(iv) Proximity In this method, each disk

calculates the proximity between the own MBR and

Index:

Parallel Indexing Scheme

the MBR of the new data value. The new data value
is allocated to high proximity disk. Proximity of
two rectangles is measured by the proportion of
queries that retrieve both rectangles and calculated

by the following equation:
proximity =
number of queries retrieving both (1)
total number of queries

In practice, it is not calculated by the above
definition, but calculated by the following method.
First, each rectangle is divided into each dimension.
In the first dimension, whole section is normalized
to [0-1]. If two rectangles overlap with each other,
let “6” be the length of overlap. The proximity of
ith dimension is calculated by the following

equation:
. 1
proximity; =§><(1+2><§))

On the other hand, if two rectangles do not overlap
with each other, let “A” be the distance between
them. The proximity of ith dimension is calculated

by the following equation:
o ,
proximity, = 3 x(1-A) (3)

The proximity of each dimension is determined in
the same manner and the proximity of the two
rectangles is calculated by multiplying all

proximity of the dimension:
proximity = | | proximity, @)
i

Faloutsos et al. showed that the Proximity Index has

high retrieval performance by experimentation.’

Published by Atlantis Press
Copyright: the authors

91

K. Funaki et al.

2.2. Expansion of the index by file split

In general, when an object is inserted into an R*-tree
index, the node, which the object is inserted into, is
searched, and the MBRs of nodes on the path from the
root node may be modified. When the node exceeds the
capacity of the number of objects, the node is split. If
the number of objects stored in a tree is huge, the
numbers of nodes required to be modified, to be
integrated, and to be divided become large. Therefore,
the processing time of insertion and retrieval will
increase. When there are constraints on the insertion
time, a number of data inserted into the index is limited.
This constraint can often be required in data intensive
applications, where massive data are required to be
stored in a few seconds.'

In order to build a large-scale multi-dimensional
index, the two methods by file splitting have been
proposed.'” One is the method that an index is created
one by one. When the size of an index reaches the
limitation, a new index is created. The other is the
method that several indexes are created in advance.
Data are inserted into the indexes according to the
Round-robin scheme. Fig. 1 shows the outline of these
methods. Sequential creation has the advantage that
there is no need to decide the number of indexes and
that it can accept more data than estimated in advance.
However, the data in each index are biased when the
similar data are continuously inserted. In contrast,
Round-robin distribution can avoid bias in typical data
set. However, the number of indexes must be decided in
advance.

In Ref. 10, the performance of the two methods was
evaluated. When inserting data to the index, it is
necessary to read the index structure in order to

determine the insertion point. Round-robin distribution

(a) sequential creation (b) round-robin scheme

* additional data
partial index file

Fig. 1. File splitting methods.

reads all indexes for insertion but sequential creation
reads only one index to determine the insertion point. In
addition, if the main memory has released the index data,
insert operation needs long time in order to read the
index data from hard disk drive (HDD). Therefore,
sequential creation is faster than Round-robin scheme in
insertion. In retrieval, these methods can use multiple
threads. However, parallel retrieval needs a lot of time
than serial retrieval. Parallel retrieval reads multiple
files and accesses the multiple HDD fields. Thus,
parallel retrieval requires a back-and-forth motion of the
magnetic head of HDD and a long time. Moreover, file
division shortens retrieval time without multi-thread if
the main memory released the index data. Accordingly,
reading time from HDD affects the retrieval time
strongly and the time of disk seek affects the reading
time from HDD.

3. Proposed Method

We try to address to the issue described above by
dividing the index.

Published by Atlantis Press
Copyright: the authors

Parallel Indexing Scheme

#1 #2

whole-index

partial-index

reception-index

#_n

additional data

;

 —

f

| normal-node

reception-node

\ representative-node

Fig. 2. Method overview.

3.1. Overview

Fig. 2 shows the outline of the proposed method. It is
assumed that the system has several computing-nodes.
Each computing-node has its own disk storage.
Computing nodes are connected to one another through
bus.

A computing-node, which is called a reception-
node, has a role of receiving data newly inserted. This
node inserts the data received into an index, which is
called a reception-index. Other computing-nodes store
data in the form of indexes. A computing node has a
whole-index and partial-indexes. In a whole-index, a
partial-index is managed as a rectangle, which is
represented with an MBR, and is an entry of a node of
an R-tree-family index. This computing-node is called a
normal-node.

The insertion algorithm is shown in Fig. 3. When
additional data are inserted to the system, the additional
data are inserted into a reception-index using the
insertion algorithm of R-tree (Line 1). When the number
of the data stored into the reception-index reaches the

number determined in advance (Line 2), data insertion

is interrupted. The MBR covering a whole of the
reception-index is compared with the MBRs of the
After the

decided (Line 3), the reception-index on the reception-

whole-indexes. suitable whole-index is
node is moved to the normal-node that has the suitable
whole-index (Line 4). The normal-node that receives the
rebuilds the The

reception-index becomes a partial-index on the normal-

reception-index whole-index.
node. After that or in parallel, the reception-node, which
may still be receiving new data, creates a new reception-
index (Line 5), and inserts them into the newly-created
reception-index. The algorithm of decision of suitable
normal-node is shown in Fig. 4. The whole-index,
which is the most suitable for the reception-index RI, is
searched from the whole-indexes of all of the normal-
nodes. The normal-node having the whole-index
obtained is returned to the caller. The meaning of
the

described later. The algorithm of moving reception-

suitability depends on distribution schemes
index is shown in Fig. 5. The reception-index RI is
moved to the normal-node NN from the reception-node
having RI at Line 2. The MBR of RI is obtained at Line

3. This MBR is inserted into the whole-index at Line 4.

Published by Atlantis Press
Copyright: the authors

93

K. Funaki et al.

Algorithm insert_data(data D, reception-index RI)

/* insert a data item D into the reception-node that has

reception-index RI*/

1. insert(D, RI)

2. IF the number of the data stored into RI reaches the

number determined in advance

3. NN = find_normal-node(RI)

4. move_index(RI, NN)

5. RI=new R-tree index

6. ENDIF

Fig. 3. The insertion algorithm at a reception-node.

Algorithm move_index(reception-index RI, normal-
node NN)

/* move RI to NN */

1. partial-index = RI

2. NN.store(partial-index)

3. mbr=get mbr(RI)

4. NN.whole-index.insert(mbr)

Fig. 5. The algorithm of moving reception-index.

A computing-node, which is called a representative-

node, receives queries. When a query is posed to the

Algorithm find normal-node(reception-index RI)

/* search the normal-node that has suitable whole-
index WI for RI */

1. FOR each WI

2. IF W1 suits for RI than candidate-index
3. candidate-index = WI

4. ENDIF

5. ENDFOR

6. RETURN candidate-node having candidate-index

Fig. 4. The algorithm of finding a normal node.

representative-node, all of the normal-nodes and the
reception-node search data suitable to the retrieval
condition specified in the query. The data retrieved are
sent to the representative-node from the normal-nodes
and the reception-node. This node puts the data together,
and returns them to a user. Fig. 6 and Fig. 7 show the
algorithms of retrieval at a representative-node and a
normal-node, respectively. The query Q is forwarded to
all of the normal-nodes and a representative-node as
shown in Fig. 6. At a normal-node, partial-indexes,
which may have candidate data, are identified by using
a whole-index. The candidate data are obtained from the
partial-indexes identified.

Up to here, a reception-node and a representative-
node are assumed to exist apart from the normal-nodes.
A computing-node may serve both as a normal-node
and a reception-node or representative-node. A
reception-node could also be a representative-node.

More than one reception-node can be introduced.

When two reception nodes exist, a reception-node can

Published by Atlantis Press
Copyright: the authors

94

receive data soon after the reception-index is built up by
the other one, which can move it to a normal-node.
Similarly, more than one representative-node can be
introduced. In this case, multiple queries can be

processed in parallel.

3.2. Distribution Scheme

In the proposed scheme, data are always inserted into
the reception-index that exists apart from the normal-
nodes. Therefore, there is no need to read the normal-
indexes. Insertion time is expected to be reduced. In
addition, reception-indexes are moved to the normal-
nodes in a distributed manner. This distribution would
reduce the number of hits per computing-node and the
retrieval time.
Two distribution schemes adopting the following
criteria are proposed.
(i) Maximum area: Each computing-node calculates an

expanded MBR area for receiving the reception-

Algorithm search(query Q)

/* representative-node sends Q to normal-nodes and

reception-node */

1. answer= {}

2. FOR each normal-node NN

3. answer += search_normal(Q, NN)

4. ENDFOR

5. answer += retrieve(Q, reception-node)

6. RETURN answer

Fig. 6. The algorithm of search at a representative-node.

Parallel Indexing Scheme

Algorithm search_normal(query Q, normal-node NN)

/* search in NN */

1. answer= {}

2. candidate = retrieve(Q, whole-index)

3. FOR each partial-index PI

4. IF candidate includes get mbr(PI)

5. answer += retrieve(Q, candidate)
6. ENDIF

7. ENDFOR

8. RETURN answer

Fig. 7. The algorithm of search at a normal-node.

index. The reception-index is allocated to the
normal-node whose MBR’s area expansion is the
maximum one. Fig. 8 shows three examples of area
expansion. In Fig. 8, each chain-lined rectangle
shows a node (normal-node), each white solid
rectangle shows the MBR of a whole-index, each
black solid rectangle shows the MBR of a
reception-index, and each dashed rectangle shows
area expansion, respectively. In these examples, the
case (a) has the largest area expansion of them and
the reception-index will be moved to the node
shown in Fig. 8(a).

(ii) Proximity: Each computing-node calculates a
proximity between the own MBR of whole-index
and the MBR of the whole reception-index. The
reception-index is allocated to the computing-node

whose MBR of the whole-index has low proximity

Published by Atlantis Press
Copyright: the authors

95

K. Funaki et al.

area expansion MEBR of receplion-index

nod - MBR of whole-index]
R e s D L e e Tt |
J— AR i .
| o S g
I:l . eeeed 1 !
"""""" i ! i i i
| S ———| S | — a4
(a) (b) (c

Fig. 8. Examples of area expansion.

MEBER of receplion-index

node MER of whole-index i
_______ . o ‘ o s s s _ =1
e - ! " -
N ! | : P
| ! o i
N ! Pl !
Lo 1. | I D ‘
_______________ i lmmmimimimmmd i

@ ®) ©

Fig. 9. Examples of proximity.

with the whole reception-index. Fig. 9 shows the
three examples of proximity. The notations shown
in Fig. 9 are the same as those shown in Fig. 8. In
each example, a whole-index and a reception-index
are disjoint. Therefore, the farther the two
rectangles in each dimension are, the lower the
proximity is. The reception-index is moved to the
node shown in Fig. 9(c), because two rectangles of
the case (c) have the longest distance in these

examples.

4. Consideration

In the proposed scheme, data are inserted into a single
file, which is for an index, rather than multiple files.
The overhead of the

because the overhead of reading data can be minimized.

insertion becomes minimum

This is based on the research result obtained by Funaki
etal!’

The proposed scheme moves a set of data items
stored in an index to one of the processing nodes for
improving the retrieval performance. As a processing
node manages its own disk storage, there is no overhead

caused by multiple requests posed by multiple nodes.

This the retrieval

performance.

configuration could improve

A reception-index is moved to a normal-node. In a
whole-index in a normal-node, a reception-index is
treated as a single data item rather than a set of data
items. Only one insertion is required in a whole-index.
If a set of data items was inserted into a whole-index, n
insertions are required, where n is the number of the
data items. In this case, much time is considered to be
taken in the insertion. The proposed scheme avoids this
degradation of the insertion.

When a reception-index is inserted into a whole-
index, the reception-index is placed as far as possible in
the whole-one. This will avoid the concentration of data
to a normal-node. The data stored in partial-indexes are
placed in a distributed manner over normal-nodes. As
many normal-nodes will join the query processing, it
could be highly paralleled. This will also improve the
retrieval performance.

In the parallel query processing, the collection of
candidates sent from normal-nodes is often the bottle
neck of the processing. The candidates are usually
sorted. Much time and much space are required. In such
a case, it is recommended that more than one reception-
node is introduced. A reception-node could concentrate
on the processing of its own query.

This scheme is similar to the Multiplexed R-tree
(MX R-tree).’ In Ref. 9, retrieval time is evaluated.
Insertion time is, however, not considered. Additional
insertion is neither considered. On the other hand, in the
proposed scheme, additional data can be accepted by a
reception-node even if all indexes have been created
once.

From the viewpoint of parallel processing, the best
situation is that every normal-node has the same number
of partial-indexes. This situation is, however, not
guaranteed. Some normal-nodes have a lot of data,
while others have a few data. The worst case is that a

normal-node has N - n partial-indexes, and each of the

Published by Atlantis Press
Copyright: the authors

96

others has only one partial-index, where there are totally
N partial-indexes on n+1 normal-nodes. This will
degrade the retrieval performance because only one
normal-node can process the query in most cases. The
initial placement of the whole-indexes may affect the
balance of data. Clarifying the method of keeping the

balance of data is in future work.

5. Conclusions

Information diversification grows the importance of

multimedia databases. As the fast retrieval of
multimedia data is required, the multi-dimensional
index for the fast retrieval using the feature values is
required. For instance, in the fusion experiment of
National Institute for Fusion Science, a large amount of
measurement data are generated every few minutes.
There is a major issue of the limitation of the insertion
time. Measured data must be inserted into a database in
a few minutes.

This paper proposed a parallel indexing scheme in
order to resolve the issue described above. This scheme
has three kinds of node; normal-node, reception-node,
and representative-node. This scheme has three kinds of
indexes; whole-index, partial-index, and reception-
index. Each whole-index manages the partial-indexes
that are stored into each normal-node. A partial-index
manages the actual data. A reception-index manages the
additional data until the additional data are moved to a
normal-node. A reception-node accepts the additional
data, and creates a reception-index. A representative-
node works in the retrieval. As a reception-node
concentrates on the insertion of data, and creates a
reception-index in its disk storage, the insertion

performance becomes good. As computing-nodes

parallelly search candidate data from their own disk

storages, the retrieval performance also becomes good.
Future work includes the implementation and

evaluation of this scheme. In this paper, two distribution

Parallel Indexing Scheme

schemes are proposed. Comparing these schemes is also

included in future work.

References

1. Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos,
and Y. Theodoridis, R-trees:Theory and Applications
(Springer, 2006), pp.151-159.

2. A. Guttman, R-trees: A dynamic index structure for

in Proc. 1984 ACM SIGMOD
International Conference on Management of Data,
(1984) pp. 47-57.

3. N. Beckmann, H. P. Kriegel, R. Schneider, and B.
Seeger, The R*-tree: an Efficient and Robust Access
Method for Points and Rectangles, in Proc. 1990 ACM
SIGMOD Conference on Management of Data, (1990)
pp. 322-331.

4. National institute for fusion science. [Online]. Available:

spatial seatching,

http://www.lhd.nifs.ac.jp/

5. B. Seeger and P. A. Larson, Master-Client R-trees - a
New Parallel 11th
International Conference on Scientific and Statistical
Database Management (SSDBM’99), (Cleveland, OH
1999) pp. 68-77.

6. X. Fu, D.Wang and W.Zheng, GPR-tree, a Global

Parallel Index Structure for Multiattribute Declustering

R-tree Architecture, in Proc.

on Cluster of Workstations, in Proc. International
Conference on Advances in parallel and Distributed
Computing (APDC’97), (1997) pp. 300-306.

7. Mutenda. L, and M. Kitsuregawa, Parallel R-Tree Spatial
Join for a Shared-Nothing Architecture, in Proc. the 1999
International Symposium on Database Applications in
Non-Traditional Environments, (1999) pp. 423-430.

8. Y. Zhou, Q. Zhu, and Q. Liu. DPR-Tree: A Distributed
Parallel Spatial Index Structure for High Performance
Spatial Databases, in Proc. International Conference on
Earth Observation Data Processing and Analysis
(ICEODPA), (2008) pp. 72853A-72853A-7.

9. C. Faloutsos, and 1. Kamel, Parallel R-trees, in Proc. the
1992 ACM SIGMOD
Management of Data, (1992) pp.195-204.

10. K. Funaki, T. Hochin, H. Nomiya, H. Nakanishi, and M.

Kojima, Parallel indexing of large malti-dimentional

International Conference on

data, in Proc. 1st ACIS Inteructional Symposium on

Published by Atlantis Press
Copyright: the authors

97

K. Funaki et al.

Applied Computing and Information Technology (ACIT
2013), (2013) pp. 324-329.

Published by Atlantis Press
Copyright: the authors
98

