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Abstract 

This paper proposes a parallel indexing scheme of a large amount of data in order to resolve the issues about time 

limitation. Three kinds of computing-nodes are introduced. These are reception-nodes, representative-nodes, and 

normal-nodes. A reception-node receives data for insertion. A representative-node receives queries. Normal-nodes 

retrieve data from indexes. Here, three kinds of indexes are introduced. These are a whole-index, a partial-index, 

and a reception-index. In a partial-index, data are stored. In a whole-index, partial-indexes are stored as its data. In 

a reception-index, additional data are stored. The reception-index is moved to a normal-node, and becomes a 

partial-index. The proposed scheme is also a data distribution scheme for shortening the insertion time. A 

reception-node accepts additional data even if the index is already built. 

Keywords: Multi-dimensional index, Parallel processing, Insertion performance, Distributed index 

 

1. Introduction 

In recent years, information diversification grows the 

importance of multimedia databases. As a multimedia 

database contains a lot of data, its fast retrieval is 

required. Feature values of multimedia data are usually 

used in the fast retrieval. As they are represented with 

multi-dimensional data, the multi-dimensional index is 

inevitable for the fast retrieval of multimedia data. The 

R-tree family is a popular index structure for the multi-

dimensional data.1, 2, 3 In the R-tree, an object is 

represented with a minimum bounding rectangle (MBR) 
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in a multi-dimensional space. MBRs of objects are also 

represented with an MBR. This recursive nature 

constitutes a tree structure. By using this tree structure, 

search space can efficiently be narrowed.  

In addition, advances in measurement technology 

and those of equipment make it possible to get big data 

in a variety of fields easily. Therefore, a multi-

dimensional index having good performance in inserting 

and retrieving data is required. For instance, in the 

fusion experiment of National Institute for Fusion 

Science,4 a large amount of measurement data are 

generated every few minutes. This means that data must 

be inserted within the limited time constraints. 

The methods of implementing a large multi-

dimensional index by parallelization have been 

proposed.5 The ends of the proposed methods are to 

insert data within the limited time constraints, to 

retrieve data quickly, and to store a large amount of 

multi-dimensional data. It has experimentally been 

revealed that data can be inserted within the limited 

time by file splitting. It has also been shown that 

parallel processing to indexes could accelerate the 

retrieval performance. Parallel indexing could also 

resolve the problem of the limitation of the file size. 

Although it has been shown that parallel processing 

of indexes could accelerate the retrieval performance, 

the acceleration is limited under the configuration where 

a storage is shared by many cores. Because many cores 

give different requests to a disk storage, the overhead of 

the movement of the magnetic head could not be 

ignored. 

This paper proposes a parallel indexing scheme that 

is good for retrieval performance as well as insertion 

one. In this scheme, data are sequentially inserted into 

an index on a computing-node called a reception-node. 

This index is called a reception-index. When a 

reception-index becomes full, it is moved to another 

computing-node for improving retrieval performance by 

parallel processing. A reception-index is treated as an 

entry in a multi-dimensional index on the computing-

node. A query is parallelly processed by computing-

nodes, each of which manages its own disk storage. As 

a reception-node concentrates on the insertion of data, 

and creates a reception-index in its disk storage, the 

insertion performance may become good. As 

computing-nodes parallelly search candidate data from 

their own disk storages, the retrieval performance may 

also become good. 

Remaining of this paper is as follows. Section 2 

describes related works. Section 3 proposes a parallel 

indexing scheme.  Section 4 gives some considerations. 

Finally, Section 5 concludes the paper. 

2. Related Works 

Many spatial index structures for implementing multi-

dimensional indexes have been proposed. The R-tree2 is 

one of the most popular methods. The R*-tree3 is an 

improvement to the R-tree. Improving the split 

algorithm makes a tree efficient. 

2.1.  Parallel R-tree 

Many parallel spatial indexing methods based on the R-

tree have been proposed. The elementary idea of the 

parallel R-tree is dividing data to multiple disks.1 Whole 

data are divided into several data and stored to each 

disk. In each disk, independent R-trees are created using 

allocated data. On the other hand, the method of 

dividing whole R-tree structure into several nodes and 

storing them to each disk is called disk stripping. In the 

R-tree with supernodes,1 every node of an R-tree is 

divided into several subnodes, and subnodes are stored 

into several disks. In the Multiplexed R-tree (MX R-

tree),1 an R-tree is divided into subtrees. A subtree is 

stored into a disk. Several dividing schemes have been 

proposed.  

Performance of the parallel R-tree can be 

accelerated using multiple processors in addition to 

multiple disks. In the leaf-based declustering scheme1 
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and Master-Client Rtrees,5 the master-server holds non-

leaf nodes, while leaf nodes are held by slave-servers. 

The Global Parallel index R-tree (GPR-tree)6 uses a 

global index tree shared by multi-computers. In the 

method of the GPR-tree, each processor manages its 

own subtree. It holds a copy of the other subtrees of the 

whole tree, and exchanges the messages to maintain the 

consistency.  The Replicated Parallel Packed R-tree 

(RPP-Rtree)7 replicates the whole R-tree across all the 

computers. In this method, leaf nodes and inner nodes 

are stored into each computer, but the actual data are 

stored separately. The Distributed Parallel R-tree (DPR-

tree)8 partitions the whole data into partition sub-region, 

and allocates the partition sub-region among each 

computer. Each computer creates an independent R-tree 

structure using allocated data. 

From the point of view of the logical tree structure, 

there are two approaches. One uses independent R-

trees.1, 8 The other uses one large logical R-tree.1, 5, 6, 7 

When independent R-trees could make search space be 

narrowed, the retrieval performance will be improved. 

In the large logical R-tree, all of accesses begin with the 

computer holding the root node of the R-tree. This will 

degrade the retrieval performance.  From the point of 

view of holding data, there are also two approaches. 

One holds a copy of an R-tree. The other does not hold 

it. Holding a copy improves the retrieval performance. 

The insertion performance, however, degrades in 

general. 

Faloutsos et al. have proposed and evaluated the 

following node distribution methods.9 

(i) Round Robin: This method distributes data to 

multiple disk in rotation. 

(ii) Minimum Area: In this method, each disk has same 

and minimum area by data distribution. 

(iii) Minimum Intersection: This method minimizes the 

overlap of nodes in the same disk. 

(iv) Proximity Index: In this method, each disk 

calculates the proximity between the own MBR and 

the MBR of the new data value. The new data value 

is allocated to high proximity disk. Proximity of 

two rectangles is measured by the proportion of 

queries that retrieve both rectangles and  calculated 

by the following equation: 

 

queriesofnumbertotal

bothretrievingqueriesofnumber

proximity 
  (1) 

In practice, it is not calculated by the above 

definition, but calculated by the following method. 

First, each rectangle is divided into each dimension. 

In the first dimension, whole section is normalized 

to [0-1]. If two rectangles overlap with each other, 

let “δ” be the length of overlap. The proximity of 

ith dimension is calculated by the following 

equation: 

 )21(
3

1 iproximity  (2) 

On the other hand, if two rectangles do not overlap 

with each other, let “Δ” be the distance between 

them. The proximity of ith dimension is calculated 

by the following equation: 

 2)1(
3

1
iproximity  (3) 

The proximity of each dimension is determined in 

the same manner and the proximity of the two 

rectangles is calculated by multiplying all 

proximity of the dimension: 

 
i

iproximityproximity  (4) 

Faloutsos et al. showed that the Proximity Index has 

high retrieval performance by experimentation.9  
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A computing-node, which is called a representative-

node, receives queries. When a query is posed to the 

representative-node, all of the normal-nodes and the 

reception-node search data suitable to the retrieval 

condition specified in the query. The data retrieved are 

sent to the representative-node from the normal-nodes 

and the reception-node. This node puts the data together, 

and returns them to a user. Fig. 6 and Fig. 7 show the 

algorithms of retrieval at a representative-node and a 

normal-node, respectively. The query Q is forwarded to 

all of the normal-nodes and a representative-node as 

shown in Fig. 6. At a normal-node, partial-indexes, 

which may have candidate data, are identified by using 

a whole-index. The candidate data are obtained from the 

partial-indexes identified.  

Up to here, a reception-node and a representative-

node are assumed to exist apart from the normal-nodes. 

A computing-node may serve both as a normal-node 

and a reception-node or representative-node. A 

reception-node could also be a representative-node. 

More than one reception-node can be introduced. 

When two reception nodes exist, a reception-node can 

Algorithm find_normal-node(reception-index RI) 

/* search the normal-node that has suitable whole-

index WI for RI */ 

 

1. FOR each WI 

2.  IF WI suits for RI than candidate-index 

3.   candidate-index = WI 

4.  ENDIF 

5. ENDFOR 

6.    RETURN candidate-node having candidate-index 

Fig. 4.  The algorithm of finding a normal node. 

Algorithm move_index(reception-index RI, normal-

node NN) 

/* move RI to NN */ 

 

1. partial-index = RI 

2. NN.store(partial-index) 

3. mbr = get_mbr(RI) 

4. NN.whole-index.insert(mbr) 

Fig. 5.  The algorithm of moving reception-index. 

Algorithm insert_data(data D, reception-index RI) 

/* insert a data item D into the reception-node that has 

reception-index RI*/ 

 

1. insert(D, RI) 

2. IF the number of the data stored into RI reaches the 

number determined in advance 

3. NN = find_normal-node(RI) 

4. move_index(RI, NN) 

5. RI = new R-tree index 

6.    ENDIF 

Fig. 3.  The insertion algorithm at a reception-node. 

Published by Atlantis Press 
Copyright: the authors 

94



 Parallel Indexing Scheme 
 

receive data soon after the reception-index is built up by 

the other one, which can move it to a normal-node. 

Similarly, more than one representative-node can be 

introduced. In this case, multiple queries can be 

processed in parallel. 

3.2. Distribution Scheme 

In the proposed scheme, data are always inserted into 

the reception-index that exists apart from the normal-

nodes. Therefore, there is no need to read the normal-

indexes. Insertion time is expected to be reduced. In 

addition, reception-indexes are moved to the normal-

nodes in a distributed manner. This distribution would 

reduce the number of hits per computing-node and the 

retrieval time.  

Two distribution schemes adopting the following 

criteria are proposed. 

(i) Maximum area: Each computing-node calculates an 

expanded MBR area for receiving the reception-

index. The reception-index is allocated to the 

normal-node whose MBR’s area expansion is the 

maximum one. Fig. 8 shows three examples of area 

expansion. In Fig. 8, each chain-lined rectangle 

shows a node (normal-node), each white solid 

rectangle shows the MBR of a whole-index, each 

black solid rectangle shows the MBR of a 

reception-index, and each dashed rectangle shows 

area expansion, respectively. In these examples, the 

case (a) has the largest area expansion of them and 

the reception-index will be moved to the node 

shown in Fig. 8(a). 

(ii) Proximity: Each computing-node calculates a 

proximity between the own MBR of whole-index 

and the MBR of the whole reception-index. The 

reception-index is allocated to the computing-node 

whose MBR of the whole-index has low proximity 

Algorithm search(query Q) 

/* representative-node sends Q to normal-nodes and 

reception-node */ 

 

1. answer = {} 

2. FOR each normal-node NN 

3.   answer += search_normal(Q, NN) 

4. ENDFOR 

5. answer += retrieve(Q, reception-node) 

6.    RETURN answer 

Fig. 6.  The algorithm of search at a representative-node. 

Algorithm search_normal(query Q, normal-node NN) 

/*  search in NN  */ 

 

1. answer = {} 

2. candidate = retrieve(Q, whole-index) 

3. FOR each partial-index PI 

4.   IF candidate includes get_mbr(PI) 

5.    answer += retrieve(Q, candidate) 

6.   ENDIF 

7.    ENDFOR 

8.    RETURN answer 

Fig. 7.  The algorithm of search at a normal-node. 
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others has only one partial-index, where there are totally 

N partial-indexes on n+1 normal-nodes. This will 

degrade the retrieval performance because only one 

normal-node can process the query in most cases. The 

initial placement of the whole-indexes may affect the 

balance of data. Clarifying the method of keeping the 

balance of data is in future work. 

5. Conclusions 

Information diversification grows the importance of 

multimedia databases. As the fast retrieval of 

multimedia data is required, the multi-dimensional 

index for the fast retrieval using the feature values is 

required. For instance, in the fusion experiment of 

National Institute for Fusion Science, a large amount of 

measurement data are generated every few minutes.  

There is a major issue of the limitation of the insertion 

time. Measured data must be inserted into a database in 

a few minutes.  

This paper proposed a parallel indexing scheme in 

order to resolve the issue described above. This scheme 

has three kinds of node; normal-node, reception-node, 

and representative-node. This scheme has three kinds of 

indexes; whole-index, partial-index, and reception-

index. Each whole-index manages the partial-indexes 

that are stored into each normal-node. A partial-index 

manages the actual data. A reception-index manages the 

additional data until the additional data are moved to a 

normal-node. A reception-node accepts the additional 

data, and creates a reception-index. A representative-

node works in the retrieval.  As a reception-node 

concentrates on the insertion of data, and creates a 

reception-index in its disk storage, the insertion 

performance becomes good. As computing-nodes 

parallelly search candidate data from their own disk 

storages, the retrieval performance also becomes good.  

Future work includes the implementation and 

evaluation of this scheme. In this paper, two distribution 

schemes are proposed. Comparing these schemes is also 

included in future work.  
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