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Abstract

This paper introduces novel formulations for optimally responding to epidemics and cyber
attacks in networks. In our models, at a given time period, network nodes (e.g., users or com-
puting resources) are associated with probabilities of being infected, and each network edge is
associated with some probability of propagating the infection. A decision maker would like to
maximize the network’s utility; keeping as many nodes open as possible, while satisfying given
bounds on the probabilities of nodes being infected in the next time period. The model’s rela-
tion to previous deterministic optimization models and to both probabilistic and deterministic
asymptotic models is explored. Initially, we formulate a nonlinear integer program with high
order multilinear terms. We then propose a quadratic approximation that provides a lower
bound and feasible solution to the original problem and can be easily linearized and solved by
standard integer programming solvers. We also devise a novel application and extension of
cover inequalities for our formulation, to speed the solution using standard solvers.

Keywords: Nonlinear integer programming, cutting planes, network optimization, probability
bounds, cybersecurity, epidemiology
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Contents

1 Introduction and Background

Mathematical models of biological epidemics and their extensions to cybersecurity have been ex-
tensively investigated during past few decades; see, for example, [18, 17, 8]. In contrast to previous
work that analyzes the asymptotic growth of infections, we consider a decision problem that arises
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at a given time period in a network where a certain infection may spread. Each node is associated
with the probability of being infected at a given time period, and some of the nodes may be shut
down in order to maintain desired bounds on the infection probabilities of the nodes. Similar
decision problems involving a response to spread of an infection or fire in a network have been
introduced by [1] and [14]; as far as we are aware, however, previous work on optimal response
to network infections has considered only deterministic models.

Probabilistic network optimization models have been extensively studied and applied in the
literature of reliable network design [6, 23]. In network reliability one is usually interested in
designing a network that can withstand the possibility that some of the terminal nodes become
disconnected, with a certain probability. In contrast in our application: We would like to remove
rather than to install nodes. The probability of a node becoming infected depends on the probabil-
ity of contracting the virus from a neighbor. A bound on the probability applies to each network
node, rather than to the entire network or to pair of terminals. Finally, the objective is to maximize
rather than minimize an increasing function of the open nodes. In the following subsections we
first expand on mathematical models of epidemics and their extensions to cybersecurity. Next, we
elaborate on previous work on the decision problems of determining which nodes to treat in the
network in order to mitigate an infection.

1.1 Models for the Spread of Computer Viruses Motivated by Epidemiology

Traditional epidemiological models use a few parameters to estimate the growth of the infected
population as a whole and, in particular, to predict whether an epidemic dies out at the limit or
whether it ensues. A key input parameter of the epidemic in these models is the virus birth rate,
β, the rate at which healthy individuals become infected with a virus when coming in contact
with infected individuals. Similarly, a virus death rate, δ, is the rate at which infected individu-
als are cured. Some recent models address more details such as an underlying structure for the
propagation of the infection. Typically, the structure can be described by a contact graph: a graph
G = (V,E) with n nodes corresponding to individuals, or groups, of the general population and
edges corresponding to possible contacts among individuals. The Kephart-White model [18] ap-
plies epidemiology-based modeling to computer viruses. Let η denote the size of the infected
population and k denote the average degree of the contact graph. The model is captured by the
ordinary differential equation

dη

dt
= βkη

(
1− η

n

)
− δη.

The steady state solution of this model may provide an approximate solution of the growth of an
epidemic in networks where the contact among individuals is sufficiently homogeneous (which is
probably not true in the case of computer networks). However, this model does not model specific
individuals, nor does it suggest which individuals should be treated with limited resources.

LetN(i) be the set of neighbors of node i. Let hi,t be the probability that a node i is not infected
from one of its neighbors at time period t, and let πi,t be the probability that a node i is infected at
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time t. Chakrabarti et al. [8] propose a probabilistic model in which

hi,t =
∏

j∈N(i)

(1− βπj,t−1), (1)

where β is now the probability of a node to contract the virus from an infected neighbor. This
model assumes independence of the probabilities πj,t−1, an assumption that is justifiable in par-
ticular if the time steps are small, in which case the probability of multiple events occuring may
be negligible. Further, the assumption of probability independence significantly simplifies their
analysis. Chakrabarti et al. [8] analyze an epidemic threshold for the dynamical system associated
with (1); the magnitude of this threshold compared with β/δ determines whether an infection en-
sues or becomes endemic. They determine a threshold value that is inversely proportional to the
largest eigenvalue of the adjacency matrix of the network. Note that this result is derived under a
restrictive assumption that the probability of infection spreading along every link equals the same
probability β.

1.2 Deterministic Network Response Optimization Models

A well studied deterministic network response model is known as the firefighter problem; see [2]
and [14] and references therein. The problem is to iteratively decide which nodes to defend (or
immunize) while a fire (or infection) is spreading in the network. At each time step the network
nodes are partitioned into three groups: infected, recovered, and susceptible (those that may be
infected or catch on fire). The fire spreads out deterministically from each node to its neighbors.
To prevent the fire from spreading, at each step only a limited number of nodes can be defended.
Once a node is defended (or recovered), it cannot be infected at succeeding iterations. The objec-
tive is to contain the fire while minimizing the total number of nodes lost. The problem is known
to be NP-hard even for tree networks with a maximum node degree of 3 [11]. An alternative
formulation of the problem, also known to be NP-hard, has the objective of minimizing the cost
of saving all nodes from the fire [2].

The model of the firefighter problem is inherently iterative. The model is restrictive in assum-
ing that all unprotected neighbors of an infected node become infected in the next time period.
It also assumes that the fire may not spread beyond the neighbors of an infected node within a
single time period. In practice there is a decision problem to be solved at a particular moment in
time. Further, the time periods in which action can be taken to respond to the epidemic may not
necessarily correspond to iterations over which the epidemic may spread.

In contrast to the firefighter’s problem, Altunay et al. [1] suggest an optimization problem for
determining the optimal response to cyber attacks. This approach is more closely related to our
problem formulation. The network is modeled by an undirected graph G = (V,E) with vertex
set V , consisting of n nodes and edge set E, with |E| = m. The set of nodes may correspond
to sites, servers, or individual users, and the edges may correspond to communication links or
connections. Further suppose Vc ⊆ V is a set of sites known to be compromised or infected.
Accordingly, Vu = V \ Vc is the set of uncompromised or susceptible sites. The network operator
would like to maximize the utility of the network resources that remain open while shutting down
some of the nodes to maintain an acceptable level of threat.
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Let x ∈ {0, 1} be a vector of decision variables; xi = 1 means that node i remains open, and
xi = 0 corresponds to shutting it down. A network utility function measures the usability of the
network as a function of the node configuration x ∈ {0, 1}n, for some 0 ≤W ∈ Rn×n:

u(x) =
∑
{i,j}∈E

Wijxixj .

Altunay et al. [1] formulate an optimization problem for determining x ∈ {0, 1}n such that
each node i has a level of threat (determined endogenously and) given by a decision variable
ti ∈ [0, Ti], for some input threat upper bound

0 < Ti

≤ 1 i ∈ Vu
= 1 i ∈ Vc.

For i ∈ V , let T 0
i ∈ [0, 1) be the level of threat of node i if it is isolated (i.e., if none of its neighbors

are open), and let pij be a rate of propagation of an infection from node j to node i. For i ∈ V , let
N(i) = {j ∈ V | {i, j} ∈ E }. A nonlinear model based on [1] for network response is

maximize
x,t

u(x) (2a)

subject to ti = T 0
i xi +

∑
j∈N(i)

pijtjxixj i ∈ Vu (2b)

0 ≤ ti ≤ Ti i ∈ Vu (2c)

ti = Ti = 1 i ∈ Vc (2d)

x ∈ {0, 1}n. (2e)

The formulation (2) relaxes a set of additional constraints that are present in the site model of
Altunay et al. [1] in order to discourage shutting down uncompromised sites. Instead we may
add a term −C

∑
i∈Vc

xi in (2a); here, C ≥ 0 is a penalty for compromised sites that remain open.
For small values of C the parameter serves as a tiebreaker among different optimal solutions,
favoring those that shut down more compromised sites.

2 Preliminary Analysis and Models

We now continue to investigate the model (2). Initially, we use a computational point of view. We
then reinterpret the formulation within a probabilistic context. Specifically, we reinterpret the de-
terministic model as a conservative approximation of a formulation with probabilistic constraints,
under appropriate assumptions. We then introduce a model that better approximates the proba-
bilistic formulation, and that we are able to solve more efficiently in experiments, than we are able
to solve the original problem.

2.1 Analysis of the Deterministic Model

Altunay et al. [1] formulate their problem as a mixed-integer nonlinear program (MINLP) similar
to (2) and show that it can be solved as a mixed integer program (MIP) through a particular lin-
earization scheme. This solution approach is well justified for problems that are recognized to be
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hard (otherwise, more efficient and scalable solution methods may exist). We now show that their
network response problem (more precisely, its relaxation (2)), is NP-hard.

Proposition 1. The problem (2) with Wij = 1 for every {i, j} ∈ E is NP-hard.

Proof. The proof follows by reduction of the maximum independent set problem. Let Ḡ = (V̄ , Ē)

denote an input graph of the independent set problem where V̄ = {1, . . . , `}. Let V = {1, . . . , 2`}
and
E = Ē ∪ {{i, `+ i} | i = 1, . . . , `}. Let T 0

i = Ti > 0 for all i ∈ V , let

pij =

0 {i, j} ∈ E \ Ē,

ε > 0 otherwise,

and let Wij = 1 for all {i, j} ∈ E. Evidently, since T 0
i = Ti > 0 and pij > 0 for all {i, j} ∈ Ē,

every solution (x, t) that is feasible for (2) satisfies xixj = 0 for all {i, j} ∈ Ē and thus corresponds
to an independent set in the graph Ḡ. Conversely, given an independent set in S ⊆ V̄ , for any
x ∈ {0, 1}n such that xk = 0 for all k ∈ V̄ \S, then xixj = 0 for all {i, j} ∈ Ē, and (x, x◦T 0) (where
◦ denotes the Hadamard product) is feasible for (2). For a solution (x∗, t∗) that is optimal to (2), it
follows that ∑

{i,j}∈E

Wijx
∗
ix
∗
j =

∑
{i,j}∈E:
i∈V \V̄ ,j∈V̄

x∗ix
∗
j =

∑
i∈V̄

x∗ix
∗
i+` =

∑
i∈V̄

x∗i . (3)

The last equality followed from optimality; pi,i+` = 0, for all i ∈ V̄ , implies the feasibility of
x ∈ {0, 1}n defined by

xj =

x∗j j ∈ V̄ ,

1 j ∈ V \ V̄ ,

and if x∗i = 1 and x∗i+` = 0, together with Wi,i+` = 1 > 0 it implies u(x) > u(x∗), a contradiction.
By (3) and the correspondence of feasible solutions of (2) and independent sets, it follows that the
optimal solution of (2) in G yields a maximum independent set in Ḡ.

2.2 Probabilistic Network Response and Reinterpreting the Deterministic Model

We now introduce an alternative formulation for network response within a probabilistic frame-
work. The motivation is related to the application described in [1], though our modeling assump-
tions with respect to the spread of the infection are similar to those of the asymptotic analysis
appearing in [8]. As in [8], we assume that the probabilities of nodes being infected in the previ-
ous time period are independent of one another. Although it may be more realistic to assume that
the probabilities that neighboring nodes are infected are dependent on one another, assuming in-
dependence provides a significant simplification in terms of both computation and modeling (i.e.,
relieving one from having to specify the joint probabilities). Let pij be the probability of node i be-
ing infected by node j. Let πi,t be the probability of node i being infected at time t. The probability
of node i not being infected at time t is then

hi,t =
∏

j∈N(i)

(1− pijπj,t−1).
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The probability of a node i being infected equals the probability of at least one of its neighbors
being infected times the probability that the neighbor infects i. In the following only a single
time period is considered, and accordingly we will drop the subscript t. We also note that one
may experiment with the effectiveness of our models over several time periods, for example, by
repeatedly applying them within a discrete event simulation.

We would like to choose a network configuration x ∈ {0, 1}n that maximizes u(x) while
bounding the infection probability of each node i ∈ V by the given Ti. For convenience, for
each {i, j} ∈ E, let qij = pijπj . The resulting formulation is

maximize
x

u(x) (4a)

subject to xi −
∏

j∈N(i)

(1− qijxj) ≤ Ti i ∈ V, (4b)

x ∈ {0, 1}n. (4c)

The constraint (4b) for i ∈ V ensures that either the node is shut down, that is xi = 0, or if xi = 1,
then the probability of i being infected is at most Ti.

Figure 1 shows a plot of the optimal objective values u(x∗) of formulations (2), and (4) as T is
varied in the interval [0, 1] (we let T be the common value of Ti for all i ∈ V ). In this experiment the
input data for the components of π (which is a part of the input of (4)) was generated uniformly at
random from [0, 0.8], except for the component i corresponding to the single compromised node,
for which πi = 1. The input data of (2) and (4) are different; in particular, the level of threat ti
is a variable for each i ∈ V in the first, while the corresponding πi is an input parameter in the
latter. Nevertheless, Figure 1 shows that the two models are roughly similar in capturing tradeoff
of the “level of threat” and utility. This observation can be further explained by the fact that with
t = π the right-hand side of (2b) provides an upper bound for the left-hand side of (6b). We
elaborate on this fact in Section 2.3 where we reinterpret (2) as a conservative formulation in a
probabilistic context. The fact that the curve of (4) dominates that of (2) may be related to this
observation about (2), together with the fact that the left-hand side of the constraints (2b) includes
an additional positive coefficient T 0

i = 0.1, as in the experiments of Altunay et al. [1].

Proposition 2. The problem (4), with Wij = 1 for all {i, j} ∈ E, is NP-hard.

Proof. The proof follows by a similar reduction of the maximum independent set problem in the
input graph Ḡ = (V̄ , Ē), as in the proof of Proposition 1; specifically, let G and W be defined as in
that proof. Assume some ε, δ ∈ (0, 1) with 0 < ε < δ < 1, let Ti = ε for i ∈ V̄ , and let

pij =

δ {i, j} ∈ Ē

0 {i, j} ∈ E \ Ē
.

It follows that every solution x that is feasible for (4) has xixj = 0, for every {i, j} ∈ E; otherwise,
by the fact that the left-hand side of (4b) is increasing in x,

xi −
∏

k∈N(i)

(1− δxk) ≥ 1− (1− δ) = δ > ε = Ti,
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T 1.0

u(x∗)

1490
INLP (4)

MINLP (2)

Figure 1: Plots of u(x∗) vs. T (= Ti for all i ∈ V ) for the MINLPs (2) and (4) with an aggregated
Open Science Grid example network, OSG-1 appearing in [1].

a contradiction to the feasibility of x. Conversely, for an independent set S ⊂ V̄ , if xi = 0 for every
i ∈ V̄ \ S, then x is feasible for (4). Further, the fact that qij = 0 for {i, j} ∈ E \ Ē implies that (3)
holds for all x∗ that is optimal to (4). Therefore, an optimal solution of (4) yields a solution that is
optimal to the maximum independent set problem.

2.3 Approximating the Infection Probability Constraints and INLP

The formulation (4) is a nonconvex integer nonlinear program (INLP) and a linearized formulation
of (4) may require a large number of variables. We consider an approximation of (4). In particular,
the approximation we consider provides a feasible solution for (4) and thus a lower bound on its
optimal solution. To this end, instead of the exact form of the constraints of (4), we bound the
probability of the union of events of a node being infected from each of its neighbors. A known
bound in terms of the joint probability of pairs of events is Hunter’s bound [16, 25]: for a sample
space Ω, given a finite set of events {Ai ⊆ Ω | i ∈ N },

P (∪i∈NAi) ≤
∑
i∈N

P (Ai)−
∑
{i,j}∈T

P (Ai ∩Aj),

where T is a maximum weighted spanning tree of the complete graph with vertex set N , hav-
ing P (Ai ∩ Aj) as the weight of each edge {i, j}. Other upper bounds exist, most requiring the
computation of third- or higher-order terms; see for example [7].

Let Ti be the maximum spanning tree of the complete graph with nodes N(i), with each edge
{j, k}weighted by the joint probability of i being infected by both j and k. To simplify the notation,
for each {j, k} ∈ Ti, let rijk = qijqik. For i ∈ V , let Mi be a suitably large constant; for example, it
suffices to set Mi =

∑
j∈N(i) qij . Then, for each i ∈ V , we replace the constraint of (4) by a more
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conservative (tighter) constraint ∑
j∈N(i)

qijxj −
∑
{j,k}∈Ti

rijkxjxk ≤ Ti −Mi(xi − 1),

⇔ gi(x) ≡Mixi +
∑

j∈N(i)

qijxj −
∑
{j,k}∈Ti

rijkxjxk ≤Mi + Ti.

The resulting formulation is

maximize
x

u(x) (6a)

subject to gi(x) ≤Mi + Ti for i ∈ V (6b)

x ∈ {0, 1}n. (6c)

Note that Hunter’s bound applies also in the more general case that the probabilities πij are not
independent for all j ∈ N(i). In this case, one may set the coefficient rijk with the joint probability
that i is infected from both j and k (and which may not equal qijqik).

In the following we empirically compare (4) with two formulations: the first-order (union
bound) formulation, with all bilinear terms of the constraints of (4) having a zero coefficient, and
formulation (6), To evaluate each, we consider the relative error, defined as

u(x(4))− u(x(6))

u(x(4))
,

where x(·) is an optimal solution of the corresponding formulation (·). The computational exper-
iments are run using the state-of-the art CPLEX solver, version 12.3, to compute (the linearized
version of) (6) with r = 0 and (6) with rijk = qijqik for all i ∈ V , and {j, k} ∈ Ti. To compute (4),
we use the open source state-of-the-art MINLP solver BARON, version 9.3.1.

The results of the experiments are shown in Table 1. Each row displays an average of 10 runs,
each with a randomly generated subset of Vc ⊆ V of the indicated cardinality having πj = 1 for
all j ∈ Vc. For each i ∈ V \ Vc, πi is generated uniformly at random from (0, 0.8).

Table 1 shows that the relative error of the formulation (6) with gi(x) having bilinear terms
is substantially smaller than the relative error of the formulation involving only linear terms in
gi(x). Further, the error does not significantly grow as |Vc| increases in contrast to the formula-
tion involving only linear terms. The running times of the exact (assuming the independence of
infection probabilities) nonlinear formulation (4) are about twice as much as that of the quadratic
approximation (6). However, the full product formulation (4) becomes increasingly difficult to
solve: the running times of (6) with |V | = 60 and |E| = 328 are on the order of a few minutes,
while the full product form (4) could not be solved to optimality within two hours. Thus, we can
use the quadratic formulation (6) as a suitable surrogate for the nonconvex multilinear formula-
tion (4), which is much harder to solve. Moreover, the quality of the quadratic approximation
significantly improves on the quality of the linear approximation.

Although the formulation (6) bilinear rather than general multilinear terms, and is simpler
compared with the nonlinear formulation (4), the next proposition establishes that it remainsNP-
hard.
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Table 1: Average error over ten runs with the aggregated Open Science Grid example network,
OSG-1 appearing in [1]; each run corresponds to a random subset Vc of the indicated cardinality,
and which contains all nodes i with πi = 1. The results of the linear (union bound) and quadratic
(Hunter bound) conservative approximations are shown in the second and third set of columns,
respectively.

|Vc| (6) with r = 0 Runs of (6)
Avg Err Max Err Avg Sec Max Sec Avg Err Max Err Avg Sec Max Sec

1 0.10 0.15 0.21 0.31 0.07 0.13 0.37 0.43
2 0.08 0.14 0.21 0.27 0.02 0.07 0.45 0.59
3 0.06 0.14 0.20 0.28 0.01 0.06 0.51 0.62
4 0.09 0.16 0.22 0.29 0.02 0.06 0.52 0.81
5 0.12 0.16 0.28 0.49 0.01 0.05 0.58 0.69
6 0.12 0.17 0.26 0.35 0.03 0.07 0.77 2.14
7 0.13 0.20 0.26 0.41 0.02 0.06 0.86 2.38
8 0.14 0.17 0.28 0.50 0.01 0.09 0.65 0.97
9 0.15 0.19 0.38 0.64 0.01 0.05 0.85 1.43
10 0.15 0.21 0.33 0.50 0.02 0.10 0.92 1.75

Proposition 3. The problem (6) with Wij = 1 for every {i, j} ∈ E is NP-hard.

Proof. The proof follows by a similar reduction of a maximum independent set problem in the
input graph Ḡ as in the proof of Proposition 2. Let G = (V,E), W , q, and T be as defined as in that
proof, but choosing δ, ε > 0 so that δ = 1/n > ε. It follows that for all x ∈ {0, 1}n with xj = 0, for
some j ∈ V ,

g(x+ ej)− g(x) = qij

1−
∑

k∈N(i):
{j,k}∈Ti

qikxk

 ≥ 1

n
−N(i)

(
1

n2

)
≥ 1

n
− n− 1

n2
> 0.

Now, assume x′ is feasible for (4). Then, x′ix
′
j = 1 for some {i, j} ∈ Ē implies that

gi(x
′) ≥Mi + qij = Mi + δ > ε+Mi = Ti +Mi,

a contradiction. Therefore x′ix
′
j = 0 for all {i, j} ∈ Ē. So, applying the converse argument as in the

proof of Proposition 2, it follows that a solution x′ is feasible for (6) if an only if
{
i ∈ V̄ | x′i = 1

}
is an independent set. Then, it follows from (3) that each solution x∗ that is optimal for (6) yields
a maximum independent set in Ḡ.
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3 Computational Techniques

In this section we consider computational techniques to speed the computation of the formula-
tions (2) and (6). We first consider valid inequalities for each problem that tighten the continuous
relaxation upper bound. Next, we devise a heuristic for determining a feasible solution, that is, a
global lower bound.

3.1 Valid Inequalities

A cover inequality for S ⊆ V is a linear inequality of the form∑
j∈S

xi ≤ |S| − 1. (7)

Inequalities of this form were first developed as valid inequalities for linear knapsack problems;
see [4, 5]. In particular, (7) must hold if S is the support of x ∈ {0, 1}n for which a corresponding
knapsack constraint is violated. Such inequalities and their extensions have been used for general
MIPs, and have also been specialized for specific applications; see for example [19] for a recent
application to a network optimization problem. Further, cover inequalities have recently been
extended for conic-quadratic nonlinear formulations [3]. However, we note that these recent ex-
tensions, as well as standard applications to knapsack constraints, all require that the right-hand
side of the associated constraint is monotone in x.

In the case of formulation (6), note that for every i ∈ V , gi(x) has negative quadratic coeffi-
cients. For every i ∈ V and j ∈ N(i), although

∂gi
∂xj

= qij

1−
∑

k∈N(i):
{k,j}∈Ti

qikxk


tends to be positive, it may be negative for if

∑
k∈N(i):
{k,j}∈Ti

qikxk > 1 (as qij ≤ 1 for all {i, j} ∈ E).

Hence, in general gi(x) is not monotone in x and consequently it is not straightforward to apply
standard cover inequalities to formulation (6).

We note, however, that the negative coefficients of the quadratic terms tend to be small in our
stochastic application, and since Ti is a tree, the degree of j ∈ Ti, and corresponding number of
quadratic terms of gi, also tend to be small with respect to |N(i)|. Therefore, in the following
lemma we define a weaker condition than monotonicity that is useful for determining valid cover
inequalities.

Lemma 4. Suppose x, y ∈ {0, 1}n satisfy S(x) ≡ {i ∈ V | xi = 1} ⊂ S(y). Then

gi(y) ≥ gi(x) +
∑

j∈S(y)\S(x)

[gi(x+ ej)− gi(x)− pijπj ].
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Proof. Letting x and y be defined as in the claim of the lemma, we have that

gi(y) = gi(x)−
∑

{j,k}∈Ti:
j∈S(y)\S(x),k∈S(x)

qijqik −
∑

{j,k}∈Ti:
j∈S(y)\S(x),k∈S(y)\S(x)

qijqik +
∑

j∈S(y)\S(x)

qij . (8)

Note that since Ti is a tree, there are at most |S(y) \ S(x)| − 1 quadratic terms of the form qijqik in
the right-hand side of (8); each satisfies qijqik ≤ min{qij , qik}. Hence,∑

{j,k}∈Ti:
j∈S(y)\S(x),k∈S(y)\S(x)

qijqik ≤
∑

j∈S(y)\S(x)

qij ,

implying that

gi(y)− gi(x) ≥ −
∑

{j,k}∈Ti:
j∈S(y)\S(x),k∈S(x)

qijqik =
∑

j∈S(y)\S(x)

[gi(x+ ej)− gi(x)− qij ].

Lemma 4 identifies a lower bound on gi(y) for y ∈ {0, 1}n in terms of a given x ≤ y. In the
following proposition, we use this bound to determine a sufficient condition for a given set S ⊆ V
to define a valid inequality (7). Further, this sufficient condition is testable; it is straightforward to
determine whether the condition holds in polynomial (in fact linear) time.

Proposition 5. Suppose x′ ∈ {0, 1}n with S = S(x′) and i ∈ S so that (6b) is violated. If

gi(x
′ + ej)− gi(x′)− qij > −(gi(x

′)− Ti −Mi)/(n− |S|) for all j ∈ V \ S, (9)

then (7) is a valid inequality for (6).

Proof. Assume the hypothesized conditions of the proposition hold, and that y ∈ {0, 1}n is an
optimal solution of (2) satisfying S̄ = S(y) ⊇ S. By Lemma 4 and (9) it follows that

gi(y) ≥ gi(x′) +
∑

j∈S̄\S

[gi(x
′ + ej)− gi(x′)− qij ] > gi(x

′)− (
∣∣S̄∣∣− |S|)(gi(x′)− Ti −Mi)/(n− |S|)

= gi(x
′)
n−

∣∣S̄∣∣
n− |S|

+ (Ti +Mi)

∣∣S̄∣∣− |S|
n− |S|

> Ti +Mi.

For knapsack constraints, extended covers provide stronger inequalities that can also be gener-
ated and separated efficiently in practice [4, 13, 12]. We now consider extended cover inequalities
for (6): we say that XS,i ⊆ V is an extension of a covering set S ⊆ V , for some i ∈ V , if

qij −
∑

k∈XS,i∪S
rijk > max

`∈S
qi`, for all j ∈ XS,i . (10)

We refer to ES,i ≡ S ∪ XS,i as an extended covering set. For such a set the following proposition
suggests valid inequalities that are clearly stronger than (7).

Proposition 6. Suppose x′ ∈ {0, 1}n with S = S(x′) and some i ∈ S so that (6b) is violated and (9) is
satisfied. If XS,i ⊆ N(i) \ S satisfies (10), then

(ES,i \ S + 1)xi +
∑

j∈ES,i\{i}

xj ≤ |ES,i| − 1 (11)

is valid for (6).
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Proof. Suppose x̂ ∈ {0, 1}n that is feasible for (6). First, considering the case that x̂i = 0, then∑
j∈ES,i\{i}

x̂j ≤ |ES,i| − 1 = |ES,i| − 1− (|ES,i \ S|+ 1)x̂i.

Otherwise, consider the case that x̂i = 1. Assume for the sake of deriving a contradiction that∑
j∈ES,i\{i}

x̂j =
∑

j∈S\{i}

x̂j +
∑

j∈ES,i\S

x̂j ≥ |ES,i| − (|ES,i \ S|+ 1)x̂i = |S| − 1.

Then, by the definition of ES,i, and (10), it follows that∑
j∈S\{i}

qij x̂j −
∑

{j,k}∈Ti:
j,k∈S

rijkx̂j x̂k+

∑
j∈XS,i

qij x̂j −
∑

{j,k}∈Ti
j∈XS,i or k∈XS,i

rijkx̂j x̂k ≥
∑

j∈S\{i}

qij x̂j −
∑

{j,k}∈Ti:
j,k∈S

rijkx̂j x̂k + max
j∈S
{qij}

∑
k∈ES,i\S

x̂k

≥
∑

j∈S\{i}

qijx
′
j −

∑
{j,k}∈Ti

rijkx
′
jx
′
k > Ti,

which contradicts the feasibility of x̂.

Quadratic and higher-order INLPs can be linearized through standard techniques involving
the introduction of additional auxiliary variables. For each {i, j} ∈ E, let uij ∈ [0, 1] be a real
variable used to linearize the corresponding bilinear term xixj using the following additional
constraints:

uij ≤ xi uij ≤ xj xi + xj − 1 ≤ uij uij ≥ 0. (12)

Let Ē =
⋃

i∈V Ti ∪ E. We refer to the linearization of formulation (6) as (6) with each quadratic
term xixj for {i, j} ∈ Ē replaced by uij , and with the additional constraints (12). Also, we refer to
the linear relaxation of (6) as the linearization of (6) with the integrality constraints (6c) replaced
by x ∈ [0, 1]n. This is the approach that we follow in Section 4 in order to solve formulation (6)
using a standard MIP solver. Further, for the linear relaxation it may be useful to derive cover
inequalities in terms of the linearization variables.

Proposition 7. Suppose that for some S ⊆ V , (7) is valid for (6), and letM ⊆
{
{i, j} ∈ Ē | i, j ∈ S

}
.

If {i ∈ S | ∀k : {i, k} /∈M} = ∅, then∑
{i,j}∈M

uij ≤ |M| −min
k∈S
|{j ∈ S | {j, k} ∈ M}| (13)

is a valid inequality for the linearization of (6).

Particular cases of (13) in the literature (see [15] and references therein) are matching-cover in-
equalities withM corresponding to maximum matchings (and with
mini∈V |{j ∈ S | {i, j} ∈ M}| = 1); these are considered in the context of quadratic knapsack
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semi-definite relaxations [15]. Also, cycle inequalities are obtained by choosing a subset of vari-
ables uij corresponding to a Hamiltonian cycle of the subgraph of (V, Ē) induced by S, and re-
placing the second term in the right-hand side of (13) with 2 [10, 15].

Note that in the case that M is a (perfect) matching (i.e., M contains a single edge {i, j} for
each i ∈ S), then for all (x, u) that are optimal to the linear relaxation of (6),∑

{i,j}∈M

uij =
∑

{i,j}∈M

min{xi, xj} ≤ |M| − 1.

Now rewriting (7):
1

2

∑
i∈S

xi ≤ (|S| − 1)/2 = |M| − 1/2,

the right-hand side may suggest that it is weaker, however, as (xi + xj)/2 ≥ min{xi, xj} for each
{i, j} ∈ M, it follows that the latter, and (7), are not necessarily weaker than the former inequal-
ity, and (13), respectively. Therefore, in Section 4 we generate the inequalities (11), the extended
inequalities corresponding to (7), in addition to extended inequalities based on (13).

The following corollary suggests the extended inequalities in terms of the linearization vari-
ables; the validity of these inequalities for the linearization of (6) follows from Propositions 7
and 6.

Corollary 8. Suppose x′ ∈ {0, 1}n, and for some i ∈ S = S(x′), (6b) is violated and (9) is satisfied. Let
M⊆

{
{j, k} ∈ Ē | i, j ∈ S

}
, and U = {j ∈ S \ {i} | ∀k : {j, k} /∈M}. If XS,i satisfies (10) then

(|XS,i|+ 1)xi +
∑

j∈U∪XS,i

xj +
∑

{j,k}∈M

ujk ≤ |M|+ |U |+ |XS,i| . (14)

is valid for the linearization of (6). Further, if U = ∅ andM is a cycle then

(|XS,i|+ 2)xi +
∑

j∈XS,i

xj +
∑

{j,k}∈M

ujk ≤ |M|+ |XS,i| . (15)

is valid for the linearization of (6).

To apply Proposition 6 and Corollary 8, we first need to determine a subset S that violates (6b)
for some i ∈ V . Note that, for a given a candidate S ⊆ V , it is straightforward to verify condi-
tion (9). Then, using S that satisfies (9) we may extended it to a set ES,i ⊇ S.

We now motivate a greedy heuristic for determining S ⊆ V . If one presupposes that this con-
dition is satisfied, then the separation problem of determining S, for a given row corresponding to
some i ∈ V , and relaxation solution x∗, can be simplified and formulated as a quadratic knapsack
problem:

maximize
z

∑
j∈N(i)

gi(z) (16a)

subject to
∑

j∈N(i)

(1− x∗j )zj ≤ 1− ε (16b)

z ∈ {0, 1}n, (16c)
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where ε ∈ (0,minj∈N(i) x
∗
j ). We note that the function gi : {0, 1}n → R, the objective (16a), is a sub-

modular quadratic function of binary variables. This observation motivates a greedy heuristic for
the separation problem. For the special case with monotone gi(x) (for example, if qij = p ≤ 1

|N(i)|
for all j ∈ N(i), as in the proof of Proposition 3), and equal coefficients (1− x∗j ) for all j ∈ N(i), a
greedy algorithm is known to have an (e−1)/e approximation factor guarantee (this result applies
more generally to a monotone submodular objective function, not necessarily quadratic) [22]. For
a nonmonotone submodular objective function, and with general knapsack constraints, there are
more computationally intensive extensions that yield constant factor approximations; see, respec-
tively, [24] and [20]. However, due to the computational advantage and ease of implementation,
here we only apply the simpler greedy algorithm.

Let x(S) ∈ {0, 1}|V | be the characteristic vector of a set S ⊆ V . For a given function φ : 2V×V →
R, and i ∈ V , we consider Algorithm 1 as a greedy procedure for computing an extended covering
set. Such a set can then used to generate valid inequalities for the linearization of (6). Algorithm 1
is run for i ∈ V whose corresponding constraint (6b) is tight; in Section 4 we invoke this algorithm
for i ∈ V corresponding to the largest predetermined number of dual multiplier values. We

Algorithm 1 An algorithm for computing an extended covering set ES,i ⊆ V .
1: Input: an optimal solution x∗ of the relaxation of (6), i ∈ V
2: Q1 ← {i}
3: for k = 1, . . . , n do
4: if (6b) is violated with x replaced by x(Qk), and (9) holds then
5: break
6: end if
7: Pick some j∗ ∈ argmaxi∈N(i) φ(Qk, j)

8: Qk+1 ← Qk ∪ {j∗}
9: end for

10: S ← Qk

11: XS,i = ∅
12: while Φ ≡ argmaxj∈N(i)\(XS,i∪S) {gi(x(S ∪ {j}) | (10)} 6= ∅ do
13: Pick some j∗ ∈ Φ

14: XS,i ← XS,i ∪ {j∗}
15: end while
16: Output: ES,i = S ∪XS,i

consider two different variants of Algorithm 1, each corresponding to a different definition of the
function φ in line 7 of the algorithm. In particular, we consider either

φ(·, j) = x∗j , or (17a)

φ(S, j) =
gi(x(S ∪ {j}))− gi(x(S))

1− x∗i
. (17b)

In the context of the knapsack problem, extended cover inequalities are effectively generated in
practice by greedily constructing S to consist of j ∈ V for which x∗j is largest (where x∗ is an
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optimal solution of the relaxation); see for example [13]. This approach is similar in to our choice
of φ defined by (17a) in Algorithm 1. Given the cover S that is computed by Algorithm 1 in steps 2
– 10, it is then iteratively extended; starting with ES,i = S, at each iteration we insert into ES,i

an element j∗ ∈ N(i) that maximizes gi(x(ES,i ∪ {j})) over all j ∈ N(i) \ ES,i satisfying (10).
Note that upon termination of Algorithm 1, assuming that the continuous relaxation solution x∗

is noninteger, we are guaranteed to get a valid cover inequality; however, the resulting cover
inequality does not necessarily cut off x∗. Thus, upon termination we may need to verify that the
resulting cover inequalities are violated before appending them to (6).

3.2 Feasible Solution Heuristic

We now develop a specialized heuristic to be invoked as a part of the branch-and-bound algo-
rithm in order to determine a feasible solution (i.e., a global lower bound). Algorithm 2 applies a
knapsack heuristic for iteratively rounding the linear relaxation solution, and repeatedly resolving
and rounding. For a constraint (6b), for each i ∈ V , the cost coefficient for each j ∈ N(i) is approx-
imated (in fact bounded from above) using the linear coefficient qij . For with a tight constraint:
setting xj = 1 for j ∈ N(i) in a decreasing (approximate) objective-to-cost ratio.

Unless x∗ is integer, at each iteration of the main loop we shut down at least one node; specifi-
cally, we fix x` = 0 for some ` ∈ V \ (Z ∪O) in either step 16, or step 23 of the algorithm. Further,
at either step of the algorithm, element ` is inserted into Z. Hence, the algorithm is guaranteed to
terminate in at most |V \ (Z ∪O)| ≤ n iterations; further, in the case that O = ∅ (that is if none of
the nodes are required to remain open), as x = 0 is feasible, it implies that a feasible solution is
guaranteed to be found.

4 Computational Results

In this section we show computational results for the linearization of (6) using the methods de-
scribed in Section 3. We experiment with networks that are generated randomly by using the
Erdös-Rényi random graph model, with different graph density values: 0.1, 0.2, and 0.25. Exam-
ples of the graphs generated with 50 nodes are shown in Figure 2. For each network we generated
10 different instances with different random input parameter values for W , π, p, and T . A set of
compromised nodes Vc ⊆ V is chosen at random so that |Vc| = d0.1 |V |e, for which πi = 1 for
each i ∈ Vc. Otherwise, for i ∈ V \ Vc, πi is generated uniformly at random from (0, 0.8). For each
{i, j} ∈ E, Wij is generated uniformly at random from (0, 1). For each {i, j} ∈ E, the probability
of the infection propagating from node j to i is given by

pij =
Wij∑

k∈N(j):(k,j)∈EWkj
,

as in the experiments of Altunay et al. [1].
We run the linearized formulation of (6) using the open source CBC [21] solver (trunk version,

revision #1759). Also, our cut generation routines and heuristics use the open source network
algorithm LEMON [9] library (trunk version, revision #952).
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Algorithm 2 LP-rounding based heuristic for determining a feasible solution.
1: Input: G = (V,E),W, T, p, q, and Z,O ⊆ V
2: while true do
3: Solve the relaxation of (6), with xi = 0 fixed for i ∈ Z and xi = 1 fixed for i ∈ O, obtaining

primal vector x∗ and dual multiplier vector λ∗.
4: if x∗ ∈ {0, 1}n then
5: break.
6: end if
7: x← dx∗e
8: Sort i1, . . . , in so that λi1 ≥ · · · ≥ λin and let p = max {k = 1, . . . , n | λik > 0}.
9: for ` = i1, . . . , ip do

10: Let NF (`) = N(`) \ (Z ∪O)

11: Sort j1, . . . , j|NF (`)| ∈ NF (`) in decreasing order of
∑

i∈N(jk) Wijk
xixjk

q`jk
for k = 1, . . . , |NF (`)|.

12: ∆←
∑

j∈N(`)∩O q`j

13: for k = 1, . . . , |NF (`)| do

14: ∆← ∆ +

∑
i∈N(jk) Wijk

xixjk

q`jk
15: if (6b) is violated then
16: xjk ← 0, Z ← Z ∪ {k}
17: else
18: break
19: end if
20: end for
21: if ` /∈ O and ∆ >

∑
j∈NF (`)W`j then

22: xi ← 1 for all i ∈ NF (`), Z ← Z \NF (`)

23: x` ← 0, Z ← Z ∪ {`}
24: end if
25: end for
26: end while
27: Output: x
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(a) An example network with 0.1 den-
sity.
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(b) An example network with 0.2 den-
sity.

Figure 2: Randomly generated networks with 50 nodes that are used in the computational study
of Section 4.

Although the CBC solver and our implementation support running branch-and-bound in par-
allel using multithreading, in the following we show experimental results only for serial runs. The
experiments are run on a machine with Intel Xeon 2.66 GHz CPUs with a cache size of 6144 KB,
and a 64-bit Ubuntu 10.04 Linux operating system.

In the following tables when “-” is indicated for all features, this implies the default configura-
tion of the CBC solver1. In all cases the heuristic, cuts, and cover methods indicated in the tables
are run in addition to the CBC defaults. In addition, when applying our cuts we set CBC to em-
phasize generating knapsack cover inequalities. Otherwise, the generation of our cuts at the root
node seemed to be causing CBC to disable the generation of standard knapsack cover inequalities
later, which, in some cases, seemed to degrade the overall performance. We set the time limit in all
runs to two hours. “LIMIT” is used to indicate that the data is not displayed due to the time limit
being reached. When the time limit is reached only for some of the runs, then the node and time
averages that are displayed pertain to those runs in which the time limit has not been reached.

4.1 Testing the Cover and Cut Methods

Tables 2–4 show our experimental results for different methods for computing the cover: running
Algorithm 1 with φ defined either by (17a) or (17b), as indicated. We initialized CBC to invoke
our cover and cut generation routine once in every 50 nodes, with automatic adjustment of the
CBC solver based on the effectiveness of the cuts that are generated. The algorithm is invoked for
i ∈ V whose constraint (6b) is among the 60 with largest dual multiplier values at the root node,
and among the two largest dual multiplier values at other branch-and-bound nodes. Also, we
compare the performance with the extended cover inequalities in the original variables (11), vs.
generating also the inequalities using the linearization variables (14), and (15); cuts of the form (14)

1Due to implementation issues with our cut and heuristic routines, along with the libraries being used, in all cases
we had CBC preprocessing switched off. Switching the preprocessing off did not have any significant impact on the
running times of CBC with our test instances.
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Figure 3: Performance profile showing the proportion of runs within a given factor of the best
solution. The cuts are generated using the method that performed best in the experiments of
Section 4.1.

are generated withM corresponding to maximum weighted matchings (with edges weighted by
the relaxation solution values, ujk for each {j, k} ∈ Ti). The cuts of the form (15) are generated
only in the case that |S| = 4 and |M| = 3; evidently, in this case, these cuts are stronger than (14),
and they are also trivial to generate given |S|.

Tables 2 – 4 show that in nearly all cases it was beneficial in terms of overall CPU time and
branch-and-bound nodes to compute covers using Algorithm 1 with φ defined by (17b), rather
than by (17a). In most cases the valid inequalities (11) combined with (14) and (15), whose covering
set is computed using (17b), outperformed the state-of-the-art open source CBC solver with its
default settings1. In both Table 2 and 4 this was also evident in fewer runs that exceeded the time
limit (of two hours).

4.2 Testing the Heuristic Method

Tables 5–7 show the experimental results testing the effectiveness of the heuristic Algorithm 2.
The heuristic is run with the default CBC configuration or together with the cuts that seemed to
perform best in the experiments of the previous subsection: (11), (14), and (15) using Algorithm 1
with φ defined by (17b). Figure 3 also shows the results of these experiments as a performance
profile in order to provide further insight. In addition to the data displayed in the table, the per-
formance profile also shows the results of the runs that use the cuts without having the heuristic
enabled. The heuristic for finding a feasible solution, although effective in quickly finding a feasi-
ble solution, did not seem to improve the overall running time of the CBC solver. The reason may
be that CBC heuristics were sufficiently effective in finding feasible solutions and that, in fact, the
tightening of the upper bounds, rather than the global lower bound, dominated the computation
running times.
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Table 2: Computational results with random graphs of 0.10 density. Here - indicates CBC defaults
w/o preprocessing; (·) indicates the use of the corresponding feature and equation number, as
defined in this paper. Each row displays the statistics of 10 runs, each corresponding to the same
graph but with different values for the input parameters W,π, P , and T .

Nodes Edges Cover Cuts Nodes CPU sec # over
Avg Max Avg Max Limit

50 123

- - 83.4 178 8.2 11.7 0
(17a) (11) 84.3 230 8.7 12.3 0
(17a) (11),(14),(15) 88.6 178 9.0 13.3 0
(17b) (11) 78.4 177 7.9 11.0 0
(17b) (11),(14),(15) 100.1 256 8.5 15.5 0

60 185

- - 516.7 924 40.1 63.7 0
(17a) (11) 453.1 959 39.6 75.6 0
(17a) (11),(14),(15) 527.1 998 40.3 66.2 0
(17b) (11) 427.2 745 37.0 53.4 0
(17b) (11),(14),(15) 386.0 982 34.7 65.5 0

70 249

- - 2736.5 6118 181.9 381.8 0
(17a) (11) 2535.6 4758 171.6 302.3 0
(17a) (11),(14),(15) 2686.4 6176 185.2 390.7 0
(17b) (11) 2481.9 4900 171.9 347.6 0
(17b) (11),(14),(15) 2441.2 4693 168.9 303.9 0

80 317

- - 16258.4 51079 1371.0 4070.1 0
(17a) (11) 18728.9 61948 1622.4 4939.2 0
(17a) (11),(14),(15) 14741.1 39759 1286.5 3143.0 0
(17b) (11) 18094.9 74449 1563.8 5918.8 0
(17b) (11),(14),(15) 16169.0 40388 1327.3 3399.1 0

90 390

- - 36739.8 LIMIT 3739.7 LIMIT 1
(17a) (11) 33396.2 LIMIT 3468.5 LIMIT 2
(17a) (11),(14),(15) 30160.9 LIMIT 3225.9 LIMIT 2
(17b) (11) 32638.2 LIMIT 3352.2 LIMIT 1
(17b) (11),(14),(15) 33329.0 LIMIT 3250.5 LIMIT 1
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Table 3: Computational results with random graphs of 0.20 density. Here - indicates CBC defaults
w/o preprocessing; (·) indicates the use of the corresponding feature and equation number, as
defined in this paper. Each row displays the statistics of 10 runs, each corresponding to the same
graph but with different values for the input parameters W,π, P and T .

Nodes Edges Cover Cuts Nodes CPU sec # over
Avg Max Avg Max Limit

50 256

- - 2053.0 4242 124.4 235.2 0
(17a) (11) 2012.4 4242 126.4 238.1 0
(17a) (11),(14),(15) 2043.3 4422 127.1 261.7 0
(17b) (11) 1812.3 4795 115.9 271.7 0
(17b) (11),(14),(15) 1845.2 3234 114.9 181.2 0

60 328

- - 7522.4 16386 524.5 1016.4 0
(17a) (11) 7809.2 13950 577.2 1007.1 0
(17a) (11),(14),(15) 7325.1 16193 556.7 1008.6 0
(17b) (11) 7813.4 14136 553.6 857.0 0
(17b) (11),(14),(15) 6996.0 13608 507.8 888.4 0

70 471

- - 39569.6 LIMIT 4238.0 LIMIT 2
(17a) (11) 40539.6 LIMIT 4372.9 LIMIT 2
(17a) (11),(14),(15) 38864.5 LIMIT 4404.7 LIMIT 2
(17b) (11) 41642.4 LIMIT 4518.5 LIMIT 1
(17b) (11),(14),(15) 40894.3 LIMIT 4408.0 LIMIT 1

Table 4: Computational results with random graphs of 0.25 density. Here, - indicates CBC defaults
w/o preprocessing; (·) indicates the use of the corresponding feature and equation number as
defined in this paper. Each row displays the statistics of 10 runs, each corresponding to the same
graph but with different values for the input parameters W,π, P and T .

Nodes Edges Cover Cuts Nodes CPU sec # over
Avg Max Avg Max limit

50 256

- - 4521.1 15150 274.8 733.0 0
(17a) (11) 3681.4 10674 245.1 670.8 0
(17a) (11),(14),(15) 3693.7 8257 249.2 487.5 0
(17b) (11) 3846.0 11320 253.0 630.9 0
(17b) (11),(14),(15) 3684.4 9130 259.0 583.7 0

60 328

- - 25152.4 51683 2095.7 4199.8 0
(17a) (11) 22696.5 48611 2047.5 4360.3 0
(17a) (11),(14),(15) 21724.3 45772 1918.5 4027.6 0
(17b) (11) 22971.5 48582 1988.7 3589.9 0
(17b) (11),(14),(15) 19728.4 35397 1658.8 2953.7 0
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Table 5: Computational results with random graphs of 0.10 density. Here, - indicates CBC defaults
without preprocessing; + indicates the use of the corresponding feature and equation number, as
defined in this paper. Each row displays the statistics of 10 runs, each corresponding to the same
graph but with different values for the input parameters W,π, P and T .

Nodes Edges Heuristic Cuts Nodes CPU sec # over
Avg Max Avg Max limit

50 123
- - 83.4 178 8.2 11.7 0
+ - 89.6 236 8.3 12.2 0
+ + 96.9 224 8.2 13.7 0

60 185
- - 516.7 924 40.3 63.9 0
+ - 501.6 856 39.9 64.1 0
+ + 390.3 978 34.0 69.1 0

70 249
- - 2736.5 6118 183.6 383.2 0
+ - 2756.3 6118 182.7 384.1 0
+ + 2390.1 4693 165.6 391.4 0

80 317
- - 16258.4 51079 1371.0 4070.1 0
+ - 15890.6 48255 1375.7 3880.2 0
+ + 17378.7 48131 1387.3 3888.8 0

90 390
- - 36739.8 LIMIT 3739.7 LIMIT 1
+ - 34343.3 LIMIT 3599.6 LIMIT 1
+ + 35766.9 LIMIT 3499.5 LIMIT 1

Table 6: Computational results with random graphs of 0.20 density. Here, - indicates CBC defaults
without preprocessing; + indicates the use of the corresponding feature and equation number, as
defined in this paper. Each row displays the statistics of 10 runs, each corresponding to the same
graph but with different values for the input parameters W,π, P and T .

Nodes Edges Heuristic Cuts Nodes CPU sec # over
Avg Max Avg Max limit

50 256
- - 2053.0 4242 124.4 235.2 0
+ - 2234.5 4878 128.5 258.6 0
+ + 1895.6 4023 118.2 233.7 0

60 328
- - 7522.4 16386 524.5 1016.4 0
+ - 6997.7 16386 513.7 1051.0 0
+ + 6879.8 14248 502.1 910.4 0

70 471
- - LIMIT 4238.0 LIMIT 2
+ - 40858.4 LIMIT 4480.8 LIMIT 2
+ + LIMIT 4439.8 LIMIT 1
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Table 7: Computational results with random graphs of 0.25 density. Here, - indicates CBC defaults
without preprocessing; + indicates the use of the corresponding feature and equation number as
defined in this paper. Each row displays the statistics of 10 runs, each corresponding to the same
graph but with different values for the input parameters W,π, P and T .

Nodes Edges Heuristic Cuts Nodes CPU sec # over
Avg Max Avg Max limit

50 256
- - 4521.1 15150 274.8 733.0 0
+ - 4257.5 12444 275.2 712.8 0
+ + 3626.2 9088 254.5 577.7 0

60 328
- - 25152.4 51683 2095.7 4199.8 0
+ - 26585.8 59357 2266.4 4982.1 0
+ + 20742.0 35490 1733.2 3095.6 0

5 Conclusion

We have suggested a reformulation of a network response optimization problem considered in [1]
within a probabilistic framework. This framework, motivated by a setting considered in [8],
assumes independence of the infection probabilities in the previous time period. To solve the
problem, we considered a quadratic formulation that bounds the infection probabilities using
Hunter’s bound and thus computes a more conservative solution. The advantage of this approach
is twofold. First, the quadratic formulation can be easily linearized and solved by standard MIP
solvers. Second, the application of the quadratic probability bound, and thus the resulting formu-
lation, need not require probability independence. In computational experiments, as the problem
instances get larger, we find the quadratic formulation is much easier to solve compared with
using a state-of-the-art MINLP solver to solve the original problem.

To improve on the standard solver solution time, we suggest a novel application of cover
inequalities as cutting planes for the quadratic formulation and its linearized counterpart. We
are also able to derive stronger extended cover inequalities for our problem. Our inequalities are
novel compared with well studied variants of knapsack cover inequalities especially considering
the fact that the latter are usually derived for (knapsack or other) constraints whose left-hand
side is monotone in the vector of integer variables, whereas in our case the left-hand side of the
constraints is nonmonotone in the vector of binary decision variables. We prove the validity of
our inequalities upon verifying a simple, testable condition. This condition is verified on-the-fly
before appending the inequality as a cutting plane within branch-and-bound. In computational
experiments we show significant improvement in branch-and-bound nodes and running times
when applying our cuts.
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