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Abstract

Introduction: A reduction in homocysteine concentration due to the use of supplemental folic acid is well recognized,
although evidence of the same effect for natural folate sources, such as fruits and vegetables (FV), is lacking. The traditional
statistical analysis approaches do not provide further information. As an alternative, quantile regression allows for the
exploration of the effects of covariates through percentiles of the conditional distribution of the dependent variable.

Objective: To investigate how the associations of FV intake with plasma total homocysteine (tHcy) differ through
percentiles in the distribution using quantile regression.

Materials and Methods: A cross-sectional population-based survey was conducted among 499 residents of Sao Paulo City,
Brazil. The participants provided food intake and fasting blood samples. Fruit and vegetable intake was predicted by
adjusting for day-to-day variation using a proper measurement error model. We performed a quantile regression to verify
the association between tHcy and the predicted FV intake. The predicted values of tHcy for each percentile model were
calculated considering an increase of 200 g in the FV intake for each percentile.

Results: The results showed that tHcy was inversely associated with FV intake when assessed by linear regression whereas,
the association was different when using quantile regression. The relationship with FV consumption was inverse and
significant for almost all percentiles of tHcy. The coefficients increased as the percentile of tHcy increased. A simulated
increase of 200 g in the FV intake could decrease the tHcy levels in the overall percentiles, but the higher percentiles of tHcy
benefited more.

Conclusions: This study confirms that the effect of FV intake on lowering the tHcy levels is dependent on the level of tHcy
using an innovative statistical approach. From a public health point of view, encouraging people to increase FV intake
would benefit people with high levels of tHcy.
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Introduction

The association between high concentrations of homocysteine

and cardiovascular morbidity and mortality is widely recognized

[1,2]. Hyperhomocysteinemia can result from many factors:

genetic (polymorphism), physiological (age and sex), lifestyle

(smoking, drinking alcohol, coffee), drugs and dietary intake [3].

Dietary predictors of plasma total homocysteine levels (tHcy)

include folate, B2, B6 and B12 [4,5,6,7,8].

While reliable evidence exists regarding the reduction in

homocysteine concentration with supplemental folic acid, consis-

tent evidence of the same effect for natural folate sources, such as

fruit and vegetables (FV), is lacking [9,10,11,12]. To date, most

studies have described the overall change in the mean concentra-

tion of tHcy due to intervention, but one, by Ward et al. [13]

described the effect according to tertiles of baseline plasma

homocysteine concentration. In this study,, no significant response

was observed In the lower tertile (mean baseline homocysteine

7.07 mmol/l), suggesting that there is a minimal level of plasma

tHcy below which folic acid has no further lowering effect. In this

sense, trials that found a significant effect of FV intake on Hcy

have, in general, enrolled people with mean Hcy levels higher than

11 mmol/L [13,14,15,16], whereas a non-significant effect was
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observed in studies where Hcy means were lower at baseline

[9,11,12,17].

The traditional statistical analysis approaches to investigate the

effect of an exposure on an outcome, such as ordinary least square

regression, is to compare means, and other parts of the outcome

distribution do not provide further information. As an alternative,

quantile regression allows for an exploration of the effects of

covariates through percentiles of the conditional distribution of the

dependent variable, in this case, tHcy. Thus, we aim to investigate

how the associations of FV intake with tHcy differ across

percentiles, i.e., from lower to higher percentiles, in the

distribution of this outcome using quantile regression.

Materials and Methods

Study population
For the present analysis, a subsample of the population-based

survey ‘‘Healthy Survey- Sao Paulo’’ (HS-SP), a cross-sectional

study of health and living conditions among a representative

sample of individuals living in São Paulo, southeastern Brazil, in

2008, was used. It was defined by eight study domains by age

groups and gender. Two-stage cluster sampling of census tracts

and households was performed. Further information about the

sampling details has been presented in a previously published

paper [18]. The HS-SP dataset contained a total of 3271

individuals aged less than 1 year and older. Of those, 2086

women and men were aged 20 years and older. For the present

study, we invited all individuals older than 20 years from the HS-

SP sample to answer one 24-hour recall (24HR), food frequency

questionnaire (FFQ) and to have a blood sample collected. Of

these, 499 individuals completed the dietary measurement and

donated a blood sample for biochemical analysis.

Data collection and processing
Information on food intake, demographics, and socioeconomic

variables were obtained using structured questionnaires during

household interviews. A multiple-pass 24 h recall (24HR) was

administered in the household by trained interviewers. This

method differs from the traditional 24HR because the interviewer

uses three distinct steps to collect information about a participant’s

food intake [19]. The sampling days for all participants covered all

days of the week. Foods reported in each 24HR were critically

reviewed to identify any failures in reporting related to the

descriptions of the food consumed or to food preparation

techniques, including their apportioning and quantification. The

dietetic data were analyzed using Nutrition Data System for

Research software version 2007 (Nutrition Coordinating Center,

University of Minnesota, Minneapolis, MN, USA). In addition, a

food frequency questionnaire (FFQ) was collected aiming for use

to as covariate in a statistical model to correct estimates by day-

today variation in dietary intake [20].

Blood samples were obtained by venipuncture after a 12 h

overnight fast and immediately centrifuged, aliquoted and frozen

until analysis in a freezer at 280uC. Serum folate and vitamin B12

were assayed using the Elecsys 2010 Rack Version (Roche,

Switzerland) automatic electrochemiluminescence immunoassay

system with Folate II and Vitamin B12 commercial kits (Elecsys

and cobas analyzers, Roche Diagnostics) [21,22]. Serum vitamin

B6 levels were analyzed by an ImmunDiagnostik AG HPLC-

Analytik system using high performance liquid chromatography

(HPLC) with fluorometric detection [23]. Plasma total homocys-

teine (tHcy) levels were measured by the Immulite 2000 (Siemens,

Germany) chemiluminescence Immunoassay system [24]. DNA

was isolated from peripherical leukocytes and the genotypes for

C677T and A1298C were determined using an allele-specific

polymerase chain reaction [25,26].

Statistical analysis
Measurement error in dietary intake, including day-to-day

variation, leads to the attenuation of regression coefficients and the

loss of statistical power needed to detect associations [25]. A

regression calibration as described in Kipnis et al. [20] was

performed to adjust the reported intake for the within-person

variation and predict usual dietary intake given the same set of

covariates included in the tHcy-FV intake model. To enable this

model to estimate the within-person variance, a second 24HR was

administered in a random subsample (48%). The predicted usual

dietary intake was then used as an explanatory variable in the

tHcy-FV intake model to correct the regression coefficients. To

improve the precision of the regression coefficients we included the

frequency of FV consumption from the FFQ as a covariate [20].

We additionally performed a multiple linear regression using the

Ordinary Least Squares (OLS) estimator to provide a basis for

comparison with the quantile regression. In this model, tHcy was

the dependent variable and the predicted FV intake was the

independent variable, adjusted for age, sex, serum vitamin B6 and

B12, predicted energy and folic acid intake, genetic variants

(MTHFR C677T and MTHFR A1298C), smoking, ethylism,

household per capita income, and an interaction between age and

predicted FV intake. Further, we verified the association between

tHcy and predicted FV intake using quantile regression. The set of

variables was the same as those used in the OLS model described

above. The coefficients were estimated for each 5 percentile from

5th to 95th, i.e., 5th, 10th, 15th,…, 90th, 95th of the dependent

variable. The 95% confidence intervals were derived from

standard errors generated from 200 bootstrap replications. The

coefficients for each percentile were plotted and were considered

to be statistically significant if their 95% CI did not cross the

abscissa axis. A horizontal dashed line in the graphs indicates the

OLS coefficient, and the shaded area represents its 95% CI.

Quantile regression was performed in the SAS version 9.3 (SAS

Corp, Cary, NC). Additionally, we plotted a graph with the

predicted distribution of plasma tHcy that would be reached if

individuals increased their usual FV intake by 200 g. This value is

not a cut-off or a recommended amount for intake, but was used as

an example of how a feasible increase in intake might affect plasma

tHcy. We depart from the premise (based on our results) that

increasing FV intake would reduce tHcy in different levels,

according to the baseline level of tHcy. In this sense, the value

showed in this figure is how a hypothetical increase in the mean

FV intake in the population (e.g., increasing 200 g) would affect

the percentiles of tHcy.

The study protocol was reviewed and approved by the Ethics

Committee at the School of Public Health, University of Sao Paulo

(Approval Number: #2001). All participants were enrolled in the

study after providing free and written informed consent forms

signed by themselves or by their guardians, when younger than 18

years.

Results

A total of 499 participants are including in the study sample,

and women accounted for 63% of the population. The average

age was 55 (SD = 17) years, and 44% reported drinking alcohol.

Nutritional status based on body mass index classification showed

that 34% were overweight and 24% were obese. The mean tHcy

level was 10.43 (SD = 4.35) mmol/L in the total population. For

the MTHFR gene, 48% of participants had a 677 CRT mutation,
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41% were CT (heterozygous) and 10% were TT (homozygous),

whereas 56% presented with a 1298 ARC mutation, 36% were

AC (heterozygous) and 6% were CC (homozygous).

Table 1 shows the overall means of the sample characteristics,

such as diet (energy intake, FV intake, folate, methionine, betaine

and choline) and other biochemical measurements (hcy, folate, B6

and B12), according to the deciles of tHcy. We can see that, as

expected, the higher the tHcy, the higher the serum folate and

vitamin B6; and the opposite happens to vitamin B12. However,

mean dietary intake of FV, folic acid, food folate and DFE keep

relatively stable through deciles of tHcy, which apparently means

no or small association with tHcy.

Figure 1 shows the quantile regression coefficients (solid line)

with their 95% CI for the relationship between tHcy and FV

intake. The levels of tHcy were inversely associated with FV intake

when analyzed with linear regression, whereas the association

occurred in a different way when quantile regression was

performed. The relationship with FV consumption was inverse

and significant for almost all of percentiles of plasma tHcy

concentration. The coefficients were higher as the percentile of

tHcy increased. For example, the quantile regression coefficient at

the 85th percentile was three times the coefficient in the 20th

percentile (20.035 and 20.01 respectively). It is noticeable that in

the linear regression, the estimated coefficient for this relationship

was 20.025 95% CI (20.011; 20.039) for the entire population

regardless of the individual plasma tHcy concentration values.

Figure 2 shows the distribution of observed plasma tHcy

(marked as ‘‘x’’) and the predicted plasma tHcy (black circle) for

a simulated increase of 200 g in FV intake. In spite of the overall

decrease in the tHcy, those in the higher percentiles of tHcy would

benefit more, as seen by the different lengths of the dashed vertical

line in each percentile of tHcy.

Discussion

Using a quantile regression approach, the effect of FV intake on

plasma tHcy was found not to be equal throughout the distribution

of tHcy. In the classical OLS approach to test this association,

tHcy is expected to change as a linear function of FV intake. This

means that the predicted mean and all percentiles of plasma tHcy

would experience a shifting of the distribution in one direction,

i.e., a change by the same coefficient. On the contrary, different

coefficients were found throughout the distribution, which implies

that plasma tHcy reduction by increasing FV intake will be greater

in the highest percentiles.

The metabolism of homocysteine involves pathways that

maintain an internal balance between homocysteine production,

i.e., transmethylation, and the removal process, i.e., remethylation

and transsulfuration, and depends on several cofactors such as

methionine, B vitamins, including folate, B12, B6 and B2, betaine,

and choline [27,28]. The prevalence of inadequate folate intake

has dropped since the adoption of the mandatory fortification of

flour with folic acid in Brazil [29], but, at the same time, the load

of methionine in this population is supposed to be high, due to the

high intake of meat [30] and beans [31]. In this situation,

homocysteinemia may arise from impaired methionine metabo-

lism, and, consequently, more folate, B12 and betaine are needed

to remethylation Hcy back to methionine [3].

Furthermore, an expressive number of variations of the genes

regulating the enzymes that are involved in this metabolism have

Figure 1. Quantile regression coefficients for fruit and vegetable intake on percentiles of plasma total homocysteine. The solid line
indicates the quantile regression coefficients for FV intake on percentiles of plasma total homocysteine. Shaded area represents the 95% confidence
interval for the quantile regression coefficients with their 95% CI for the relationship of tHcy and FV intake.
doi:10.1371/journal.pone.0111619.g001
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been identified, specifically, mutations of the MTHFR gene [32].

Individuals with the C677T mutation of the MTHFR gene, the

TT genotype, usually have a higher level of tHcy than those with

the CC genotype [33], but it depends on the folate [34] and B2

intake [35]. In our study, conducted in a healthy population, the

intake of other B vitamins and mutations in the MTHFR gene

were taken into account, so it is not probable that the deficiency of

B vitamins or impaired enzyme production could explain the

results.

Considering the transmethylation demand due to the methio-

nine load, and the high intake of folic acid from mandatory

fortification and adequate status of other B vitamins [29,30,31],

the possible mechanism underlying the reduction effects of FV

intake below the 75th percentile could be that the homocysteine

metabolism is working well, but, above this level, folate acts

indirectly to lower homocysteine levels and insures optimal

functioning of the remethylation pathway. However, it is known

that high oral doses of folic acid can bypass the normal folate

absorption mechanism [36]. In contrast to natural food folates,

folic acid, i.e., the fully oxidized and synthetic form of the vitamin

folate used in fortified foods and supplements, need to be

converted to the reduced physiological folates that are utilized

by the cells [37]. Additionally, in populations with access to food

fortified with folic acid, the prevalence of inadequate intake of this

vitamin decreased, but the main sources of folate intake shifted

from natural sources, e.g. vegetables, fruit and beans to the

fortified foods that provide the synthetic form of folate [6,38]. In

this sense, an extra supply of folate from FV intake would benefit

the remethylation pathway when the individuals present with high

tHcy. Clearly, more controlled studies are needed to investigate

the differences between the role of natural food folate and folic

acid in the remethylation pathway, and their association them with

a decrease in tHcy.

In this study we performed a quantile regression, an approach

that can be particularly suitable for epidemiologists, as scientific

interest often focuses on persons who have high or low – rather

than average – degrees of response. It is particularly important

when assessing a risk factor or biomarker that does not have a

linear relationship with disease or mortality. From a public health

and nutrition policy perspective, particular parts of the outcome

distribution are likely to be of more interest than others, e.g.,

instead of focusing on the mean of the dependent variable,

investigators could explore characteristics (individual, social,

environmental) that are associated with this variable, which are

of concern once they are linked to chronic diseases. These

associations are subject to exploration even when the mean of the

dependent variable is not significantly associated with a set of

covariates [39,40].

Our results should to be interpreted with some considerations.

Although the coefficients have been corrected by regression

calibration, this adjustment may have not been enough to remove

all of the effect of the within-person variance. It is recognized that

within-person variance in the dietary intake potentially attenuates

regression coefficients, resulting in the underestimation of the

identified coefficients. Additionally, statistical power to detect

association is expected to be only partially restored after this

correction. However, it is clear that this method results in a better

estimate than that using either one or the average of a few

collection days of 24 hr for each person in the study [20].

Conversely, we included all of the important variables that may

Figure 2. Predicted values of plasma total homocysteine for each percentile model. The prediction was based on the corresponding
quantile regression model considering an increase of 200 g in the fruit and vegetable intake for each percentile. The symbols X are the baseline
values of tHcy for each percentile of tHcy, and the circles are the predicted reduction for each percentile of tHcy.
doi:10.1371/journal.pone.0111619.g002
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alter plasma Hcy, such as folate and other relevant nutrients (e.g.,
B12, B6, niacin, riboflavin, betaine and choline), genetics

variations, sex, ethnicity/race, and age, in this model, suggesting

the potential control of almost all factors involved in Hcy

metabolism. Moreover, that the fact that people with higher

intakes of FV usually are ‘‘heath conscientious’’ and tend to adopt

a healthy life style, clustering with other health related factors that

may affect Hcy levels that are not accounted for in the analysis,

should not be ruled out.

This study is an exploratory hypothesis-generating investigation.

Therefore, further trials studies may be reasonable to test the

hypothesis identified and to elucidate the biological effect.

However, this is a particular issue for trials that aim to show the

association between FV intake and tHcy concentration. Many

trials that fail to find a negative association between tHcy and

dietary factors will not be considered ineffective if they are able to

demonstrate the association in the highest values of tHcy, which

are associated with cardiovascular outcomes.

The health benefits of eating fruit and vegetables are well

established in the scientific society. These foods are associated with

a reduced risk of coronary heart disease, several types of cancer,

and some other chronic diseases [41]. Moreover, it has been

suggested that a high homocysteine level is an independent

predictor of cardiovascular disease [1]. In summary, we demon-

strate the use of an innovative statistical approach to show that

effect of FV intake on reducing tHcy is dependent on the level of

plasma tHcy. From a public health point of view, encouraging

people to increase FV intake would benefit people with high levels

of tHcy.
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