
Self-trapped leaky waves in lattices: discrete and 
Bragg soleakons 

Maxim Kozlov,* Ofer Kfir, and Oren Cohen 
Solid state institute and physics department, Technion -Israel Institute of Technology, Haifa, 32000, Israel 

*kozlov@tx.technion.ac.il 

Abstract: We propose lattice soleakons: self-trapped waves that self-
consistently populate slowly-attenuating leaky modes of their self-induced 
defects in periodic potentials. Two types, discrete and Bragg, lattice 
soleakons are predicted. Discrete soleakons that are supported by 
combination of self-focusing and self-defocusing nonlinearities propagate 
robustly for long propagation distances. They eventually abruptly 
disintegrate because they emit power to infinity at an increasing pace. In 
contrast, Bragg soleakons self-trap by only self-focusing nonlinearity. Also, 
they do not disintegrate because they emit power at a decreasing rate. 
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1. Introduction 

Self-trapped states in periodic systems (lattices) are ubiquitous in nature and play a 
fundamental role in many branches of science, such as solid state physics (localized modes in 
crystals and conducting polymer chains) [1–3], biology (energy transfer in protein α-helices) 
[4], nonlinear optics (self-trapped beams and pulses of light in optical lattices) [5–10], 
mechanics (energy localization in oscillator arrays) [11, 12] and quantum mechanics (self-
confined excitations in Josephson junction arrays and localized atomic Bose-Einstein 
condensates) [13–15]. Two types of self-trapped lattice states have been investigated: lattice 
solitons and lattice breathers. During evolution, the shape of lattice solitons is preserved while 
it oscillates in lattice breathers. Still, the wave-packets of both lattice solitons and lattice 
breathers exhibit exponential decay in the trapped directions. As a result, coherent 
interactions between lattice solitons or breathers are fundamentally short-range. 

Self-trapped lattice waves can also be divided according to the location of their energies 
(or propagation constants) in the band structure. The linear modes of lattices are Floquet-
Bloch waves, with their spectra divided into bands that are separated by gaps in which 
propagating modes do not exist [16]. The eigenvalues of a self-trapped lattice state can reside 
in the semi-infinite gap, in which case it is often termed discrete soliton [2, 4, 6] or discrete 
breather [1, 3, 13], or in a gap between two bands, hence termed gap [5, 8, 15] or Bragg 
soliton [7]. Notably, discrete and gap solitons often exhibit different properties because 
discrete solitons are trapped through total internal reflections whereas gap solitons are 
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localized by Bragg reflections [10]. A prime example for a system in which self-localized 
lattice waves have been investigated experimentally is optical nonlinear waveguide arrays 
[17–24]. Discrete solitons [17–22, 24], discrete breathers [25], gap solitons [23, 24] and gap 
breathers [9], as well as more complicated structures such as vector lattice solitons [26, 27] 
and incoherent lattice solitons [28, 29], have been explored in one and two dimensional arrays 
of waveguides. 

Lattice solitons and lattice breathers have their counterparts in nonlinear homogeneous 
media. In homogeneous media, however, another type of self-localized particle-like waves 
was recently proposed: self-trapped leaky waves: soleakons [30]. A soleakon induces a 
waveguide through the nonlinearity and populates its leaky mode self-consistently. A 
numerical example of one-dimensional soleakons in a homogeneous medium was 
demonstrated in Ref. [30]. These soleakons display stable propagation, largely maintaining 
their intensity profiles for very long propagation distances (orders of magnitude larger than 
their diffraction lengths). They eventually disintegrate when their localized power decreases 
to a critical level. It was also shown that soleakons can exhibit coherent and resonance 
interaction with another faraway soleakon or with the continuum radiation – properties that 
do not exist in solitons and breathers. In that paper, the soleakon beam induced a double-
barrier W structure waveguide which is known to support slowly attenuating leaky modes 
[31]. The W-shape waveguide was self-induced by combination of nonlocal self-defocusing 
and local self-focusing nonlinearities. This combination can be realized in optics for example 
by using nonlocal thermal or molecular reorientational and simultaneously Kerr nonlinearities 
[32–34]. Beyond optics, Bose Einstein condensate can display simultaneous nonlocal 
nonlinearity through dipole-dipole interaction and local self-focusing by boson-boson 
scattering [35, 36]. Still, the requirement for a proper superposition of wide negative and 
narrow positive nonlinearities is a major restricting factor in the experimental obtainability 
and impact of soleakons. 

Here, we propose and demonstrate numerically two-dimensional soleakons that propagate 
in arrays of slab wave-guides. Two types of lattice soleakons are predicted: discrete soleakons 
and Bragg soleakons. Discrete soleakons are supported by combination of nonlocal 
defocusing and local focusing nonlinearities that jointly induce a ring-barrier wave-guide 
structure. This waveguide gives rise to slowly-decaying leaky modes that reside within the 
first band of the lattice transmission spectra. The leakage rate of discrete soleakons increases 
during propagation. Consequently, they eventually disintegrate abruptly, emitting all their 
power to delocalized radiation. The predicted Bragg soleakons are supported by local self-
focusing nonlinearity only. This means that Bragg soleakons are much more universal than 
discrete soleakons and soleakons in homogeneous media that require combination of negative 
nonlocal and positive local nonlinearities. The leakage rate of Bragg soleakons decreases 
during propagation, hence, Bragg soleakons continue to propagate without disintegration. 

The paper is organized as follows. The concept of leaky modes and soleakons is discussed 
in section 2. The linear transmission spectrum of array of slab wave-guides is analyzed in 
section 3. The model and methods that we used to find lattice soleakons are presented in 
section 4. The properties of the discrete and Bragg soleakons are described in section 5. 
Finally, in section 6 we conclude and suggest directions for future studies. 

2. Leaky modes and soleakons 

Before moving to lattice soleakons, it is instructive to explain the concept of leaky modes [37] 
and soleakons in homogeneous media [30]. A leaky mode is localized in the vicinity of the 
waveguide, exhibiting monotonic decay for a finite distance in a transverse direction, and is 
oscillatory everywhere beyond that finite distance. During propagation, the localized power in 
a leaky mode gradually leaks out to the continuum at a constant rate that is given by twice the 
imaginary part of the mode complex propagation constant. This attenuation rate can be very 
small, yielding slowly-attenuating leaky modes. Interestingly, the real part of the propagation 
constant resides within a band of radiation modes. As such, leaky mode is resonant with 
corresponding radiation modes which comprise its spatial spectrum. In order to excite a leaky 
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mode, one has to excite properly its localized section, which resembles a bound state. 
Because a leaky mode is not a true eigen-mode, the radiation modes comprising it (‘in-
resonance’ radiation modes) dephase, hence radiation is constantly emitted away. 

A soleakon induces a waveguide through the nonlinearity and populates its slowly-
attenuating leaky mode self-consistently and robustly. Soleakons and their self-induced 
waveguides are non-stationary because they continuously leak power to the continuum. Self-
consistency of soleakon means that during propagation, the localized section of the soleakon 
beam self-adjusts in such a way that it always fully populates a slowly-attenuating leaky 
mode of its self-induced waveguide. Importantly, a soleakon should satisfy the above self-
consistency condition for propagation distance that is much larger than the diffraction length 
of the beam under linear propagation condition, LC. Otherwise, the beam will not exhibit 
particle-like features such as collisions and therefore cannot be called a soleakon. Like 
solitons and breathers, soleakons should be stable to noise. Here we explore soleakons in 
periodic potential: lattice soleakons. 

It is worth mentioning that soleakons share some properties with embedded solitons [38–
41]: the propagation constants of both entities reside in the continuum spectra of radiation 
modes. However embedded solitons remain orthogonal to the ‘in-resonance’ radiation modes 
during propagation and therefore can be viewed as self-induced bound states in the 
continuum. In contrast with the embedded solitons, soleakons are self-induced leaky modes 
that are not orthogonal to the resonant radiation modes and therefore radiate their power to 
infinity, slowly attenuating during the propagation. 

3. Transmission spectrum 

All lattice soleakons are nonlinear waves that are trapped by their self-induced defects in 
periodic potentials. They are universal entities that can be excited in many nonlinear lattices. 
For concreteness, we analyze optical lattice soleakons in waveguide arrays and use the 
corresponding terminology. Specifically, we assume a bulk media with linear refractive index 
change ( ) ( )2

0, , cos ,n x y z n x DπΔ = Δ  where 3
0 3 10n −Δ = ×  and 3D mμ=  are the amplitude 

and periodicity of an array of slab sinusoidal waveguides, respectively [Fig. 1(a)].  The linear 
modes of this structure are given by a product between a one-dimensional Flouqet-Bloch 
wave in x-axis and a plane wave in y-axis. 

 

Fig. 1. (a) Refractive index change in the array of slab waveguides. (b) Band structure of the 
array of slab waveguides. Propagation constants of linear radiation modes of the first (solid 
blue curves) and second (dash brown curves) band labeled by corresponding values 

of yk D π . The brown region displays the gap for modes with 0yk = . Radiation modes with 

0yk ≠  reside in this gap, forming a semi-infinite band. 
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These propagating modes are completely delocalized in both x and y directions. Within 

the paraxial approximation, the propagation constant of the mode, ( ), ,q
Bloch x yk kβ  depends on 

the Bloch wave-number, ,xk  the band number, q and the plane wave wave-number, :yk  

 ( ) ( ) 2
0, ,0 2 ,q q

Bloch x y Bloch x yk k k k kβ β= −  (1) 

where 0 02k nπ λ=   is wave-number, 0.5 mλ μ=  is the wave-length of light in vacuum and 

0 2.2n =  is the homogeneous index. Figure 1(b) shows two families of curves representing 

the propagation constants of the first 1
Blochβ  (solid blue curves) and second 2

Blochβ  (dash brown 

curves) bands versus xk  for the modes with several yk ’s. For a constant ,yk  the transmission 

spectra of the waveguide array is divided into bands that are separated by gaps in which 
propagating modes do not exist. Such a gap for modes with 0yk =  is shown by the brown 

region in Fig. 1(b). However, as shown in Fig. 1(b), these gaps are full with propagating 
modes with other yk ’s. In other words, the transmission spectrum of our structure consists of 

a semi-infinite band that is full with propagation waves and a semi-infinite gap above it. 

4. Model and methods 

Next we consider propagation of a beam in a nonlinear array of slab wave-guides. Such a 
nonlinear array of slab waveguides can, for example, be optically induced in photorefractives 
[18, 19] or by periodic voltage biasing in liquid crystals [22]. The complex amplitude, 

( ), , ,x y zψ  of a paraxial beam that propagates in this medium is described by the (2 + 1)D 

Nonlinear Schrödinger equation: 

 [ ]2 0

0 0

1
( ) 0,

2

k
i n n

z k n

ψ ψ δ ψ ψ⊥
∂ + ∇ + Δ + =
∂

 (2) 

where ( )nδ ψ is the nonlinear index change. An approximate solution of Eq. (2) that 

corresponds to soleakon beam can be written as ( ) ( )( ) , , exp ( ) ,S A z u x y z i z zψ β=  where 

( )A z is the peak amplitude, u is the normalized (maximum of u is 1 at every z) slowly-

attenuating leaky mode of the structure ( ) ,n n AuδΔ +  and 2R iβ β γ= +  is the complex 

propagation constant where ( )R zβ  and ( ) 0zγ >  are real functions with the second 

corresponding to the leakage rate of the soleakon localized section. Importantly, the beam can 
be called a soleakon only if it populates slowly attenuating leaky-modes during its 
propagation such that ( )1 CL zγ×  for any z. We now discuss the procedure for finding 

(lattice) soleakons and verify that they (approximately) solve Eq. (2) [30]. We first calculate 
the soleakon wave-packet and propagation constant at 0z =  with a given initial peak 

amplitude ( )0A . For this purpose, we insert ( ) ( )( , , 0) (0) , ,0 exp (0)x y z A u x y i zψ β= =  into 

Eq. (2) and get the following eigen-function problem: 

 

[ ]{ }

2

0

0

0

1
(0) ( 0, , ) ( 0, , )

2

(0) ( 0, , ) ( 0, , ),

u z x y u z x y
k

k
n n A u z x y u z x y

n

β

δ

⊥= = ∇ =

+ Δ + = =
 (3) 

A slowly-attenuating leaky-modes of Eq. (3) [i.e. ( ), , 0u x y z = and ( )0β ] are found 

numerically by using the self-consistency method for self-induced leaky modes [30]. The 
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calculated solution corresponds to a leaky mode of the lattice with the fixed defect: 

0 ( , ) ( (0) ( 0, , )).n n n x y n A u z x yδ= + Δ + =  Having found the initial beam, ( , , 0),x y zψ =  we 
calculate its nonlinear evolution using two methods that we call “exact” and “adiabatic”. In 
the exact method, we integrated Eq. (2) using split-step Fourier beam propagation method 
[42]. In the adiabatic method, we integrated Eq. (2) in small steps ( , 0,1,2...mz m z m= × Δ = ), 
assuming that the beam indeed forms a soleakon, i.e. it self-adjusts such that it always fully 
populates the slowly-attenuating leaky mode of the self-induced defect. Explicitly, the peak 
amplitude at 1m +  step is given by [ ]1( ) ( ) exp ( ) / 2 ,m m mA z A z z zγ+ = − Δ  1( , , )mu x y z +  and 

1( )mzβ + are calculated by solving the eigen-function problem [Eq. (3) with ( , ,0)u x y , (0)A  

and (0)β replaced by 1( , , ),mu x y z + 1( )mA z +  and 1( ),mzβ +  respectively]. If the solutions of the 
exact and adiabatic methods approximately match over propagation distance that is much 
larger than the diffraction length then it means that the beam is indeed a soleakon. This 
procedure, which practically follows the definition of (lattice) soleakons, becomes very 
demanding in terms of computational time for the very large propagation distances that are 
presented below. In these cases, we used the equation for evolution of peak intensity of the 
beam in adiabatic approximation 

 ( ) ( ),dA dz A A zγ= −  (4) 

where the momentary leakage rates for each waveguide realization, ( ),Aγ  were calculated by 

finding M leaky-mode solutions of Eq. (3) with different peak amplitudes , 1... .mA m M=  

Function ( )Aγ was evaluated by fitting Mth order polynomial to the M values of leakage 

rates ( ).mAγ  Then, ( )A z was found by numerically solving Eq. (4) with ( )Aγ and (0)A equal 
to the peak intensity of initial beam in the exact beam propagation method. The peak intensity 
found by such method was compared to the one from the exact beam propagation method 
over propagation distance that is much larger than the diffraction length. 

5. Discrete and Bragg soleakons 

Next we present our results for lattice soleakons, starting with discrete soleakons. In contrast 
to discrete solitons that reside in the semi-infinite gap, propagation constant of discrete 
soleakons must be “shifted” downward into the first band. This condition can be obtained by 
combination of nonlocal self-defocusing and localized self-focusing [30]. Here, we assume 
the following nonlinearity 

( ) [ ] ( ){ }22 2 2 2 2 2

1 21 , expn n n d d x yδ δ ψ ς ψ δ σ η ξ ψ ξ η η ξ σ
+∞ +∞

−∞ −∞
= + − − − − +    , where 

8 2
1 6 10n cm Wδ −= ×  and 6 2

2 1.2 10n cm Wδ −= ×  are strengths of the saturable self-focusing 

and nonlocal defocusing nonlinearities, respectively, 5 25 10 cm Wς −= ×  is saturation 

coefficient and 30 mσ μ=  is nonlocality range. We start with determining the initial peak 

intensity 
2 4 2(0) 4 10A W cm= × and find the initial beam by solving Eq. (3) [its intensity is 

shown in Fig. 2(a)]. The power of the localized component ,localizedP  which we define by 

( ) ( )2 2 2
, , 0.01 ,localizedP dx dy x y H x y Aψ ψ

+∞ +∞

−∞ −∞
 = −
    where H(x) is Heaviside step 

function, is 5.6mW. Next, we propagated the initial beam in a linear lattice by solving Eq. (2) 
with 0nδ = from which we estimate the diffraction length to be 0.016CL cm=  [Fig. 2(b) 
shows the intensity at z = 0.032cm = 2 × LC]. We then calculated the nonlinear evolution of 
the initial beam using the ‘exact’ method. The intensity patterns at z = 107cm ( 6700 CL≈ × ) 
and 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

 

Fig. 2. (a) Intensity profile of discrete soleakon at z = 0 (logarithmic scale); (b) Intensity 
profile of beam in a linear lattice ( 0nδ = ) at z = 0.032cm = 2 × LC; Intensity profiles of 
soleakon (logarithmic scale) at z = 107cm (c) and at z = 115cm (d); (e) localized power versus 
propagation distance obtained by adiabatic (blue dashed curve) and exact (red solid curve) 
methods and for linear defect (black dash-dot curve). The input beam in the exact method 
corresponded to 1.0125 times the input beam in the adiabatic method; (f) Nonlinear defect vs. 
y in the x = 0 cross section at z = 0 (red solid curve) and z = 115cm (blue dashed curve); (g) 
Soleakon decay rate versus localized power; (h) Propagation constant of the discrete soleakon 
(red cross) on the background of linear band structure. The propagation constant of the 
soleakon is shifted from the upper edge of the first band downward into the first band; (i) 
Fourier power spectrum of the discrete soleakon wave-function (logarithmic scale). Narrow 
rings around the humps correspond to the radiation part of the soleakon; (j) Ring-barrier wave-
guide induced by local focusing and nonlocal defocusing nonlinearities. 
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z = 115cm ( 7200 CL≈ × ) are shown in Figs. 2(c) and 2(d), respectively, showing that while 
the beam somewhat broadened, it stayed localized for propagation distance that is many times 
larger than the diffraction length. We then calculated the evolution of the initial beam using 
the adiabatic method and verify that it matches very well to the evolution using the exact 
method. Thus, we conclude that the beam is indeed a soleakon. This matching is displayed in 
Fig. 2(e) that shows the calculated localized power using the exact and adiabatic methods. 
Figure 2(e) also shows the localized power when the initial beam propagates linearly in a 
fixed defect that corresponds to the self-induced defect at z = 0 [its cross section is shown in 
Fig. 2(f)]. As shown, the soleakon beam attenuates faster than in the linear case. Eventually it 
disintegrates abruptly emitting all its localized power to the continuum. This type of dynamics 
was also observed for soleakons in homogeneous media [30]. It results from the fact that the 
leakage rate of this leaky mode increases with decreasing localized power [Fig. 2(g)] because 
the defect gets shallower and narrower [Fig. 2(f)]. Figures 2(h)-2(j) display properties of the 
self-induced leaky modes (the soleakon at z = 115cm). The real part of the soleakon 
propagation constant [red cross in Fig. 2(h)] resides within the first band. The beam power 
spectrum [Fig. 2(i)] consists of intense humps that correspond to the localized section and 
thin lines around them that are associated with the conical radiation. Finally, Fig. 2(j) shows 
the induced ring-barrier waveguide structure which is the 2D version of the 1D double-barrier 
waveguide which is known to support slowly-attenuating leaky modes. 

The discrete soleakons in the array of slab wave-guides presented above are similar to the 
soleakons in homogeneous media [30] in that they both require a combination of nonlocal 
defocusing with local focusing nonlinearities and decay at increasing rate during propagation. 
Next, we show Bragg soleakons that exhibit properties that are profoundly different from 
those of the homogeneous and discrete soleakons. Bragg soleakons do not require the 
combination of nonlocal defocusing with local focusing nonlinearities and can be realized in 
array of slab waveguides with only saturable self-focusing. Propagation constants of these 
soleakons are shifted from the upper edge of the second band upward into the semi-infinite 
continuum of the first band. They radiate power into specific angles and decay at a decreasing 
rate and therefore do not disintegrate. 

To find Bragg soleakons we assumed the following nonlinearity 

( )2 2

1 1 ,n nδ δ ψ ς ψ= +  where 7 2
1 10n cm Wδ −= is strength of saturable self-focusing 

nonlinearity and 5 28 10 cm Wς −= ×  is saturation coefficient. We start with determining the 

initial peak intensity 
2 4 2(0) 2.8 10A W cm= ×  and find the initial beam as localized eigen-

function of Eq. (3) whose eigen-value is shifted from the upper edge of the second band 
upward into the first band. The initial intensity profile of the Bragg soleakon is presented in 
Fig. 3(a). The power of the localized component (defined above) is 10 .localizedP mW=  The 
diffraction length was estimated by linear propagation of initial beam which was modeled by 
solving Eq. (2) with 0nδ =  [Fig. 3(b) shows the intensity at z = 0.05cm = 2 × LC]. The 
nonlinear propagation of the beam was than evaluated using the ‘exact’ method. The intensity 
patterns at z = 8cm ( 320 CL≈ × ) and z = 50cm ( 2000 CL≈ × ) [Figs. 3(c) and 3(d), 
respectively] show that, similarly to the Discrete soleakon, Bragg soleakon broadens but stays 
localized for propagation distance that is many times larger than the diffraction length.  
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Fig. 3. (a) Intensity profile of Bragg soleakon at z = 0 (logarithmic scale); (b) Intensity profile 
of beam in a linear lattice ( 0nδ = ) at z = 0.05cm = 2 × LC; Intensity profiles of soleakon 
(logarithmic scale) at z = 8 (c) and at z = 50cm (d); (e) localized power versus propagation 
distance obtained by adiabatic (blue dashed curve) and exact (red solid curve) methods and for 
linear defect (black dash-dot curve). (f) Soleakon decay rate versus localized power; (g) 
Propagation constant of the Bragg soleakon (red cross) on the background of linear band 
structure. The propagation constant of the soleakon is shifted from the upper edge of the 
second band upward into the first band; (h) Fourier power spectrum of the Bragg soleakon 
wave-function (logarithmic scale). Narrow lines connecting hot-spots correspond to the 
radiation part of the soleakon. Normals (black dashed lines) point in the direction of radiation; 

(i) Soleakon widths ( ) 2 22 2

max
,x dx dy x x yψ ψ

+∞ +∞

−∞ −∞
=    (blue solid curve) and 

( ) 2 22 2

max
,y dx dy y x yψ ψ

+∞ +∞

−∞ −∞
=    (red dashed curve) versus localized power; (j) 

Fourier power spectrum of the soleakon wave-function vs. yk  at /xk dπ=  and z = 0 (red 

solid curve) and z = 50cm (blue dashed curve). Arrows point to the minimal values of resonant 

plane wave-numbers yRk . 
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We then calculated the evolution of the initial beam using the adiabatic method. Figure 3(e) 
shows the localized power vs. the propagation distance obtained by exact (blue dashed curve) 
and adiabatic (red solid curve) methods. The fine matching between two methods confirms 
that the beam is indeed a soleakon. Black dash-dot curve in Fig. 3(e) represents the localized 
power when the initial beam propagates linearly in a fixed defect that corresponds to the self-
induced defect at z = 0. As shown the Bragg soleakon attenuates slower than the linear case 
and continues to propagate without disintegration. This results from the fact that the leakage 
rate of the Bragg soleakon decreases with localized power [Fig. 3(f)]. Figures 3(g)-3(h) 
display properties of the self-induced leaky modes corresponding to Bragg soleakon at z = 0. 
Real part of its propagation constant ( )Re Soleakonβ [red cross in Fig. 3(g)] resides in the region 

filled by radiation modes from the first band with nonzero yk . Its power spectrum [Fig. 3(h)] 

consists of intense humps that correspond to the localized section and thin lines between 
them, which correspond to the radiation part of the soleakon. The two most intense humps are 
centered around ,xk Dπ= ±  because Bragg soleakon bifurcates from the upper edge of the 
second band and hence is Bragg-matched with the lattice. 

Next, we explain the differences in the radiation patterns of the lattice soleakons (conical 
in all directions in discrete versus bow-tie shaped into specific angles in Bragg soleakons) and 
longitudinal dynamics of their decay rates (increasing in discrete while decreasing in Bragg 
soleakons). Radiation into the narrow region in k space [thin lines in Fig. 2(i) and 3(h)] results 

from the resonance condition between soleakon and radiation modes ( )1 , ,Bloch x yR Rk kβ β=  

where yRk is plane-wave wave-number, of the “in-resonance” radiation modes. Substituting 

Eq. (1) into the this expression, one finds that these lines are given by 

 ( )1
02 , 0 .yR Bloch x y Rk k k kβ β = ± = −   (5) 

The slope of these lines is given by 

 ( ) ( )( )1
0 , 0 .yR Bloch x y xk k k k kβ± ∂ = ∂  (6) 

In discrete soleakons [Fig. 2(i)], this slope changes from 0 [point A in Figs. 2(h) and 2(i)] to 
infinity [point B in Fig. 2(h) and 2(i)]. Therefore the normals to these curves cover 2π  angle. 
The directions of these normals correspond to the directions of the power radiation in real 
space. Thus, discrete soleakons radiate power to all directions. For Bragg soleakons, the real 
part of propagation constant is smaller than propagation constant of first band radiation 

modes with 0yk =  ( )1 , 0Bloch x y Rk kβ β= > [see Fig. 3(g)]. Hence resonance condition [Eq. 

(5)] requires that the plane wave-numbers of the “in-resonance” radiation modes yRk  lie 

outside the band given by ( )1
02 , 0 .yR Bloch x y Rk k k kβ β > = −   Therefore the slope of the 

lines in its power spectrum [Fig. 3(h)], given by Eq. (6), is finite, and the normals to these 
lines cover the specific angles in the upper and lower half planes of the Fourier space as 
shown by black dashed lines in Fig. 3(h). The directions of these normals correspond to the 
directions of the power radiation in real space. Therefore Bragg soleakons radiate power into 
the specific angles, which is reflected by the characteristic bow-tie shape of the radiation 
pattern [Figs. 3(a)-3(d)]. In contrast with the discrete soleakons, Bragg soleakons decay at a 
decreasing rate and continue to propagate without disintegration. This is related to the fact 
that in Bragg soleakons, the spatial width of its localized section increases and its bandwidth 
decreases as a result of the decrease in soleakon localized power [Figs. 3(i) and 3(j)]. It 
follows from the resonance condition [Eq. (5)] that only the tails of its spectrum with 

( )1
02 , 0y Bloch x y Rk k k kβ β > = −   belong to the radiation modes [Fig. 3(j)]. Therefore the 
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band-width decrease results in the reduction of the radiative fraction of its spectrum [blue 
dashed curve in Fig. 3(j)] and hence in the weaker radiation and smaller decay rate of the 
soleakon. 

6. Conclusion 

In conclusions, we predicted and demonstrated numerically lattice soleakons (discrete and 
Bragg): robust self-trapped leaky waves that induce defects in the lattice and populate their 
leaky modes (resonance states) self-consistently. Lattice soleakons exhibit stable propagation, 
largely maintaining their intensity profiles, for very long propagation distances (orders of 
magnitude larger than their diffraction lengths). We anticipate that lattice soleakons will be 
experimentally demonstrated in several physical systems, including optics and Bose Einstein 
condensates. Importantly, the fact that Bragg soleakons are supported by only local self-
focusing nonlinearity significantly extends the range of physical systems in which soleakons 
exist and can be explored experimentally. In this respect, Bragg soleakons are probably more 
universal than discrete soleakons or the homogeneous soleakons of Ref. [30]. We also expect 
that lattice soleakons can exhibit wealth of intrinsic dynamics (e.g. multi-mode vector 
soleakons and incoherent soleakons) and of extrinsic dynamics (e.g. moving and accelerating 
soleakons). The fact that soleakons interact strongly and selectively with radiation modes and 
with other soleakons, that are possibly far away, may give rise to new phenomena and 
applications that do not exist with lattice solitons. 
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