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In this research, at first, natural frequencies of a cracked beam are obtained analytically. Also, the
location and the depth of a crack in the beam are.identified by neural network method, in this study.
This research is applied on a beam with an open edge crack for three different boundary conditions.
For this purpose, firstly, the natural frequencies of the.cracked beam are analytically obtained to get the
examples for training the neural network. Then, inversely, the trained neural network is used for
obtaining the location and depth of the crack. The effect of the numbers of the natural frequencies as
input of the network was evaluated on the prediction accuracy. Results and measure of errors show that
the neural network is a powerful method to determine the location and depth of crack. Also, increasing
the numbers of the natural frequencies causes the prediction accuracy to be increased.
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1. INTRODUCTION

The study of the damage of the structures is an
important prospect to evaluate structural systems in
order to ensure their safety. Some structures such as
large bridges are required to be continuously considered
to detect possible damages (e.g., cracks) to make sure
about the uninterrupted service. Finding out the crack
location and depth has been identified as an “inverse
problem”.  Nowadays, cracks are generally being
detected by non-destructive testing methods (e.g.,
ultrasonic testing, X-ray, etc.). These methods are costly
and time consuming specially for long components such
as railway tracks and pipelines [1]. As a result, the
analytical and numerical methods are being developed
to determine the location and depth of the crack. These
methods make the cost and time to be reduced.

There are two general solutions for finding out the
crack location and depth. The first one is involved with
using of the natural frequencies whereas, other one is
based on the dynamic response (applying the load and
then finding out the crack location and depth,
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afterwards). In most cases, an auxiliary method is
applied with the methods. For the purpose of finding out
the crack location and depth, Taghi et al. have used the
genetic algorithm [2]. Nahvi and Jabbari determined the
location and depth of the crack using finite element
method and have confirmed it by modal test [3]
Nandwana and Maiti have used the natural frequencies
for the same purpose as preceding researches [4]. Zhong
and Oyadiji used stationary wavelet transform to find
out crack location and depth [5]. Rrzos and Aspragathos
performed it by vibration modes [6]. In this research,
crack location and depth is achieved using natural
frequencies and neural network.

A number of methods can be found to model the
cracked section. One of these methods uses the reduced
section modulus of the cracked section as a model [7],
while another one tries to estimate a local flexibility for
cracked sections [8]. Replacing cracked section by a
rotational spring is another method in which shear effect
in bending has been neglected [9-11]. In this research,
the crack is modeled as a rotational spring.

In most previous studies the Euler— Bernoulli theory
has been used, neglecting the effect of shear
deformations. This theory has been applied to the
cracked beams with different boundary conditions. Lele
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and Maiti [12] proposed a new method based on
Timoshenko beam theory considering shear effects. In
that research, the characteristic equation for the
cantilever cracked beam is derived. In this research,
Timoshenko beam theory has been used, since the
Euler-Bernouli theory is suitable for height to length
ratio under 0.1.

This study starts with analytical determination of the
natural frequencies of Timoshenko beams including an
open crack. It follows with a brief description of the
Back-propagation neural network. The neural network
will be trained by analytically obtained natural
frequencies, afterwards. In the next step, the trained
neural network is used to obtain the location and depth
of the crack. Examinations of the trained neural network
for different non-trained cases are presented. The effect
of numbers of natural frequencies as input of the
network is evaluated on the prediction accuracy. The
proposed method is general and can be applied to any
structure with any number of cracks. Finally, the
uniqueness of the identification of the depth and
location of the crack by neural network is discussed.

Free and forced vibration analysis of a cracked beam
was performed by Orhan [13] in order to identify the
crack in a cantilever beam. Single- and two-edge cracks
were evaluated. It has been cleared by the results that
the free vibration analysis provides suitable information
relating to the detection of the single and two cracks,
whereas forced vibration can detect only the single
crack condition. However, dynamic response of the
forced vibration describes the changes ‘in the crack
depth and location better than the free vibration, since,
the differences among the natural frequencies
corresponding to a change in the crack depth and
location has a minor effect on the free vibration. An
analytical approach to evaluate the forced vibration
response of the uniform Timoshenko beams with an
arbitrary number of open edge cracks which is excited
by a concentrated moving load is developed by Shafiei
and Khaji [14]. For this purpose, the cracked beam is
modeled using beam segments connected by rotational
springs. These springs are assumed to be massless,
linear elastic with sectional flexibility. An analytical
approach for crack identification procedure in uniform
beams with an open edge crack, based on bending
vibration measurements is developed by Khaji et al.
[15].The cracked beam is modeled as two segments
connected by a rotational massless linear elastic spring
with sectional flexibility. The Timoshenko beam theory
has been used to model each segment of the continuous
beam. Dynamic response of the functionally graded
Timoshenko beams with an open edge crack resting on
an elastic foundation subjected to a transverse load
moving at a constant speed has been studied by Yan et
al. [16]. It is assumed that the material properties follow
an exponential variation through the thickness of the

beam. The cracked beam is modeled as an assembly of
two sub-beams connected through a linear rotational
spring. Free vibration analysis of an elastically
supported cracked beam is investigated by Matbuly et
al. [17]. The beam is made of a functionally graded
material and rested on a Winkler—Pasternak foundation.
The linear spring model is employed to formulate the
problem and method of differential quadrature is
applied to solve the problem. The vibration of non-
uniform rectangular beams in the bending mode with
multiple edge cracks along the beam’s height is
investigated by Mazanoglu and Sabuncu [18]. The
energy based method is used for defining the vibration
of the beam with cracks along its height.

Crack detection in beam structures based on kurtosis
is presented by Hadjileontiadis et al. [19]. The
fundamental vibration mode of the cracked cantilever
beam is analyzed and both the location and size of the
crack are estimated. The location of the crack is
determined by the abrupt changes in the spatial variation
of the analyzed response, while the size of the crack is
related to the estimate of kurtosis. Crack identification
in the beam structures based on wavelet analysis is
presented by Douka et al. [20]. The fundamental
vibration mode of a cracked cantilever beam is analyzed
using continuous wavelet transform and both the
location and size of the crack are estimated. The
position of the crack is located by the sudden change in
the spatial variation of the transformed response. To
estimate the size of the crack, an intensity factor is
defined which relates the size of the crack to the
coefficients of the wavelet transform. A two-step
approach based on the mode shape curvature and
response sensitivity analysis for crack identification in
the beam structures is presented by Lu et al. [21]. The
location of the crack is identified from a modified
difference between the mode shape curvatures of the
cracked and intact beams in the first step. A response
sensitivity based on the model updating method is
utilized to identify the location and depth of the crack
precisely, in the second step. Analytical approach to
investigate natural frequencies and mode shapes of a
stepped beam with an arbitrary number of transverse
cracks and general form of boundary conditions is
presented by Attar [22]. Also, an inverse problem of
determining the location and depth of multiple cracks is
given.

In this work, identification of the depth and location
of the crack in a beam is carried out using neural
network method. For this purpose, at first an analytical
method is presented to obtain natural frequency of the
cracked Timoshenko beam. The obtained data are used
to design a neural network. The location and depth of
cracks for non-learn data of neural network is examined
to show the applicability of the presented method,
finally.
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2. MATHEMATICAL MODEL

Consider an elastic cracked Timoshenko beam of length
L, uniform cross-section area A and moment of inertia I,
with a crack at position of eL as shown in Figure 1. The
crack can be modelled as a massless torsional spring
with stiffness K_.The strain and kinetic energies and
the work of rotational spring with stiffness K, for

Timoshenko beam with open crack can be determined
as follows [23]:
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where w(x,t) is the transverse deflection and v (x,t) is

the slope of the deflection curve due to the bending. E,
G and p indicate the Young’s modulus, the shear

modulus and mass density per unit lenght, respectively.
k represents the shear correction factor and is assumed
to be 5/6.

It is assumed that crack is located at the distance e
from left end of the beam. Dividing beam into two
segments and applying the extended Hamilton principle
to Equations (1) and (2) gives:
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Figure 1. Timoshenko beam with a single-sided open crack.

For continuity of solution at location of the crack, it is
necessary to have:
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Equation (6) gives the differential equations of motion
and boundary conditions for w and y governed on two

i

segments of the beam as follows:
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Introducing the following non-dimensional quantities:
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Substituting the above dimensionless quantities in
Equations (7) and (8) gives:
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Assuming a harmonic solution in the following form:
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in which @ is dimensionless natural frequency.
Obtaining W(&) in terms of X(&) gives:
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The characteristic equation for determining the
eigenvalue of A will be obtained as:
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The cracked section may be modelled as a local
flexibility in order to study the effects of the crack. In
this manner the crack is regarded as a rotational spring.
The discontinuity in the slope of beam at the cracked
section may be implemented as done in ([24]). Equating
the structural bending moment of two sides of the crack
with the bending moment due to crack which is
modelled by rotational stiffness of K, gives:

9 _ g | oM oW
EI—-= KC( 621 6"‘1] (20)

where K, is the rotational stiffness and is given by [24]

as follows:
_ bh*E @1
" 72m ()

In Equation (19), K, is the dimensionless crack

sectional flexibility and depends on the extension of the
crack. The equation of a single-sided open crack may be
written [25] as:

f;(n)=0.6384n" —1.035n° +3.7201n" - 5.1773n°

(22)
+7.553n° = 7.332n7 + 2.4909n®

in which, n is a dimensionless crack-depth ratio with

n=alh.

3. BACK-PROPAGATION NEURAL NETWORK

Back-propagation neural network is a well-established
method to multiple-layer networks and nonlinear
differentiable transfer functions. Input vectors and the
corresponding target vectors are used to train a network.
The trained network should be capable of
approximating a function, also, associate input vectors
with specific output vectors, as well as classifying input
vectors in an appropriate way. Properly trained Back-
propagation networks tend to give reasonable answers
when presented with inputs which have been never
seen. The general structure of this network is shown in
Figure 2.

To simulate the network, a static network (a network
with no delay and no feedback) is required. Also, since
the network needs to be trained with different examples,
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a supervised network is required. It means that the
network needs examples of target which is related to
input (input/target pairs) to understand the ruling
regularity of the network. Back-propagation is a static,
supervised [26] neural network. This network has a
great performance regardless of increasing or decreasing
of the data. There is such datum regarding this study.
For example, in a special crack location, natural
frequencies decrease as the crack depth increases. This
network, also, makes a balance between memorization
and generalization. All these characteristics lead us to
use Back-propagation among different types of neural
networks to find out the location and depth of the crack.

Since the errors are fed backward in the network to
correct the weights and again the input repeats the path
to the output in the network, the term “Back-
propagation” has been used. The amounts of the weights
of the network are supposed to be determined randomly.
In each step, the output is calculated and the weights are
corrected according to their difference with the desired
output. Assume that W is the weight between the input

layer and the hidden one. Therefore:

0

A(xw)=Yxw, 23)

i=

Assuming the output function as sigmoid sgim(x)
=1/(1+¢™) the output of the j" neuron will be as:
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An study on the above equation reveals that any change

in the weights causes the output to be changed. To

achieve the desired output, error function of each

neuron should be calculated as follows:
E;(xw) :(oj (xw)-d, )2 (25)

where Oj is the real output and d; is the desired

output. Therefore, the total error of the network will be
the sum of the error of each neuron. So,

E(X,W;d)ZZEj(X,W,dj) (26)
The relation between error and input, also, between
error and output as well as between error and weights
need to be considered. The purpose is to change the
weights in order to minimize the error function. There
are different methods to achieve this goal. Standard
Back-propagation neural network uses a gradient
descent algorithm. According to the parabolic and
positive behaviour of the error function, it is required to
move along the negative path of the gradient of the
function to achieve the minimum amount of the error.

input wvalues

output values
Figure 2. The general structure of a Back-propagation neural
network with 3 layers.

Therefore, the gradient of the error function with
respect to weights is necessary to be computed. The
weights should be changed in such a way that the error
become minimize. After some simple manipulations, the
change in weights is given by the following formula:
AWﬁZ‘UIE:*2’71(01*‘11)01(‘*01)"1' (27)

ow;;

where 1, is a selective constant to modify the weights.
The above formula is used for modifying the

weights of a network consisting of two layers (input-

output). Supposing a hidden layer, two kinds of weights

are needed to be modified on each step in the Back-
propagation neural network algorithm i.e., weights that

relate the input layer to the hidden one, v, and weights
which relate the hidden layer to output layer, w. Under
this condition, the error depends on both v, and the

weights that relate the hidden layer to the output layer,
w;; . Using the gradient descent algorithm and the same

process, Aij 18:

Av, = 2E
i =~ av, i ox.

i

x0; (1-x) Vik (28)

In a 3 layer network, the input of the output layer is
output of the hidden layer, therefore:

;_ZZZ(OJ“U)OJ(“OJ)% (29)
Some input and output patterns can be easily learned by
single-layer neural networks. However, these single-
layer neural networks cannot learn some relatively
simple patterns, since those are not linearly separable. A
multi-layered network overcomes this limitation, since,
it can create internal features and learn each layer. Each
prior layer learns more abstract features. Each layer
finds patterns in its below layer. Creation of internal
features that are independent of input is the power of the
Back-propagation neural network. The goal and
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motivation for developing the Back-propagation
algorithm is to find out a way to train multi-layered
neural networks such that it can create the appropriate
internal features to allow it to learn any arbitrary
mapping of input to output. It can be proved that a
Back-propagation neural network with more than 3
layers has an efficiency close to a 3-layer network.
Therefore, use of a Back-propagation neural network
with more than three layers does not have remarkable
efficiency rather than a three layer one. On the other
hand, it takes much more time and CPU usage. So, it is
common to use a 3-layer Back-propagation neural
network. Complete discussion can be observed in [26].

4. PROCEDURE OF IDENTIFYING THE CRACK BY
NEURAL NETWORK

The natural frequencies of the cracked beam are directly
determined through solving the equation of the cracked
beam. An inverse problem makes use the known natural
frequencies to obtain the crack location x/L or I and
crack depth a/ H or n. Indeed, in an inverse problem,
we try to find out the unknown parameters of the
problem by both the measured natural frequencies and
the other properties of the structure. In this problem, the
unknown parameters are the location and depth of the
crack. The term o, / w, is defined as the dimensionless

natural frequency where w; is the ith natural frequency
of the cracked beam of length L and w;, is the ith

natural frequency of intact beam of the same length. To
determine the location and depth of the crack by neural
network, a lot of examples should be provided for
training the neural network. With the known ] and n,

as well as boundary conditions, one can obtain the
natural frequencies of the cracked beam. In this method,
the first four natural frequencies are obtained for
different crack locations and depths. At the next step,
this data is used for training the neural network.

In current work, the cracked beam models are
assumed to be made of mild steel with the following
material properties: Young’s modulus E =210GPa,

material mass density p =7860kg/m> and Poisson's
ratio v =0.3. The value of the Timoshenko shear
coefficient k' for the rectangular cross-section of the
present research is taken as 5/6. The geometric data of
the beam are: beam depth H =25mm , beam thickness
B=12.5mm and beam length L=125mm [15]. The
natural frequency of the cracked beam is a function of
I, (dimensionless crack location) and 6; crack
sectional flexibility which is function of 17

(dimensionless crack depth). For providing examples to

train the neural network, the first four natural
frequencies may be obtained by solving the Equations
(17), (18) along with applying the boundary conditions
according to different crack location and depth. For this

purpose, 11 and 7 are changed from 0 to 1 by a specific
step. Then, the first four natural frequencies related to
each pair of I, and 1 are obtained. Here, I is changed

from 0.05 to 0.95 by step 0.015 (61 conditions).
Simultaneously, n is changed from 0.1 to 0.91 by step

0.015 (55 conditions) and the dimensionless natural
frequencies are obtained. This operation made
61x55=23355 pairs of dimensionless crack location
and depth with related natural frequencies. They are
used for training the neural network. Solving the
problem inversely (using natural frequencies in order to
determine the <crack location and depth), the
dimensionless frequencies are given as input layer and
crack location and depth are given as output layer to the
network.

5.RESULTS AND DISCUSSION

5. 1. Validity of Equation of Motion In this
section, we study the validity of presented equation of
motion. For this purpose, the first three natural
frequencies of the beam with different boundary
conditions are calculated. These results have been
compared with those presented by Khaji et al. [15].
Both the results i.e. results of this study and those of
[15] are presented in Table 1 in order to make a
comparison between them. It is clear that there are very
good conformity between these two sets of results. Also,
some of the results that show the changes in natural
frequencies due to the effect of varying the parameters
of the beam are presented in this table. The first three
natural mode shapes of the beam with different
boundary conditions are shown if Figures 3a, 3b and 3c.
These figures make clear that the slope experiences the
change when there is not any node in the mid of the
beams for different boundary condition. Now after
presenting the validity of equations of motions, the
necessary data for training the neural network is
prepared. These data will be obtained according to [15].

5. 2. Prediction of Crack Location in a Beam with
Different Boundary Conditions Training the
neural network was performed in three conditions:
condition 1: with 3 dimensionless frequencies as input,
condition 2: with 4 dimensionless frequencies as input
and condition 3: with 5 dimensionless frequencies as
input.
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TABLE 1. Comparison of the three first natural frequency of cracked Euler-Bernoulli beam models for various boundary conditions

(L=100mm,L/h=4,e=0.5)

Boundary Dimensionless crack depth f; ( HZ) ,(H2) f,(Hz)
conditions ratio n=a/h Ref. [15] Present work Ref. [15] Present work Ref. [15] Present work
02 4911.8 4911.85099 17,603.8  17,603.7887 30,9525  30,952.57562
Simply supported 03 4474.18306 17,603.7887 29,679.53566
04 3956.26216 17,603.7887 28,414.2587
02 7139.0 7139.0115  19,600.2 19,600.1452  32236.1  32,236.1366
Simple-clamped 03 6787.02786 19,570.45638 30,938.0554
04 6390.63396 19,535.74335 29,659.60941
02 9408.6 9408.6129 21,3975  21,397.5208 333781  33,378.1168
g;ar?pp:(f' 03 9054.879 21,397.5208 32,006.0543
04 8663.457 21,397.5208 30,660.9051
02 1361.7 1361.66519 10,575.5 1057548692  24,196.6  24,196.612137
Simple-free-shear 03 1286.136444 10,192.12776 23,6104.79146
04 1185.84391 9,7587.108628 23,009.23042
02 3007.7 3007.69978 12,697.3  12,697.2838 26,0382  26,038.15901
S}}:::ped'ﬁee' 03 3002.53633 12,197.9082 25,594.80291
04 2996.15096 11,642.40153 25,136.41062
02 1948.2 1948.205 93937 9393.6829 22,9623 22,962.30567
Cantilever beam 03 1893.79564 8722.531 22,859.6366
04 1812.83689 7974.77909 22748.2826

Back-propagation neural network 'is selected to
determine crack location and depth. As mentioned, the
input layer contains 3, 4 or 5 neurons which include
condition 1 (training with 3 dimensionless frequencies) ,
2 (training with 4 dimensionless frequencies) or 3
(training with 5 dimensionless frequencies) and the
output layer contains 2 neurons which includes crack
location and depth. 70 neurons were selected to be in
the hidden layer (middle layer). Because of the
existence of the symmetry in the beam, the number of
epochs was chosen 2500 for simply-supported and
clamped-clamped boundary conditions. On the other
hand, the number of epochs was 3000 due to the
asymmetric property of the cantilever beam.
Convergence of the number of neurons in hidden layer
and epochs were tested by choosing different number of
neurons and epochs. Besides, Bayesian algorithm was
used to train the neural network.

5. 2. 1. Determination of Crack Location in a
Simply Supported Beam Due to the symmetry of
the beam, half of its length is considered and analysed,
namely, 0<(,=x/L)<05. So, a number of

31x55=1705 pairs of crack location and depth with the
related natural frequencies are used to train the neural
network. The dimensionless natural frequency o, /o,,

for three selective crack depths (17) is shown in Figure
4. The term o,/w,, is related to training neural

network with the first three dimensionless frequencies
(condition 1), w,/w,, 1is related to training neural

network with the first four dimensionless frequencies
(condition 2) and o/ w;, is related to training neural

network with the first three dimensionless frequencies
(condition 3). Figures 5, 6 and 7 show the error
percentage in prediction of the crack location by the
neural network. Firstly, as may be seen, the more
distance from the boundary conditions, the less will be
the errors. Furthermore, the maximum error for
condition 1 (training with 3 frequencies), is about 10
percent, while the error for condition 2 (training with 4
frequencies) and condition 3 (training with 5
frequencies) is about 4 and 3 percent, respectively. It
means that using more natural frequencies to train the
neural network make the error to be decreased more.
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supported beam for condition 3 (training with 5 frequencies).
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Figure 8 shows the performance plot of the network
for a simply-supported beam for condition 2 (training
with 4 frequencies) for n =0.1. However, due to the

low differences in errors, the performance plots of the
network for different boundary conditions are similar in
conditions 1, 2 and 3.

If the step of changing I is chosen 0.02 instead of

0.015, there are 31x41=1271 pairs of dimensionless
crack location and depth with related natural
frequencies. Also, if both I and n are changed by step

0.02 instead of 0.015, there are 23x41=943 pairs.
These errors (1271 pairs and 943 pairs) for a simply-
supported beam for condition 2 (training with 4
frequencies) are shown in Figures 9 and 10,
respectively. The error percentage for training with
1271 and 943 pairs is about 6 and 14 percent,
respectively, while the maximum error corresponding to
1705 pairs is about 4 percent. If the errors more than 6
percent not to be acceptable, one can conclude that the
step of length 0.015 is good and reliable.
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Figure 8. Performance plot of the network for a simply-
supported beam for condition 2 (training with 4 frequencies)
inn=0.1.
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Figure 9. Percent error in crack location of a simply-
supported beam for condition 2 (training with 4 frequencies),
for the combination of 31x41=1271 pairs.
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Figure 10. Percent error in crack location of a simply-
supported beam for condition 2 (training with 4 frequencies),
for the combination of 23x 41 =943 pairs.

5. 2. 2. Determination of Crack Location in a
Clamped-clamped Beam The location and depth of
the crack in the clamped-clamped beam may be
determined in the same manner as applied on a simply-
supported beam, previously. In simply-supported beam,
it was mentioned that an increase in the number of the
dimensionless frequencies to train the neural network,
makes the prediction error to be decreased. It is also true
for a beam with any other boundary conditions. Because
of the symmetry, half of the beam is considered. In this
case, Figure 11 shows the error percentage in crack
location of this beam in conditions 2 (training with 4
frequencies).

5. 2. 3. Determination of Crack Location in a
Cantilever Beam In this case, the number of
provided examples to train the neural network is 3355
because whole length of the beam is considered. Figure
12 shows error percentage of the neural network in
crack location prediction of a cantilever beam for
condition 2 (training with 4 frequencies).

5. 3. Prediction of Crack Depth in Different
Boundary Conditions Here, the capability of the
proposed neural network for prediction of the crack
depth of the beams with different boundary conditions is
investigated. The error percentage of the prediction of
the crack depth of a simply-supported, clamped-
clamped and cantilever beam for condition 2 (training
with 4 frequencies) are shown in Figures 13, 14 and 15,
respectively. For better understanding of the error in
prediction of the location and depth of a crack simply-
supported beam of condition 2 (training with 4
frequencies) has been studied. In this study a number of
random frequencies have been used. The error
percentages between real and predicted location and
depth of the crack are computed and along with the
random frequencies are presented in Tabel 2.
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TABEL 2. Some random first four frequencies given to the network and computing errors.

Real Predicted Error percentage
First four dimensionless frequencies

Crack depth  Cracklocation Crackdepth Cracklocation Crackdepth Cracklocation

0.977859785
0.998238588 275 6.875 2.8047 6.9258
1.99% 0.07%
0.988428635 (0.11) (0.55) (0.1122) (0.546)
0.995997529
0.595446392
0.659468287 20.75 26.25 20.7557 26.252
0.03% 0.01%
0.861820767 (0.83) (0.21) (0.8298) (0.21)
0.96928069
0.57859434
0.848450939 16.25 45 16.259 45.0701
0.06% 0.16%
0.984904873 (0.65) (0.36) (0.6504) (0.3606)
0.859121407
0.819637274
0.986317317 8.75 56.25 8.7533 56.2555
0.04% 0.01%
0.917921335 (0.35) (0.45) (0:3499) (0:45)
0.973222096
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Figure 15. Percent error in crack depth of a cantilever beam
for condition 2.

6. UNIQUENESS OF THE CRACK LOCATION AND
DEPTH

The process of the prediction of the location and depth
of a crack by the neural network or application of
vibrational data in an inverse problem conducted a good
feature. This feature is the uniqueness of the obtained
data in the inverse problem. This feature makes ensure
that the neural network can exactly determine the
location and depth of the crack. Here there'is a question;
if the different cracks with different location and depth
may result in similar natural -frequencies? This
similarity may take place for the first and second natural
frequencies of the cracks at different location and depth,
but for the next natural frequencies, such as their third,
fourth and other natural frequencies the similarity will
not happen. Hence, using more than two natural
frequencies, the uniqueness of the answer will be
satisfied. However, the uniqueness of the answer when
using the first or the first two dimensionless frequencies
has not been guaranteed.

7. CONCLUDING REMARKS

In this research, the location and depth of the crack of a
beam are obtained by neural network. According to the
results, it is shown that the neural network is a trustable
and powerful method to obtain the crack location and
depth. Also, the results show that, increasing the
number of natural frequencies to train the neural
network causes the errors to be reduced. It means,
obtaining more accurate results implies using more
number of natural frequency to train the neural network.
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