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Abstract: Tubular-type torsion beam rear-suspension systems are widely used in small
passenger cars owing to their compactness, light weight, and cost efficiency. It is already known
that the roll behaviour of a torsion beam suspension system can be approximated to that of a
semitrailing arm suspension system. By this kinematic assumption, analytical equations to
obtain the roll centre height, roll steer, and roll camber have already been developed in terms of
geometry points. Therefore, this paper proposes an analytical method to calculate the torsional
stiffness of a tubular beam from its cross-section area based on the assumption that a tubular
beam is a series connection of finite lengths with a constant cross-section. In addition, a
potential energy method is proposed to calculate the roll stiffness of a tubular torsion beam
suspension system based on considering the bushing stiffness and torsional stiffness of the
tubular beam without the use of any commercial computer-aided engineering (CAE) software.
The torsional stiffness and roll stiffness predicted using the proposed method showed errors of
about 4 per cent and 3.3 per cent respectively, when compared with results from commercial
CAE software.

Keywords: torsion beam suspension, tubular beam, shear centre, roll centre height, roll steer,
roll camber, roll stiffness

1 INTRODUCTION

Torsion beam rear-suspension systems have recently

been widely used for small passenger vehicles, be-

cause of various advantages, including a reduced

weight, lower cost, and greater space efficiency,

when compared with other types of suspension

system [1]. A torsion beam rear-suspension system

consists of two longitudinal trailing arms on the left

and right sides and a torsion beam that is inter-

connected between the two trailing arms and other

brackets for spring seats, dampers, spindles, and

rubber bushings (Fig. 1). As such, the torsion beam

provides the torsional and bending stiffness required

for the suspension performance. Typically, there are

two types of torsion beam: a V- or U-shaped open-

section beam that is made by stamping a thick plate,

and a hollow closed-section tubular beam made by

pressing an original pipe; the latter type is more

popular, as a tubular beam can replace many parts

such as beam, torsion bar, and reinforcements for a

V- or U-shaped beam. The geometric profile of a

tubular beam generally consists of a constant section

area, a transition area in which the section profile

is changed along its distance, and a square-type

section area at each end which is welded to the

trailing arms, as shown in Fig. 2.

Nonetheless, despite the relatively simple struc-

ture of a torsion beam suspension system, many

design variables need to be determined during the

early design planning stage, e.g. predicting the effect

of the design variables of the torsion beam suspen-

sion system on the vehicle handling performance

using an ADAMS simulation [2, 3] and other codes

[4], considering the elastic deformation in a elasto-

kinematic system with a component mode synthesis

method. Yet, while such multi-body dynamic soft-

*Corresponding author: Department of Mechanical Engineering,

Kyungpook National University, 1370 Sangyeok, Buk-ku, Daegu

702-701, Republic of Korea.

email: caekim@knu.ac.kr

1

JAUTO1229 Proc. IMechE Vol. 224 Part D: J. Automobile Engineering

 at PENNSYLVANIA STATE UNIV on October 6, 2016pid.sagepub.comDownloaded from 

http://pid.sagepub.com/


ware provides comparable results with test data [5,

6], the whole process is time consuming, including

meshing the torsion beam model using preprocessor

software and making a modal neutral file using a

finite element (FE) solver. Also, it requires specia-

lized skills and knowledge. Thus, an alternative

efficient technique is needed to obtain quick results,

especially during the initial design planning stage

when there are so many design variables to be

determined. Sugiura et al. [7] have already developed

an in-house design tool that can automatically

generate a reduced stiffness matrix from a cross-

section of a torsion beam drawn with a Microsoft

Excel spreadsheet (using the Guyan reduction meth-

od), and then can calculate the compliance proper-

ties. Meanwhile, Lyu et al. [8] represented a torsion

beam as the linkage of a lumped mass joined by non-

linear bending–torsional springs which is calculated

using non-linear FE simulations.

Satchell [9] proposed that the deformation beha-

viour of a torsion beam suspension system in a roll

motion is similar to the kinematic motion of a

semitrailing arm in which the line connecting the

attachment of the rubber bushing and the shear

centre of the torsion beam is the axis of rotation.

This kinematic analogy assumption then allows

prediction of the basic roll properties, such as the

roll centre height, roll camber, roll steer, and roll

stiffness of the torsion beam suspension, all of which

are important factors affecting the vehicle-handling

performance. Kang [6] also proposed kinematic

expressions for the roll centre height, roll steer, roll

camber, and roll stiffness as functions of the shear

centre, hard points, spring stiffness, and torsional

stiffness in the case of a V-shaped open-section

beam; yet FE software is still needed to calculate the

torsional stiffness, as there is no general analytical

equation for the torsional stiffness of an arbitrary V-

shaped beam, and there is no consideration of the

rubber bushing stiffness.

Accordingly, this paper focuses on the roll proper-

ties of a tubular beam-type torsion beam suspension

system. In the case of a tubular beam, the equations

for the roll centre height, roll steer, and roll camber

proposed by Kang [6] can be used. However, for the

roll stiffness of a tubular beam, this paper presents a

new analytical method using the beam geometry and

rubber bushing data. First, an analytical method is

proposed to calculate the torsional stiffness of a

tubular beam from its cross-section area, based on

the assumption in linear beam theory that a tubular

beam is a series connection of finite lengths with a

constant cross-section. Second, a potential energy

method is proposed to calculate the roll stiffness of a

tubular torsion beam suspension system based on

considering the rubber bushing stiffness and tor-

sional stiffness of the tubular beam.

To demonstrate the effectiveness of the proposed

methods in this paper, the roll properties were cal-

culated and the results were compared with those

obtained using an MSC.ADAMS simulation.

2 TORSION BEAM KINEMATICS

In the case of a roll motion when both sides of the

wheel centre move in the opposite direction with the

same displacement, the behaviour of the torsion

beam is equivalent to the kinematic motion of a

semitrailing arm suspension system [9], as shown in

Fig. 3. In the analogy of a semitrailing arm, since the

Fig. 2 Typical cross-section profile of a tubular beam

Fig. 1 Torsion beam-type rear suspension system
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line connecting the attachment point and the shear

centre of the tubular beam is the axis of rotation, the

kinematic motion of one side of the wheel rotates

around this axis of rotation. Kinematic expressions

for the related roll properties have already been

developed by Kang [6] in the case of a V-shaped

torsion beam. In this paper, these equations are

expressed using Euler parameters and a transforma-

tion matrix.

The geometry points shown in Fig. 3(b) are used

as the position vectors from the origin of the global

coordinate in the following expressions. The direc-

tions of the x, y, and z axes in global coordinate

are rearward, right, and vertical respectively, with

respect to the driver in accordance with the car

coordinate system of car maker.

2.1 Transformation matrix

To derive the equation, the local coordinate is set at

point P1 as the origin and parallel to the global

coordinate in the initial condition (P1 is the distance

of P1 from the origin). According to the analogy of the

semitrailing arm, the kinematic roll motion of torsion

beam is expressed by the fact that half of the torsion

beam and trailing arm is assumed to rotate by an

angle h around the axis of rotation with unit vector n,

in which the direction is from the attachment point P1

to the shear centre P2 of the tubular beam. The

transformation matrix A can then be represented as

the Euler parameters p [10] according to

n~
P2{P1

P2{P1j j
~ nx,ny ,nz

� �T ð1Þ

p~ e0, e1, e2, e3½ �T

~ cos
h

2

� �
,nx sin

h

2

� �
,ny sin

h

2

� �
,nz sin

h

2

� �� �T
ð2Þ

A~

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
664

3
775

~

e20ze21{e22{e23 2 e1e2{e3e0ð Þ 2 e1e3ze2e0ð Þ
2 e1e2ze3e0ð Þ {e21ze22{e23ze20 2 e2e3{e1e0ð Þ
2 e1e3{e2e0ð Þ 2 e2e3ze1e0ð Þ e20{e21{e22ze23

2
664

3
775
ð3Þ

As a result, the local component vector s9 for the

local coordinate can be transformed into the global

component vector s for the global coordinate as a

function of the rotation angle h according to

s~As’ ð4Þ

2.2 Wheel centre motion

Define the local vector s’3 for the local x9, y9, z9

coordinates, and the displacement d of the wheel

centre as

s’3~P3{P1

~

s’3x

s’3y

s’3z

2
664

3
775

~

P3x

P3y

P3z

2
664

3
775{

P1x

P1y

P1z

2
664

3
775 ð5Þ

Fig. 3 Kinematic motion of the torsion beam in roll
motion

(3)
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d~ dx dy dz
� �T

~P1zAs’3 ð6Þ

The vertical component dz of the wheel centre

then becomes

dz~A31s’3xzA32s’3yzA33s’3zzP1z

~2 e1e3{e2e0ð Þs’3xz2 e2e3ze1e0ð Þs’3y
z {e21{e22ze23ze20
� �

s’zzP1z ð7Þ

The derivative dz with respect to h at h5 0 is

ddz
dh

				
h~0

~nxs’3y{nys’3x ð8Þ

2.3 Roll steer and roll camber

Define the local vector s’p as the unit vector of the

spindle axis, i.e. s’p~ 0 1 0½ �T in Fig. 4(a). From

equations (3) and (4), the global vector then be-

comes

sp~Asp’

~

spx

spy

spz

2
664

3
775

~

2 e1e2{e3e0ð Þ
{e21ze22{e23ze20

2 e2e3ze1e0ð Þ

2
664

3
775 ð9Þ

The toe angle htoe and camber angle hcamb, shown

in Fig. 4(b), can be expressed as

htoe~{tan{1 spx
spy

� �
ð10Þ

hcamb~{tan{1 spzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2pxzs2py

q
0
B@

1
CA ð11Þ

Fig. 4 Definition of parameters
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The derivative of the toe angle htoe with respect to

h at h5 0 becomes

dhtoe
dh

				
h~0

~
{1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z spx
�
spy

� �2q
							
h~0

d

dh

spx
spy

� �				
h~0

~nz ð12Þ

From equations (8) and (12), the roll steer, defined

as the derivative of the toe angle with respect to dz, is

dhtoe
ddz

				
h~0

~
dhtoe
dh

				
h~0

ddz
dh

				
h~0

� �{1

~
nz

nxs’3y{nys’3x
ð13Þ

According to equation (13), the sign of the num-

erator term determines the roll understeer or over-

steer tendency. Thus, for a car with a rear torsion

beam suspension to have a roll understeer tenden-

cy, i.e. for the toe angle to be toe-in (5positive

toe angle) while the wheel centre moves vertically

upwards, the numerator term should be positive,

which means that the shear centre should be pos-

itioned above the attachment of the rubber bushing.

Next, the roll camber, defined as the derivative

of the camber angle with respect to h at h5 0, is

determined via the same process as in the case of the

roll steer according to

dhcamb

dh

				
h~0

~{nx ð14Þ

dhcamb

ddz

				
h~0

~
dhcamb

dh

				
h~0

ddz
dh

				
h~0

� �{1

~
{nx

nxs’3y{nys’3x
ð15Þ

According to equation (15), the roll camber always
has a negative value.

2.4 Twist angle of the torsion beam

Define the local vector s’t as the longitudinal unit

vector s’t~ 1 0 0½ �T, and then the global vector st
becomes

st~Ast’~

stx

sty

stz

2
64

3
75~

e20ze21{e22{e23
2 e1e2ze3e0ð Þ
2 e1e3{e2e0ð Þ

2
64

3
75 ð16Þ

The twist angle htwist of the beam during the roll

motion in Fig. 4(c) is then defined as

htwist~2 tan{1 stz
stx

� �
ð17Þ

and the derivative of the twist angle with respect to h

at h5 0 is

dhtwist

dh

				
h~0

~
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z stz=stxð Þ2
q

							
h~0

d

dh

stz
stx

� �				
h~0

~{2ny ð18Þ

Also, the derivative of the twist angle of the tubular

beam with respect to the vertical displacement of the

wheel centre is

dhtwist

ddz

				
h~0

~
dhtwist

dh

				
h~0

ddz
dh

				
h~0

� �{1

~
{2ny

nxs’3y{nys’3x
ð19Þ

According to equation (19), if the shear centre of

the tubular beam or the position of the tubular beam

is located forwards, the component of ‘2ny’ and the

torsional angle rate become larger.

2.5 Roll centre height

The roll centre is an idealized point in the transverse

vertical plane through any pair of wheel centres

at which lateral forces may be applied to the

sprung mass without producing any suspension roll

[11]. Thus, the roll centre height is defined as the

height of the point from the ground at which the

normal vector for the curve of the tyre contact

intersects at the centre of the vehicle [12], as shown

in Fig. 4(d).

If the curve of the tyre contact point (dcy, dcz) is

known, the angle a of the normal vector for the curve

of the tyre contact point is

tan a~
ddcy

ddcz

				
h~0

ð20Þ

and the roll centre height Hroll is then expressed as

the function of the wheel tread T and angle a

according to

Hroll~
T

2
tan a ð21Þ

Roll properties of a tubular-type torsion beam suspension 5
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To calculate the curve of the tyre contact point, let

the local vector s’4 be

s’4~P4{P1~

s’4x

s’4y

s’4z

2
664

3
775

~

P4x

P4y

P4z

2
664

3
775{

P1x

P1y

P1z

2
664

3
775 ð22Þ

Then the global vector for the tyre contact point

becomes

dc~ dcx dcy dcz
� �T

~P1zAs’4 ð23Þ

The lateral and vertical components of the tyre

contact point in equation (23) are

dcy~A21s’4xzA22s’4yzA23s’4zzP1y ð24Þ

dcz~A31s’4xzA32s’4yzA33s’4zzP1z ð25Þ

The derivatives of equations (24) and (25) with

respect to h at h5 0 are

ddcy

dh

				
h~0

~nzs’4x{nxs’4z ð26Þ

ddcz
dh

				
h~0

~{nys’4xznxs’4y ð27Þ

From equations (20), (21), (26), and (27), the roll

centre height can be expressed as

tan a~
ddcy

ddcz

				
h~0

~
ddcy

�
dh

ddcz=dh

				
h~0

~
nzs’4x{nxs’4z
nxs’4y{nys’4x

ð28Þ

Hroll~
T

2
tan a

~
T

2

nzs’3x{nxs’3z
nxs’3y{nys’3x

ð29Þ

2.6 Torsional stiffness of the tubular beam

To calculate the roll stiffness contribution of a

tubular torsion beam, the torsional stiffness of the

tubular beam has to be calculated. While a more

precise torsional stiffness can be calculated using FE

software, this paper proposes an analytical method

using linear beam theory and geometry data to

calculate the torsional stiffness without the help of

FE software. First, assume a beam of length L with a

constant closed cross-section that is twisted at both

ends, as shown in Fig. 5(a), where A is the shaded

area within the midline of the closed cross-section of

the beam and S is the total length of the boundary.

According to linear beam theory [13], under the

assumption of a constant shear flow, the torsional

stiffness of a beam is expressed as

Kt~
torque

h

~
4A2Gt

SL
ð30Þ

where G and t are the shear modulus and thickness
respectively of the beam.

In the case of a tubular beam, the cross-section

area of the midline is necessarily changed along its

distance from the centre (see Figs 2 and 8). Thus, to

calculate the torsional stiffness of a tubular beam,

this paper assumed that a tubular beam is a series

connection of finite lengths Di within a constant

section, as shown in Fig. 5(b).

The equivalent torsional stiffness Ktors of a tubular

beam is then approximated as

1

Ktors
~
X
i

1

Kti

~
X
i

SiDi

4A2
i Gt

Ktors~
X
i

1

Kti

 !{1

~
X
i

SiDi

4A2
i Gt

 !{1

ð31Þ

2.7 Roll stiffness of the torsion beam suspension

Assume a torsion beam suspension with rubber

bushing that is twisted by two external forces of the

same magnitude and yet opposite vertical direction
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forces. As such, the work performed by the two

external forces is equal to the sum of the elastic

torsional energy in the tubular beam and the tor-

sional and conical energy in the rubber bushings

attached to the body. The elastic effect of the trailing

arm is not considered here, as the trailing arm itself is

very stiff when compared with the other components.

In most cases, the rubber bushing is tilted at a

certain angle to increase the understeer tendency, as

in Fig. 6(a); however, in this paper a zero tilting angle

is assumed. Also in this paper, the elastic effect of

rubber bushing is represented by two stiffnesses:

torsional stiffness and conical stiffness. The torsional

stiffness Kbtz is related to the rotation about the

radial direction, and the conical stiffness Kbtc is rela-

ted to the rotation about the axial direction of the

bushing in Figs 6(b) and (c).

To consider the effect of the stiffness of the rubber

bushing in the roll stiffness, this paper assumes that

the torsional angle hbtz of the rubber bushing is equal

to half the twist angle of the beam, while the conical

angle hbtc of the rubber bushing is the same as the

camber angle of the wheel. Thus

hbtz~
htwist

2
ð32Þ

hbtc~hcamb ð33Þ

Define the magnitude of the external force at both

wheel centres as P. This paper assumes that the

potential energy Pp of the torsion beam suspension

in a roll motion is the sum of the components of the

energies of the tubular beam, rubber bushing, and

external forces as given by

Pp~
1

2
Ktorsh

2
twistz2

1

2
Kbtzh

2
btzz2

1

2
Kbtch

2
btc{2Pdz

ð34Þ

In a stationary condition, the potential energy

should meet the condition

dPp

ddz
~0

~Ktorshtwist
dhtwist

ddz
z2Kbtzhbtz

dhbtz
ddz

z2Kbtchbtc
dhbtc
ddz

{2P ddz ð35Þ

In the linear region, the relations between the tor-

sional angles of the tubular beam and rubber bushing

and the vertical displacement of the wheel centre

are expressed as

htwist~
dhtwist

ddz
dz ð36Þ

Fig. 5 Torsion of the closed cross-section beam with variable section area

Roll properties of a tubular-type torsion beam suspension 7
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hbtz~
dhbtz
ddz

dz

~
1

2

dhtwist

ddz
dz ð37Þ

hbtc~
dhcamb

ddz
dz ð38Þ

From equations (35) to (38), the expression

Ktors
dhtwist

ddz

� �2

z2Kbtz
dhbtz
ddz

� �2

z2Kbtc
dhbtc
ddz

� �2
" #

dz

{2P~0 ð39Þ

is obtained.

From equation (39), the equivalent spring stiffness

Keq at the wheel centre is defined as

K eq~
P

dz

~
1

2
K tors

dhtwist

ddz

� �2

z2K btz
dhtwist

ddz

� �2
"

z2K btc
dhcamb

ddz

� �2
#

ð40Þ

where the squared terms in equation (40) are given

by equations (19) and (15) respectively.

The roll stiffness Kroll of a tubular beam is ex-

pressed as a function of the wheel tread T and the

equivalent spring stiffness Keq according to

Kroll~
1

2
KeqT

2 ð41Þ

2.8 Shear centre of the closed cross-section beam

When two shear forces Vx and Vz are acting on the

shear centre of a closed cross-section beam, as

shown in Fig. 7, the shear flow qs generated along

the boundary is defined [14–16] as

qs~
VzIxz{VxIxx
IxxIzz{I2xz

ð
tx :dsz

VxIxz{VzIzz
IxxIzz{I2xz

ð
tz :dszqs, 0

ð42Þ

The first two terms on the right-hand side represent

the shear flow in the open section loaded through

the shear centre, and the last term is the shear flow

at s5 0.

Based on the shear forces at the shear centre, the

torsional angle of the beam is zero, and the moments

generated by the shear forces and shear flow are in a

state of equilibrium. As such, the two equations

dh

dz
~

1

2A

þ
qs

Gt
ds~0 ð43Þ

Vzcx{Vxcz~

þ
qsr ds ð44Þ

should hold.

First, set Vx5 1 and Vz5 0. By putting equation

(43) into equation (44), qs, 0 can be obtained; then

equations (43) and (44) can be used to obtain the

shear centre component cz.

Next, set Vx5 0 and Vz5 1. Following the same

process as explained above, the shear centre com-

Fig. 6 Torsional and conical stiffnesses of the rubber
bushing
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ponent cx can then be obtained. This paper used the

FORTRAN programming language [17] to calculate

the shear centre based on the algorithm in equations

(42) to (44).

3 CASE STUDY

To validate the analytical method proposed in this

paper, the analytical results were compared with the

results from an MSC.ADAMS simulation.

3.1 Application model

The geometry data including the diameter and

thickness of the original tubular beam are given in

Table 1, while the cross-section areas enclosed by

the midline of the thickness with respect to the

distance from the centre of the tubular beam are

shown in Fig. 8. The section areas were measured at

10mm width, and the intermediate area was inter-

polated linearly.

In the case of the ADAMS model, the torsion beam

was represented by the flexible body model shown in

Fig. 9. ADAMS uses the orthogonalized Craig–Bamp-

ton modes which are stored in the modal neutral file

for ADAMS simulations [18]. The first eigenvalue in

the modal neutral file was 25.65Hz.

The torsion beam suspension was fixed to the

ground via a rubber bushing that was represented

using the linear stiffness and mounted at the actual

tilted angle.

The linear stiffness of the rubber bushing used in

the ADAMS model was as follows: radial stiffness,

148.8 kgf/mm and 179.5 kgf/mm in the soft and hard

directions, respectively; axial stiffness, 41.0 kgf/mm;

conical stiffness, 20 053.52 kgfmm/rad; and torsional

stiffness, 30 538.65 kgfmm/rad.

3.2 Validation of the analytical equation

The shear centre, calculated numerically using a

FORTRAN program, is shown with the tubular beam

cross-section shape in Fig. 10. The equation results

for the roll steer, roll camber, and roll centre height

are compared with the ADAMS simulation results in

Table 2, including the twist angle rate. Except for the

roll steer, the roll camber and roll centre height

showed good agreement between the two methods.

The result of torsional stiffness of the tubular

beam in equation (31) with respect to some of the

finite lengths Di is given in Table 3. The result shows

that the error between equation (31) and FE software

(I-DEAS Linear) converges to about 4 per cent when

the finite length Di is below 0.1mm. Thus it seems

that the finite length Di5 0.1mm is reasonable to

calculate the torsional stiffness of a tubular beam

using equation (31).

Therefore, the results demonstrated that the ass-

umption of representing a torsion beam as a series

connection of finite lengths within a constant sec-

tion would seem to be reasonable.

The contribution of each component to the equi-

valent spring stiffness (or roll stiffness) in equation

(40) and the ADAMS simulation results are shown

in Table 4. For the equivalent spring stiffness accor-

ding to the ADAMS simulation, the average ratio

of force to the vertical displacement at the wheel

Fig. 7 Shear forces on the shear centre of the beam

Table 1 Geometry data of tubular-type torsion beam suspension

Parameter (units) Values

Distance from the origin to the attachment point P1 (mm) 2149, 582, 21
Distance from the origin to the shear centre P2 (mm) 2330.485, 0, 57.166
Distance from the origin to the wheel centre P3 (mm) 2549, 748, 45
Distance from the origin to the tyre contact point P4 (mm) 2549, 748, 2235
Wheel tread (mm) 1496
Outer diameter of the original tube (mm) 101.6
Thickness of the tubular beam (mm) 2.8
Shear modulus G (kgf/mm2) 8173.0
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centre was calculated while the wheel centre moved

10mm in a vertical direction in a roll motion. From

this table, when compared with the ADAMS results,

the proposed analytical equation predicted a reason-

able stiffness value, as the error between the two

methods (proposed method, 1.739; ADAMS, 1.683)

was only 3.3 per cent, which was probably due to an

error in calculating the torsional stiffness of the tub-

ular beam in equation (31). When the torsional stiff-

ness of the tubular beam calculated by the I-DEAS

Linear analysis in Table 3 was used in equation (40),

the error was reduced to around 1.0 per cent.

When considering the contribution of each com-

ponent to the total equivalent spring stiffness, the

torsional stiffness of the tubular beam accounted for

91 per cent of the total spring stiffness, while the

bushing stiffness accounted for 9 per cent, making

the torsional stiffness the more dominant factor over

the conical stiffness. Nontheless, it is still important

and reasonable to consider the bushing stiffness to

Fig. 9 Torsion beam suspension model in ADAMS/View

Fig. 8 Cross-section area along the distance from the centre of the tubular beam
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Fig. 10 Shear centre and cross-section profile of the tubular beam

Table 2 Comparison of results with proposed analytical method and ADAMS simulation

Parameter (units)

Value obtained by the following methods

Proposed ADAMS Error (%)

Roll steer (rad/mm) 2.226 72661024 2.041 040 461024 9.1
Roll camber (rad/mm) 26.90091061024 27.123 194 861024 3.1
Roll centre height (mm) 187.2 185.8 0.8
Twist angle rate (rad/mm) 4.428 668361023 — —

Table 3 Comparison of the torsional stiffness Ktors in terms of finite length Di

Proposed value

Value from I-DEAS Linear (kgfmm/rad) Error (%)Di (mm) Ktors (equation 31) (kgfmm/rad)

0.001 1.610 956105 1.549 196105 3.99
0.01 1.610 986105 3.99
0.05 1.611 076105 3.99
0.1 1.611 196105 4.00
0.5 1.612 236105 4.07
1.0 1.613 546105 4.15
2.0 1.614 996105 4.25

Table 4 Comparison of equivalent spring stiffness at the wheel centre

Component

Value for the following methods

Proposed equation (40) (contribution (%)) ADAMS Error (%)

Torsional stiffness of the tubular beam (kgf/mm) 1.580 (90.9%) 1.739 (100%) 1.683 3.3
Torsional stiffness of the bushing (kgf/mm) 0.150 (8.6%)
Conical stiffness of the bushing (kgf/mm) 0.009 (0.5%)
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predict the equivalent spring stiffness or roll stiff-

ness.

When comparing the required time to obtain the

roll properties of the torsion beam model by com-

puter-aided engineering software, the effects of the

proposed analytical equations are prominent. It

usually takes 2 days to determine the roll properties

from meshing of the model and then solving by

NASTRAN and ADAMS. However, using the equa-

tions proposed in this paper, it will take 30min at

most. Most of the time is required for measuring the

section areas at some points of tubular beam and

reading the coordinates along the curve of beam

section to calculate the shear centre.

In summary, the torsional stiffness and equivalent

spring stiffness (or roll stiffness) of a tubular torsion

beam system can be effectively predicted from its

geometry data and bushing stiffness without the

help of multi-body dynamics software.

4 CONCLUSION

This paper proposed an analytical method to

calculate the torsional stiffness of a tubular beam

with a closed cross-section in a torsion beam rear-

suspension system using linear beam theory. Also, a

potential energy method is proposed to calculate the

equivalent spring stiffness (or roll stiffness) at the

wheel centre, based on considering the elastic eff-

ect of the torsional stiffness of the tubular beam,

together with the torsional and conical stiffnesses

of the rubber bushing. The results of the proposed

analytical method showed good agreement with the

results of an ADAMS simulation in which the flexible

body effect was considered.

Furthermore, since the proposed analytical meth-

od requires only the geometry of a tubular beam and

bushing stiffness, it can provide immediate basic

results on the roll properties of a torsion beam,

making it an effective tool for design engineers

during the initial design stage when there are so

many design variables to consider, and which usually

takes much time when using multi-body dynamic

software, such as ADAMS.

F Authors 2010
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