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Background Mendelian randomization is used to test and estimate the magni-
tude of a causal effect of a phenotype on an outcome by using
genetic variants as instrumental variables (IVs). Estimates of
association from IV analysis are biased in the direction of the con-
founded, observational association between phenotype and out-
come. The magnitude of the bias depends on the F-statistic for
the strength of relationship between IVs and phenotype. We seek
to develop guidelines for the design and analysis of Mendelian ran-
domization studies to minimize bias.

Methods IV analysis was performed on simulated and real data to investigate
the effect on bias of size of study, number and choice of instru-
ments and method of analysis.

Results Bias is shown to increase as the expected F-statistic decreases, and
can be reduced by using parsimonious models of genetic association
(i.e. not over-parameterized) and by adjusting for measured covari-
ates. Using data from a single study, the causal estimate of a
unit increase in log-transformed C-reactive protein on fibrinogen
(mmol/l) is shown to increase from �0.005 (P¼ 0.99) to 0.792
(P¼ 0.00003) due to injudicious choice of instrument. Moreover,
when the observed F-statistic is larger than expected in a particular
study, the causal estimate is more biased towards the observational
association and its standard error is smaller. This correlation be-
tween causal estimate and standard error introduces a second
source of bias into meta-analysis of Mendelian randomization stu-
dies. Bias can be alleviated in meta-analyses by using individual
level data and by pooling genetic effects across studies.

Conclusions Weak instrument bias is of practical importance for the de-
sign and analysis of Mendelian randomization studies. Post hoc
choice of instruments, genetic models or data based on measured
F-statistics can exacerbate bias. In particular, the commonly cited
rule of thumb that F410 avoids bias in IV analysis is misleading.
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Introduction
In observational studies, an association between out-
come and a phenotype (a modifiable risk factor or ex-
posure of interest) may not be causal. It may be due to
confounding factors which affect both an individual’s
phenotype and outcome, or due to reverse causation
where the outcome affects the phenotype.1 Although
we can measure known confounders, we can never be
certain that all confounders have been identified and
so cannot interpret an estimate of association from an
observational study as a causal effect.2

Mendelian randomization uses genetic variants (G)
which are associated with the phenotype (X) to esti-
mate a causal effect.3 The genetic variants must not
be associated with any confounding factor (U) and
not directly associated with the outcome (Y).2,3

These assumptions define the genetic variants as an
instrumental variable (IV)4,5 and can be summarized
graphically (Figure 1).2 From the IV assumptions, and
as genetic variation is determined at conception, the
variation in X explained by G is independent of any
confounding or reverse causation, and so any differ-
ence in Y associated with G indicates a causal effect of
X on Y.6 We assume throughout this article that the
IV assumptions are satisfied by the instruments used.

As well as testing for a causal association, we can
estimate its magnitude.3 As genetic effects on pheno-
types are typically small, Mendelian randomization
estimates of association have much wider confidence
intervals (CIs) than conventional epidemiological es-
timates.7 The rationale for using Mendelian random-
ization is that an unbiased, imprecise estimate is
preferable to a precise, biased estimate of causal
association.8

Although IV techniques are asymptotically unbiased
in the presence of confounding, IV estimates suffer
from finite sample bias, known as weak instrument
bias.9–11 (Bias is the difference between the average
estimated value of a parameter and its true value.)
This bias is in the direction of the observational con-
founded association, and its magnitude depends on
the strength of association between genetic instru-
ment and phenotype.12,13 Under certain conditions,
the relative bias of the IV estimator to the observa-
tional estimator is �1/F, where F is the F-statistic in
the regression of X on G.14 When F is 10, this means
that the bias of the IV estimator is 10% of the bias of
the observational estimator, leading to the ‘rule of
thumb’ that the F-statistic should be at least 10 to
avoid bias.3,14

In this article, we consider continuous outcomes;
with binary outcomes, weak instrument bias affects
the causal estimate in a similar way, although it is not
the only bias present.15 Unless otherwise stated, we
use an additive per allele model. We use the two-stage
least squares (2SLS)16 and limited information
maximum likelihood (LIML)17 methods to calculate
IV estimates. In 2SLS, we first regress the phenotype
(xi) on the genetic instruments (gik, k¼ 1, . . . , K)
where each instrument gik¼ 0, 1, 2 represents the
number of variant alleles of single nucleotide poly-
morphism (SNP) k in individual i. We then regress
the outcome (yi) on the fitted values of phenotype
from the first stage regression (x̂i).

xi ¼ �0 þ
XK

k¼1

�k gik þ �xi

yi ¼ �0 þ �IV x̂i þ �yi

ð1Þ

The causal estimate from the 2SLS method is �̂IV .
(Note that although this gives the correct point esti-
mate, the standard error (SE) is not correct; the use
of 2SLS software is recommended for estimation in
practice.18) The LIML estimator is the ‘maximum like-
lihood counterpart of 2SLS’.19 It is calculated by a
maximum likelihood procedure on the assumption
of homoscedastic errors. When there is a single in-
strument, these estimators coincide and equal the
ratio (or Wald) estimate.3

We use data from the CRP CHD Genetics Collabora-
tion20 to estimate the causal association of C-reactive
protein (CRP) on fibrinogen, which are both markers
for inflammation. As the distribution of CRP is positive-
ly skewed, we take its logarithm and assume a linear
association of log(CRP) on fibrinogen. Although
log(CRP) and fibrinogen are highly positively correlated
(r¼ 0.45� 0.55 in the studies below), it is thought that
long-term elevated levels of CRP are not causally asso-
ciated with an increase in fibrinogen.21

Bias of IV estimates in small
studies
As a motivating example, we consider the
Copenhagen General Population Study (CGPS),22 a
cohort study with complete data on CRP from a
high-sensitivity assay, fibrinogen and three SNPs
from the CRP gene region (rs1205, rs1130864 and
rs3093077) for 35 679 participants. We calculate the
observational estimate [simply regressing fibrinogen
on log(CRP)] and IV estimate of association using
all three SNPs as instrumental variables. We then
analyse the same data as if it came from multiple
studies by dividing the study randomly into substu-
dies of equal size, calculating estimates of association
in each substudy and meta-analysing the results

Figure 1 Directed acyclic graph of Mendelian randomiza-
tion assumptions
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using a fixed-effect model. We divide into
5, 10, 16, 40, 100 and 250 substudies.

We see from Table 1 that the observational estimate
stays almost unchanged whether the data are analysed
as one study or as several studies. However, the IV es-
timate increases from near zero until it approaches the
observational estimate and the SE of the estimate de-
creases. We can see that even where the number of
substudies is 16 and the average F-statistic is around
10, there is a serious bias with a positive causal estimate
(P¼ 0.09 using 2SLS) despite the causal estimate with
the data analysed as one study being near zero.

Why does weak instrument
bias occur?
Although asymptotically the genetic variants are inde-
pendent of confounders, confounders will not be per-
fectly balanced between genotypic subgroups in finite
samples. If the instrument is strong, then the differ-
ence in phenotype between subgroups will be due to
the genetic instrument, and the difference in outcome
(if any) will be due to this difference in phenotype.
However, if the instrument is weak, it explains little
variation in the phenotype, the chance difference in
confounders may explain more of the difference in
phenotype between subgroups than the instrument.
If the effect of the instrument is near zero, then the
estimate of the ‘causal association’ approaches the as-
sociation between phenotype and outcome caused by
changes in the confounders, i.e. the observational
confounded association.12

To illustrate the point algebraically, we take a pheno-
type X which depends linearly on an IV G and a con-
founder U, and an outcome Y which depends linearly
on X and U. We assume that there are no other error
terms in the model and that all the variability comes
via U. The causal effect of X on Y is �1.

X ¼ �X þ �1Gþ �2U

Y ¼ �Y þ �1X þ �2U
ð2Þ

We assume that G is dichotomous, dividing the popu-
lation into two genotypic subgroups labelled 1 and 2
such that �140. We let �xj be the average value for
phenotype in subgroup j, similarly �yj and �uj. An ex-
pression for the IV (ratio) estimate for the causal
effect in this case depends on � ¼ �u2 � �u1:11

�IV ¼
difference in outcome

difference in phenotype
¼

�y2� �y1

�x2� �x1
¼ �1þ

�2�

�1þ �2�

ð3Þ

We know that � has mean zero as G is an IV. Hence,
�IV tends to �1 asymptotically as the sample size in-
creases. If �1 is large compared with �2�, that is the
proportion of variation explained by the instrument
compared with that explained by the chance imbal-
ance in confounders is large, then �IV is close to �1.
However, if �1 is small compared with �2�, then
whether � is positive or negative, it can be seen
from (3) that the bias �IV� �1 tends to ð�2=�2Þ,
which is the confounded association between the
phenotype and outcome.14

Hence, the IV estimator is biased towards the obser-
vational confounded association, and the magnitude
of the bias depends on the strength of association
between X and G.17

How can we minimize weak
instrument bias?
Increasing the F-statistic
The F-statistic is a measure of instrument strength. It
is related to the proportion of variance in the pheno-
type explained by the genetic variants (R2), sample
size (n) and number of instruments (k) by the for-
mula F ¼ ðn�k�1

k Þ ð
R2

1�R2Þ. It is sometimes known as the
Cragg–Donald F-statistic.23,24 The bias from weak in-
struments depends on the strength of the instrument
through the F-statistic.14,23 As the F-statistic depends
on the sample size, then bias can be reduced by
increasing sample size. Similarly, if there are instru-
ments that are not contributing much to explaining

Table 1 Estimates of effect (SE) of log(CRP) on fibrinogen (mmol/l) from CGPS (N¼ 35 679)

Number of
substudies Observational estimate 2SLS IV estimate LIML IV estimate Mean F-statistic

1 1.6799 (0.0143) �0.0468 (0.1510) �0.0531 (0.1515) 152.0

5 1.6796 (0.0143) �0.0092 (0.1478) �0.0541 (0.1508) 31.44

10 1.6789 (0.0143) 0.0871 (0.1426) �0.0068 (0.1485) 16.44

16 1.6781 (0.0143) 0.2300 (0.1372) 0.1641 (0.1426) 10.81

40 1.6761 (0.0143) 0.4562 (0.1266) 0.3093 (0.1385) 4.833

100 1.6713 (0.0142) 0.8279 (0.1078) 0.6575 (0.1279) 2.516

250 1.6695 (0.0141) 1.2711 (0.0826) 1.1796 (0.1022) 1.646

Estimates are divided randomly into substudies of equal size and combined using fixed-effect meta-analysis: observational estimate
using unadjusted linear regression, IV estimate from Mendelian randomization using 2SLS and LIML methods. F-statistics from
linear regression of log(CRP) on three genetic IVs averaged across substudies.
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the variation in the phenotype, then excluding these
instruments will increase the F-value. In general, em-
ploying fewer degrees of freedom to model the genetic
association, that is using parsimonious models, will
increase the F-statistic and reduce weak instrument
bias.25 For example, an additive per allele or an
additive haplotype model is more parsimonious than
a model with one coefficient for each genotypic sub-
group; provided the former does not misrepresent the
data, bias will be reduced.

However, it is not enough to simply rely on an
F-statistic measured from data to inform us about
bias.26 Returning to the previous example where we
divided the CGPS study into 16 equally sized substu-
dies with mean F-statistic 10.81, Figure 2 shows the
forest plot of the estimates of these 16 substudies
using the 2SLS method with their corresponding
F-values. We see that the substudies which have
greater estimates are the ones with higher F-values.
The correlation between F-values and point estimates
is 0.83 (P < 0.001). The substudies with higher
F-values also have tighter CIs and so receive more
weight in the meta-analysis. If we exclude from the
meta-analysis substudies with an F-statistic <10,
then the pooled estimate increases from 0.2300 (SE
0.1372, P¼ 0.09) to 0.4322 (SE 0.1574, P¼ 0.006).
Equally, if we only use the IVs as instruments in
each substudy with an F-statistic410 when regressed
in a univariate regression on the phenotype, then the
pooled estimate increases to 0.2782 (SE 0.1470,
P¼ 0.06). So neither of these approaches is useful in
reducing bias.

Although the expectation of the F-statistic is a good
indicator of bias, with low expected F-statistics indi-
cating greater bias, the observed F-statistic shows
considerable variation. In the 16 substudies of
Figure 2, the F-statistic ranges from 3.4 to 22.6.
From above, we see that the observed F-statistic will
be large when the difference in phenotype between
the two genotypic subgroups ( �x2 � �x1 ¼ �1 þ �2�) is
large. This occurs when � is large and positive and
corresponds with a value of �IV biased in the direction
of the confounded estimate. The observed F-statistic
will be small when �1þ �2� is small. This occurs
when � is negative and will often correspond with
a value of �IV biased in the opposite direction to the
confounded estimate.

In more realistic examples, assuming similar instru-
ments in each study, larger studies would have higher
expected F-statistics due to sample size which would
correspond to truly stronger instruments and less
bias. However, the sampling variation of causal effects
and observed F-statistics in each study would still
tend to follow the pattern of Figure 2, with larger
observed F-statistics corresponding to more biased
causal estimates.

So although it is desirable to use strong instruments,
the measured strength of instruments in data is not a
good guide to the true instrument strength. Any guid-
ance that relies on providing a threshold, such as
excluding studies from a meta-analysis if F < 10, is
flawed and may introduce more bias than it prevents.

Choice of instruments
Including more instruments, where each instrument
explains extra variation in the phenotype, should give
more information on the causal parameter. In order to
investigate how using more instruments affects bias
in the IV estimator, we perform 100 000 simulations
in a model where for each participant indexed by i,
the phenotype xi depends linearly on six dichotomous
genetic instruments (gik¼ 0 or 1, k¼ 1, . . . , 6), a nor-
mally distributed confounder ui and an independent
normally distributed error term exi. Outcome yi is a
linear combination of phenotype, confounder and an
independent error term eyi.

xi ¼
X6

k¼1

�1k gik þ �2 ui þ �xi

yi ¼ �1 xi þ �2 ui þ �yi

ui; �xi; �yi � N ð0; 1Þ independently

ð4Þ

We set �1¼ 0, �2¼ 1, �2¼ 1 so that X is observation-
ally strongly positively associated with Y, but there
is a null causal association. We draw parameters for
the genetic association �1k randomly from a uniform
distribution on 0.15 to 0.25 independently for
each genetic instrument k, corresponding to mean
F-values from 6.8 to 16.3. We use a sample size of
2048 divided equally between the 26

¼ 64 genotypic
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−0.01   ( −1.28 , 1.26 )
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0.05   ( −0.87 , 0.97 )

0.18   ( −0.95 , 1.32 )
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Study
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F-statistic:  5.9 
F-statistic:  8.6 
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F-statistic:  8.2 
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Effect (95% CI)

Figure 2 Forest plot of causal estimates of log(CRP) on
fibrinogen (mmol/l) using data from CGPS divided randomly
into 16 equally sized substudies (each N . 2230). Studies
ordered by causal estimate. F-statistic from regression of
phenotype on three IV. Size of markers is proportional to
weight in meta-analysis
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subgroups. The instruments are uncorrelated, so that
variation explained by each of the instruments is in-
dependent, and the mean F-values do not depend
greatly on the number of IVs (mean 11.2 using 1
IV, 11.5 using 6 IVs).

Table 2 shows the median and 95% range of the
estimates of bias from the 2SLS and LIML methods
using all combinations of all numbers of IVs as the
instrument, with the mean across simulations of the
F-statistic for all the instruments used. We also give
results using the IV with the greatest and lowest F-
values, as well as using all IVs with an F-statistic
greater than 10 in univariate regression of phenotype.

As the number of instruments increases, while the
variance of estimates decreases, using 2SLS, the bias
increases, despite the mean F-value remaining con-
stant. This is because there is a greater risk of imbal-
ances in confounders between the greater number of
genetic subgroups defined by the instruments. The
greatest increase in median bias is from one instru-
ment to two instruments, and coincides with the
greatest increase in precision. With LIML, a similar
increase in precision is observed, but no increase in
bias. Using the single IV with the greatest F gives
markedly biased results, despite a mean F-value of
21.2. There is a similar bias only using IVs with
F410.

For 2SLS, the mean bias is similar to the median
presented, except in the case of a single IV where
the theoretical mean is infinite.12 For LIML, the
mean bias is infinite for all numbers of IVs.27

As a further illustration, we consider the
Framingham Heart Study (FHS), a cohort study mea-
suring CRP and fibrinogen at baseline with complete
data for nine SNPs on the CRP gene for 1500 partici-
pants. The observational estimate of the log(CRP)–
fibrinogen (mmol/l) association is 1.134 (95% CI
1.052–1.217). We calculate the causal estimate of
the association using the 2SLS method with different
numbers of SNPs as an instrument. Figure 3 shows a

plot of the IV estimates against number of instru-
ments, where each point represents �̂IV calculated
using a different combination of SNPs. The range of
values of �̂IV reduces as we include more instruments,
but the median causal estimate across the different
combinations of IVs increases. The 2SLS estimate
using all nine SNPs in an additive per allele model
is �0.005 (95% CI �0.721 to 0.711, P¼ 0.99, F9,1490¼

3.34). If we relax the genetic assumptions of a per
allele model and additivity between SNPs to instead
use a model with one coefficient for each of the 49
genotypes represented in the data, the 2SLS estimate
is 0.792 (95% CI 0.423–1.161, P¼ 0.00003, F48,1451¼

1.66). Using LIML, the estimate is 0.052 (95% CI
�0.706 to 0.809, P¼ 0.89).

Table 2 Median and 95% range of bias using 2SLS and LIML methods

Median 2.5–97.5% quantiles

2SLS LIML Mean F-statistic

Estimate using 1 IV 0.0005 �1.1996 to 0.5629 11.2

2 IVs 0.0242 �0.5453 to 0.4007 �0.0002 �0.6529 to 0.3946 11.2

3 IVs 0.0310 �0.3861 to 0.3367 �0.0004 �0.4805 to 0.3247 11.3

4 IVs 0.0343 �0.3092 to 0.2990 �0.0003 �0.3943 to 0.2832 11.4

5 IVs 0.0361 �0.2622 to 0.2731 �0.0002 �0.3416 to 0.2545 11.4

6 IVs 0.0373 �0.2298 to 0.2531 0.0001 �0.3059 to 0.2328 11.5

IV with greatest F 0.1249 �0.2103 to 0.3645 21.2

IV with least F �0.3028 �3.1756 to 0.7737 3.7

IVs with F410 0.0923 �0.2103 to 0.3645 0.0779 �0.2291 to 0.3612 17.0

Mean F-statistic across 100 000 simulations using combinations of six uncorrelated instruments are provided.
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Figure 3 IV estimates for causal association in FHS of
log(CRP) on fibrinogen (mmol/l) using all combinations of
varying numbers of SNPs as instruments. Point estimates,
associated box plots (median, interquartile range, range)
and mean F-statistics across combinations
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Our conclusions from these analyses are as follows.
Whereas including more genetic IVs will increase pre-
cision, it may also increase bias. Bias is exacerbated
if some of the included IVs are weak, but cannot
be avoided by data-driven selection of instruments.
In addition, using over-parameterized models of gen-
etic association with 2SLS is likely to increase bias.28

Adjustment for measured covariates
If we can find measured covariates which explain
variation in the phenotype, and which are not on
the causal pathway between phenotype and outcome,
then we can incorporate such covariates in our model.
This will increase precision and reduce weak instru-
ment bias. Precision will be further increased if these
covariates can be used to explain variation in the
outcome.

To exemplify this, we perform 100 000 simulations
in a model similar to (4), but with a single IV and
with two separate terms accounting for confounding
between X and Y, corresponding to measured (V) and
unmeasured (U) confounders.

xi ¼ �1 gi þ �2 ui þ �2 vi þ �xi

yi ¼ �1 xi þ �2 ui þ �2 vi þ �yi

ui; vi; �xi; �yi � Nð0; 1Þ independently

ð5Þ

We again set �1¼ 0, �2¼ 1, �2¼ 1 and vary the par-
ameter for the genetic association �1 from 0.05 to
0.55, corresponding to mean F-values from 1.05 to
6.11. We use a sample size of 200 equally divided
between two genotypic groups, gi¼ 0, 1. We calculate
an estimate of causal association from the 2SLS
method, both with and without adjustment for V in
the G-X and X̂-Y regressions. R2 in the regression of X
on V is 33%. The relevant measure of instrument
strength with a measured confounder is the partial
F-statistic for G in the regression of X on G and
V.29 Table 3 shows that adjustment for measured cov-
ariates increases the F-statistic and decreases the
median bias of the IV estimator. For stronger instru-
ments, we also see a reduction in the variability of the
estimator.

As an example, we consider data on interleukin-6
(IL6), a cytokine which is involved in the

inflammation process upstream of CRP and fibrino-
gen.30 Elevated levels of IL6 lead to elevated levels
of both CRP and fibrinogen, so IL6 is correlated
with short-term variation in CRP,31 but is independ-
ent of underlying genetic variation in CRP.21 We
assume that it is a confounder in the association of
CRP with fibrinogen and not on the causal pathway
(if such a pathway exists). As IL6 has a positively
skewed distribution, we take its logarithm. The
Cardiovascular Health Study (CHS) is a cohort study
measuring CRP, IL6 and fibrinogen at baseline, as
well as three SNPs on the CRP gene, with complete
data for 4137 subjects. The proportion of variation in
log(CRP) explained in the data by log(IL6) is 26%. We
calculate the causal estimate of the CRP–fibrinogen
association for each SNP separately and for all the
SNPs together in an additive per allele model, both
without and with adjustment for log(IL6) in the first-
and second-stage regressions. Results are given in
Table 4. We see that after adjusting for log(IL6) the
causal estimate in each case has decreased, its SE has
reduced and the F-statistic has increased. This indi-
cates that both weak instrument bias has been
reduced and precision has been improved.

Borrowing information across studies
The IV estimator would be unbiased if we knew the
true values for the average phenotype in different
genotypic groups. In a meta-analysis context,32 we
can combine the estimates of genotype–phenotype
association from different studies to give more pre-
cise estimates of phenotype levels in each genetic
group. In the 2SLS method, an individual partici-
pant data (IPD) meta-analysis for data on individ-
ual i in study m with phenotype xim, outcome yim

and gikm for number of alleles of genetic variant k
(k¼ 1, 2, . . . K) is:

xim ¼ �0m þ
XK

k¼1

�km gikm þ �xim

yim ¼ �0m þ �1 x̂im þ �yim

�xim � Nð0; �
2
x Þ; �yim � Nð0; �

2
y Þ independently

ð6Þ

Table 3 Bias of the IV estimator, median and interquartile (IQ) range across simulations from model (5)

Not adjusted Adjusted

�1 Mean F Median bias IQ range Partial F Median bias IQ range

0.05 1.05 0.6418 �0.1026 to 1.3859 1.58 0.4659 �0.3830 to 1.3138

0.15 1.39 0.4573 �0.2408 to 1.1406 2.09 0.2916 �0.4442 to 0.9776

0.25 2.06 0.2478 �0.3819 to 0.7446 3.09 0.1290 �0.4535 to 0.5949

0.35 3.08 0.1110 �0.4282 to 0.4821 4.62 0.0460 �0.4104 to 0.3883

0.45 4.42 0.0412 �0.4122 to 0.3414 6.63 0.0115 �0.3468 to 0.2819

0.55 6.11 0.0138 �0.3620 to 0.2691 9.16 0.0030 �0.2822 to 0.2277

Bias for different strengths of instrument without and with adjustment for confounder is provided.
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The phenotype levels are regressed on the instruments
using a per allele additive linear model separately in
each study, and then the outcome levels are regressed
on the fitted values of phenotype (x̂im). The terms �0m

and �0m are study-specific intercept terms. Here,
we assume homogeneity of variances across studies;
we can use generalized method of moments (GMM)16

or Bayesian methods33 to allow for possible
heterogeneity.

If the same genetic variants are measured and
assumed to have the same effect on the phenotype
in each study, we can use common genetic effects
(i.e. �km¼ �k) across studies by replacing the first
line in model (6) with:

xim ¼ �0m þ
XK

k¼1

�k gikm þ �xim ð7Þ

where the coefficients �k are the same in each study.
If the assumption of fixed genetic effects is correct,
this will improve the precision of the x̂im and reduce
weak instrument bias. Model (7) can be used even if,
for example, the phenotype is not measured in one
study, under the assumption that the data are missing
at random (MAR).34

To illustrate, we consider the Copenhagen City Heart
Study (CCHS), Edinburgh Artery Study (EAS), Health
Professionals Follow-up Study (HPFS), Nurses Health
Study (NHS) and Stockholm Heart Epidemiology
Program (SHEEP), which are cohort studies or case–
control studies measuring CRP and fibrinogen levels
at baseline.20 In case–control studies, we use the data
from controls alone since these better represent
cross-sectional population studies. These five studies
measured three SNPs: rs1205, rs1130864 and
rs3093077 (or rs3093064, which is in complete linkage
disequilibrium with rs3093077). We estimate the
causal association using the 2SLS method with differ-
ent genetic effects (Model 6), common genetic effects
(Model 7) and by a fixed-effect meta-analysis of sum-
mary estimates from each study.

Table 5 shows that the studies analysed separately
have apparently disparate causal estimates with wide
CIs. The meta-analysis estimate assuming common
genetic effects across studies is further from the con-
founded observational estimate and closer to the es-
timate from the largest study with the strongest
instruments (CCHS) than the model with different
genetic effects, suggesting that the latter suffers bias
from weak instruments.

Table 5 Estimates of effect of log(CRP) on fibrinogen (mmol/l) from each of five studies separately and from meta-analysis
of studies

Study Participants Causal estimate 95% CI F-statistic df
Observational
estimate (SE)

CCHS 7999 �0.286 �1.017 to 0.445 29.6 (3,7995) 1.998 (0.030)

EAS 650 0.745 0.113 to 1.396 6.9 (3,646) 1.115 (0.056)

HPFS 405 0.758 �0.071 to 1.587 5.3 (3,401) 1.048 (0.081)

NHS 385 �0.906 �2.154 to 0.341 6.1 (3,381) 0.562 (0.114)

SHEEP 1044 0.088 �0.588 to 0.763 10.5 (3,1040) 1.078 (0.051)

Different genetic effects 0.021 �0.362 to 0.403 14.4 (15, 10463)

Common genetic effects �0.093 �0.534 to 0.348 56.6 (3, 10475)

Summary estimates 0.234 �0.107 to 0.575

Studies included number of participants, causal estimates using 2SLS with 95% CI, F-statistic with degrees of freedom (df) from
additive per allele regression of phenotype on SNPs used as IVs, observational estimate (SE). Meta-analyses conducted using IPD
with different study-specific genetic effects, common pooled genetic effects and using summary estimates with inverse-variance
weighting.

Table 4 Estimate and SE of IV estimator for causal effect of log(CRP) on fibrinogen and F-statistic for regression of
log(CRP) on IVs calculated using each SNP separately

Not adjusted Adjusted

IV estimate Estimate (SE) F-statistic Estimate (SE) Partial F

Using rs1205 0.219 (0.201) 79.6 0.173 (0.196) 100.2

Using rs1417938 �0.457 (0.407) 27.6 �0.458 (0.362) 37.2

Using rs1800947 0.354 (0.325) 28.6 0.324 (0.316) 36.5

Using all SNPs 0.186 (0.194) 24.4 0.127 (0.188) 32.2

All SNPs together in additive per allele model, adjusting with and without adjustment for log(IL6) in CHS.

MENDELIAN RANDOMIZATION 761

 at Pennsylvania State U
niversity on O

ctober 6, 2016
http://ije.oxfordjournals.org/

D
ow

nloaded from
 

http://ije.oxfordjournals.org/


The estimate from meta-analysis of study-specific
causal estimates is greater than that from
meta-analysis using the individual participant data.
Although the CCHS study has about 8 times the
number of participants as SHEEP and 12 times as
many as EAS, its causal estimate has a larger SE.
The standard errors in the 2SLS method, calculated
by sandwich variance estimators using strong asymp-
totic assumptions, are known to be underestimated,
especially with weak instruments.35 Also, Figure 2
shows that causal estimates nearer to the observation-
al association have lower variance. So a meta-analysis
of summary outcomes may be biased due to overesti-
mated weights in the studies with more biased
estimates.

In the example at the beginning of the article, if we
use the IPD data to combine the substudies in the
meta-analysis rather than combining summary esti-
mates, then Table 6 shows that the pooled estimates
are less biased. If we additionally assume common
genetic effects across studies, then we recover close
to the original estimate based on analysing the full
dataset as one study and weak instrument bias has
been eliminated.

Discussion
Our conclusions from the investigations in this article
are summarized in the box of key messages, and
amplified below.

This article exemplifies the effect of weak instru-
ment bias on causal estimates in real and simulated
data. We have seen how the magnitude of the bias
depends on the instrument strength through the
mean or expected F-statistic, with lower mean
F-statistics corresponding to greater bias. However, a
novel finding is that, for a study of fixed size and
underlying instrument strength, an observed F-statis-
tic greater than the expected F-value corresponds to
an estimate closer to the observational association

with greater precision; conversely, an observed F-stat-
istic less than the expected F-value corresponds with
an estimate further from the observational association
with less precision. So simply relying on an F-statistic
from an individual study is over-simplistic and simple
threshold rules such as ensuring F410 may cause
more bias than they prevent.

Using the 2SLS method, we demonstrated a
bias-variance trade-off for number of instruments
used in IV estimation. For a fixed mean F-statistic,
as the number of instruments increases, the precision
of the IV estimator increases, and the bias also in-
creases. Using the LIML method, bias did not increase
with the number of instruments. Nevertheless, we
seek parsimonious models of genetic association, for
example using additive per allele effects and including
only the most important IVs, based on biological
knowledge and external information. Provided the
data are not misrepresented, these should provide
the best estimates of causal association. It is also pos-
sible to summarize multiple SNPs using a gene
score.25 If this is done using pre-specified weights,
this makes strong assumptions about the effects of
different SNPs which may itself introduce bias. The
use of a data-derived weighted gene score is equiva-
lent to 2SLS.36 Again, post hoc use of F-statistics to
choose between instruments may cause more bias
than it prevents.

Ideally, issues of weak instrument bias should be
addressed prior to data collection, by specifying
sample sizes, instruments and genetic models using
the best prior evidence available to ensure that the
expected values of F-statistics are large. Where this
is not possible, our advice would be to conduct sen-
sitivity analyses using different IV methods, numbers
of instruments and genetic models to investigate
the impact of different assumptions on the causal
estimate.

Generally, the LIML estimate is less biased than the
2SLS estimate. Difference between the 2SLS and
LIML IV estimates is the evidence of possible bias

Table 6 Estimates of causal effect (SE) of log(CRP) on fibrinogen from CGPS study

Substudies Summary P-value
IPD different

genetic effects P-value
IPD common

genetic effects P-value

1 �0.0468 (0.1510) 0.76

5 �0.0092 (0.1478) 0.95 �0.0273 (0.1479) 0.85 �0.0473 (0.1511) 0.75

10 0.0871 (0.1426) 0.54 0.0370 (0.1430) 0.80 �0.0457 (0.1510) 0.76

16 0.2300 (0.1372) 0.09 0.1530 (0.1372) 0.26 �0.0482 (0.1512) 0.75

40 0.4562 (0.1266) <0.001 0.2986 (0.1272) 0.02 �0.0433 (0.1511) 0.77

100 0.8279 (0.1078) <0.001 0.6782 (0.1056) <0.001 �0.0450 (0.1506) 0.77

250 1.2711 (0.0826) <0.001 1.1499 (0.0793) <0.001 �0.0413 (0.1505) 0.78

Estimates divided randomly into substudies and combined: using 2SLS summary study estimates by fixed-effect meta-analysis,
using individual patient data (IPD) with different and common genetic effects across substudies.
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from weak instruments. When a single instrument is
used, the IV estimate is close to median unbiased.
Although using one instrument will result in an esti-
mator with greater variance, it will on average be less
biased.

Another technique that helps reduce weak in-
strument bias is adjustment for covariates. Including
predictors of the phenotype in the first-stage regres-
sion, or predictors of the outcome in the second-stage
regression, increases precision of the causal estimate.
The former will also increase the F-statistic for the
genetic IVs, and thus reduce weak instrument bias.

In a meta-analysis context, bias is a more serious
issue, as it arises not only from the bias in the
individual studies but also from the correlation be-
tween causal effect size and variance which results
in studies with effects closer to the observational
estimate being over-weighted. By using a single IPD
model, we reduce the second source of bias.
Additionally, we can pool information on the genetic

association across studies to strengthen the instru-
ments. The assumptions of homogeneity of variances
and common genetic effects across studies will often
be overly restrictive. Allowing for heterogeneity across
studies in phenotype variance, genetic effects and in
the causal effects themselves is possible in a Bayesian
framework.33

Supplementary data
Supplementary data are available at IJE online.
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KEY MESSAGES

� Bias from weak instruments can result in seriously misleading estimates of causal effects. Studies
with instruments having high mean F-statistics are less biased on average. However, if a study by
chance has a higher F-statistic than expected, then the causal estimate will be more biased.

� Data-driven choice of instruments or analysis can exacerbate bias. In particular, any guideline such
as F410 is misleading. Methods, instruments and data to be used should be specified prior to
data analysis. Meta-analysis based on summary study-specific estimates of causal association are
susceptible to bias.

� Bias can be alleviated in a single study by using the LIML rather than 2SLS method and by adjusting
for measured confounders, and in a meta-analysis by using IPD modelling. We advocate parsimoni-
ous modelling of the genetic association (e.g. per allele additive SNP model rather than one coeffi-
cient per genotype). This should be accompanied by sensitivity analyses to assess potential bias.
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