RESEARCH NOTE

SHEARING PROPERTIES OF THE SKEWED WOVEN FABRICS

A. Alamdar-Yazdi

Department of Textile Engineering, Yazd University, Yazd, Iran, aalamdar@yazduni.ac.ir

(Received: Aug. 1, 2004 - Accepted in Revised Form: Aug. 5, 2005)

Abstract This experimental work deals with the effects of skewness on the shearing properties of the worsted woven fabric. Shearing properties of 160 samples are measured by two methods (KES and concentrated loading methods) and the results are compared. Both methods show a positive correlation between skewness and shear rigidity indicating, as the skewness goes up the shear rigidity also increases. Correlation between shear rigidity evaluated by KES and skewness was 0.725, but new parameter (EML) extracted from the concentrated loading curve (Extension at 200 gram-load) showed more sensitivity to fabric skewness and gave a higher correlation (-0.866) to it. In other words, the concentrated loading method shows the relationship between skewness and the shear rigidity (G).

Keywords Skewness, Shear rigidity, Concentrated loading method, KES method, Fabric deformation

چکیده این کار تجربی، مرتبط با اثرات سرکجی بر روی خواص برشی پارچههای فاستونی (از نوع تاری – پودی) است. خواص برشی ۱۶۰ نمونه پارچه فاستونی از طریق دو روش کاواباتا و نیروی متمرکز اندازه گیری و نتایج باهم مقایسه گردیده است. هر دو روش، همبستگی مثبت بین سرکجی و مقاومت برشی نشان دادهاند به این معنی که هر چه سرکجی در پارچه افزایش یابد مقاومت برشی نیز افزایش مییابد. همبستگی بین سرکجی و مقاومت برشی ارزشیابی شده توسط روش کاواباتا ۱۹۷۰ است. درحالیکه، (EML) پارامتر گرفته شده از منحنی روش نیروی متمرکز، حساسیت بیشتری نسبت به سرکجی نشان داده و همبستگی ۱۸۶۴، ارائه داده است.

1. INTRODUCTION

Woven fabrics are constructed with lengthwise (warp) and crosswise yarns (weft) interlaced at right angles. Skewness in woven fabric is a condition where the warp and weft yarns, although straight, are not at right angles to each other [1] (Fig.1).

Skewness causes difficulties during tailoring, sewing and three-dimensional forming process. Garments made from skewed fabric may behave

differently on each part of the body and as a result lose the proper body shape. This work investigated the relationship between fabric skewness and the shearing property of the worsted woven fabrics. Skewness can occur in warping, weaving and finishing processes. The main cause at any step of the finishing process is the variation in running speed across the width of the fabric. In finishing process, skewness often occurs when wet fabric is attached to chain driven tentering frames and run through a heated oven. Fabric will become skewed

International Journal of Engineering

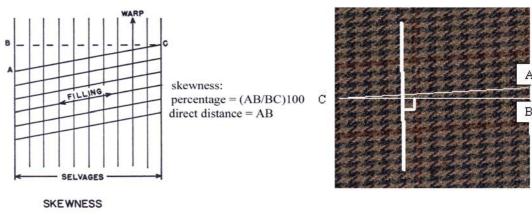


Figure 1. Fabric skewed

if it is attached to the frames so that the filling yarns are pulled off the 90-degree alignment or if the chains on either side move at different speeds. However, skewness takes place through the mechanism of fabric shear as the warp and filling yarns rotate at the intersections from a right angle position to form obtuse or acute angle.

During the process of fabric forming, the main element causing such problem is tension variations across the width of the warp beam [2]. In case of sectional warping, improper slope or tension applied to each band of warp can cause skewness [3].

Fabric skewness is common, and because it is difficult to control in the production process, the amount may vary within continuous yardage. Textile producers try to avoid this problem especially in the case of high quality fabrics, and to help alleviate it, automatic weft straightening devices are used during the finishing processes [4]. However, no mandatory standards are used by the industry to define excessive fabric skewness. The Worth Street Textile Rules [5] state that tolerances of 2.5% to 3% of the fabric width are reasonable. Powderly [6] believes for some fabrics more restrictive standards should be required. Skewness is expressed as a percent of the greatest distance of angularity displacement from a line of the fabric divided by the width of the fabric.

A literature search revealed a paucity of studies on skewness in woven fabrics. No studies were found that investigated the effects of skewness on shearing properties of woven fabrics. The only work done on the drape [7] shows that the properties of woven fabrics are effected by the skewness. However, when woven fabric shear is measured, the hysteresis diagram is generally symmetric because the fabric is sheared at the same angle to left and to right. But when the yarns are not at right angles hysteresis will be asymmetric [8].

2. MATERIALS AND MESSUREMENTS

2.1. Materials

A fabric manufacturer induced different levels of skewness into each of ten 60-meter rolls of woven fabric. The fabrics were gray but the yarns were dyed (no finishing treatment was done on the fabrics).

Material used	Yarı	n specificati	on
1- Australian merino fleece wool top as per international standard (IWTO)	Twist/	Nm	
Wool specification: 22 micron (maximum average), 65 mm (minimum	Single	Plied	
average), sliver weight 20 gr/m	600 (Z)	550 (S)	48/2
2- Dupont Polyester Tops, 20gr/m			
Polyester tops, 3 den, 76 mm, raw white, semi dull, low pilling			

They were all, 2/2-twill weave, 28 warp/cm, 22 weft/cm and 1.5-meter width, woven on the Dornier SW5 weaving machine (200 picks per minute) at the condition of 65% R. H. and 22° C.).

Warp and filling yarns were the same and were made of 45% wool 55% polyester with the specification shown in Table 1

2.2. Measurements

2.2.1 Skewness

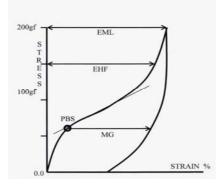
Fabric skewness was measured according to ASTMD-3882-88 test method [9]. Based on the level of skewness, the fabrics were cut, ranged and labeled so that a total of 160 sets of samples (3 pieces per each level of skewness) were ready to be tested.

2.2.2 Shearing

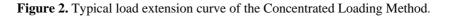
a) Concentrated loading method [10]

After 24 hours of conditioning (65% RH and $22\degree$ C), a rectangular specimen 24cm long and 5cm wide was cut from every sample fabric, at angle of 45° to the warp direction, (which is the same to the

weft direction) using a special template. The strip is then folded in half to form a double ply of face to face fabrics 12-cm. long. The puncher inserts an eyelet 1-cm from the ply ends opposite to the fold and the second eyelet is inserted 10-cm far from the first one after possible slack is removed. (Doubling the strip makes the samples free from any shear strain, which could be developed under tensile stress).


The samples were then subjected to a single loading-unloading cycle at a rate of 10 mm/min with a 200g maximum force using a simple attachment to the jaws of Testometric-micro 350 made in the Shirly developments, with 10 kg load cell.

Features of the Loading unloading curve


Fig. 2 shows a typical load extension curve of the concentrated loading method and the parameters extracted from the curve.

b) KES method

Shearing behavior of the samples was also measured on Kawabata Tensile and Shear tester-FB1 according to the testing instructor manual [12]. The results from the two methods are shown in Appendix I.

Sym.	Parameters	Unit
PBS	Slope at critical point [11]	.gf
EML	Strain at 200-gram load	%
EHF	Strain at 150-gram load	%
MG	Maximum distance (strain) between loading-unloading curves	%

International Journal of Engineering

3. RESULTS AND DISCUSSION

Table 2 shows the correlation coefficient between skewness and the parameters measured by the two methods. The results show a direct relationship between skewness and shearing rigidity (G). That is, as the skewness goes up, the shearing rigidity increases.

Shear rigidity is dependent upon the relationship between warp and weft at the joint points. In other words, shearing rigidities varies depending upon how tight the two yarns (warp and weft) are in contact. As the warp and weft bed into each other at joint point, the friction force between them is high and as a result shearing rigidity is increased.

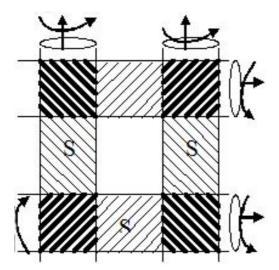
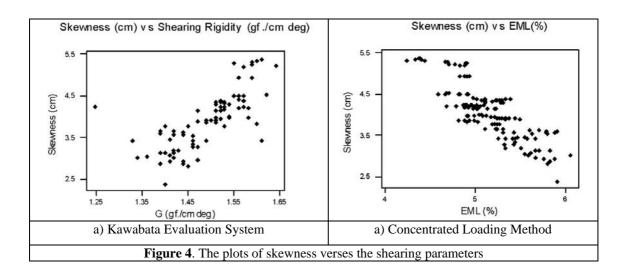


Figure 3. Contact point and the twist direction

As an example when the twist direction for warp and weft is the same, the twist on the underside of the top thread is in the same direction as that on the upper side of the lower thread (Fig. 3). Such condition is favourable for the threads to bed into each other and form a compact cloth in which the weave and thread structure are not distinct. Naturally such case leads to have higher shearing rigidity, giving a lower degree of freedom to the yarn movement.

It is also obvious that as the tension (warp and weft) during the weaving process goes high the compactness at crossing point is also higher and as a result shearing rigidity is increased. So due to the following facts the direct relation between skewness in woven fabric and shearing rigidity can be explained and accepted.

- In a weft skewed fabric, filling yarns cover a longer pass (at constant length) and as a result the tightness at crossing point is higher.
- Skewed yarns expand crossing point area and cause the yarns and fibres to be more in touch and contact to each other and increase the friction forces between the yarns.


Table 2 also shows a high correlation of -0.866 between skewness and EML extracted from the loading-unloading curve of the Concentrated Loading Method.

The difference between the KES and the Concentrated Loading Method indicates the sensitivity of the last method. The cause of such difference between the two methods is due to manner of the deformation.

No doubt that Shearing rigidity is caused mainly by the resistance against change of the interlacing angle, which is caused by friction and some elastic restriction to the rotation of the interlacing angle between the warp and weft yarns.

Shearing deformation mode adopted in the KES-FB testing system, (Fig 5) is based on interlacing angle change, (yarns are almost straightened by pre-tension load inserted). This type of deformation shows the force needed to overcome the friction between yarns especially at contact point.

Table 2. Correlation coefficients between Skewness & Shearing properties.								
	KES she	earing par	ameters		Cond	centrated l	oading met	hod
	G	HG.5	HG5		EHF	PBS	MG	EML
Skewness	0.725	0.787	0.744		-0.712	0.561	-0.754	-0.866

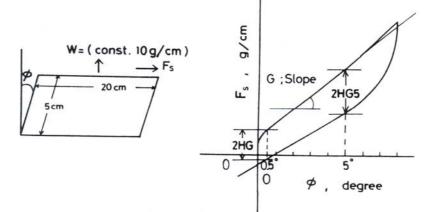


Figure 5. Shearing deformation modes (Kawabata Evaluation System)

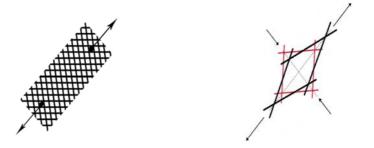


Figure 6. Shearing deformation modes (Concentrated Loading Method)

International Journal of Engineering

In the case of concentrated loading method, the deformation is completely different (Fig. 6). It contains yarn compression and straightening, yarn movement and slippage at contact point, and angle change. Therefore, the final extension (EML) contains the maximum possible configuration includes which warp and change weft straightening, yarn slippage or movement (at the cross points toward the center of the rectangular), and movement or possible slippage of the fibers inside the yarns. The negative sign of the correlation value (between Skewness & strain at 200 gram force) indicates that as the value of the skewness raises the value of the extracted feature (EML) decreases. This means that as the skewness increases the chance for varns to move and rotate on each other is decreased.

4. CONCLUSION

1. Shearing behavior is related to the warp and weft alignment so that, as the skewness increases the shearing rigidity also increases.

2. Correlation between skewness of the fabrics and the maximum extension of the concentrated loading curves denotes that the behavior of the fabric due to tensile load is affected by the skewness.

3. Concentrated Loading Method could be a valuable tool to evaluate the shearing properties of the woven fabrics. In addition, textile producers can take the advantage and use this method to control the effect of the production parameters on the quality of their woven fabric products.

5. ACKNOWLEDGEMENT

The author is thankful to Karkhanegat Pashmbafi Afshar (spinning, weaving and finishing Company, Yazd, Iran) for the support.

6. REFERENCES

- 1. Kaswell E R., "Wellington Sears Handbook of Industrial Textiles", (Wellington Sears Company, INC), (1963), 455.
- 2. Ghavamnia S, "Parameters making Skewed Fabric", Master Dissertation, Azad University, Yazd, Iran,(1998).
- 3. Alavi F and Abdolmotalebi N, "Role of the Warping on the weaving quality", Department of Textile Engineering, (project work) The University of Yazd, (1999)
- 4. Riedel D, "Revolutionary process for automatic straightening of weft-distorted fabric". **International Textile Bulletin**, 32, (1986) 17-20.
- 5. Worth street textile rules, Washington, DC: American Textile Manufactures Association, (1986).
- 6. Powderly, D. "Fabric: Inspection and grading". Columbia, SC: Bobbin International, (1989).
- Moore C L, Gurel L M, and Lentner M., "Effect of Fabric Skewness on the Drape of Four-Gore Skirts", Clothing and Textile Research Journal, Vol. 13, No. 2 (1995), 131-138
- 8. Cusick, G. E, "Resistance of Fabrics to shearing forces", **Journal of the Textile Institute**, 52 (1961), T395-T406.
- 9. American Society for Testing and Materials. (Annual Book of ASTM standards), Vol. 07.01, (1989).
- 10. Alamdar-Yazdi A, A new methodology of evaluation of the low stress mechanical properties of woven fabrics, Ph D thesis, the University of Manchester Institute of Science and Technology,(1998)
- Alamdar-Yazdi A, "Effective Features of the Concentrated loading curves (Woven Fabric Objective Measurement)", International Journal of Engineering, Vol. 16, No. 2, (2003)197-208
- 12. Kawabata S and Niwa M, "Objective Measurement of Fabric Mechanical Property and Quality- its Application to Textile and Apparel Manufactures", **International Journal of Clothing Science and Technology**, 3, No. 1, (1991), P5

182- Vol. 18, No. 2, May 2005

International Journal of Engineering

Skewness	Kawa	ıbata Eva.	System	Append Cone		Loading N	lethod		
Cm	G	HG.5	HG5	EML	EHF	MG	PBS	Fw.gr	Art. no
2.38	1.40	1.900	3.880	5.900	4.890	2.780	34.130	360	5525
2.38	1.40	1.990	4.990	5.900	4.890	2.780	34.130	360	5525
2.80	1.45	1.960	4.440	5.800	4.660	2.730	36.100	370	5418
	1.45	2.040	4.580	5.800	4.660	2.730	36.100	370	5418
2.87	1.44	1.980	3.990	5.830	4.280	2.740	35.700	367	5440
	1.44	2.310	4.050	5.830	4.280	2.740	35.700	367	5440
2.88	1.39	1.920	4.210	5.820	4.430	2.630	35.660	360	5441
	1.39	2.020	4.390	5.820	4.430	2.630	35.660	360	5441
2.92	1.41	1.990	4.380	5.760	3.930	2.700	35.880	362	5466
	1.41	2.120	4.700	5.760	3.930	2.700	35.880	362	5466
2.93	1.44	2.050	4.100	5.880	4.180	2.730	36.010	360	5391
	1.44	2.200	4.320	5.880	4.180	2.730	36.010	360	5391
2.96	1.47	2.120	4.600	5.660	4.330	2.710	36.100	365	5483
2.00	1.47	2.230	4.750	5.660	4.330	2.710	36.100	365	5483
3.00	1.42	2.110	4.500	5.590	3.870	2.730	36.500	362	5392
2.00	1.42	2.320	4.750	5.590	3.870	2.730	36.500	362	5392
3.00	1.34	2.080	4.240	6.050	4.330	2.710	36.890	367	5480
3.03	1.34 1.36	2.120 1.920	4.140 3.880	6.050 5.550	4.330 3.680	2.710 2.680	36.890	367 370	5480 5489
5.05	1.36	2.100	3.880 4.080	5.550 5.550	3.680 3.680	2.680	36.600 36.600	370 370	5489 5489
3.06	1.30	1.980	4.080	5.610	3.970	2.080	36.730	370	5489 5492
5.00	1.41	2.100	4.300 4.530	5.610	3.970	2.730	36.730	380	5492 5492
3.12	1.41	2.100	4.330 4.150	5.660	4.300	2.730	36.780	372	5504
5.12	1.42	2.320	4.500	5.660	4.300	2.680	36.780	372	5504
3.14	1.40	2.200	4.280	5.830	4.810	2.660	35.130	362	5505
0111	1.40	2.310	4.510	5.830	4.810	2.660	35.130	362	5505
3.14	1.39	2.130	4.320	5.700	4.630	2.910	32.600	360	5510
	1.39	2.200	4.600	5.700	4.630	2.910	32.600	360	5510
3.18	1.43	2.330	4.490	5.330	4.460	1.990	33.610	362	5514
	1.43	2.500	4.510	5.330	4.460	1.990	33.610	362	5514
3.18	1.42	2.180	4.350	5.500	4.880	2.160	34.660	362	5519
	1.42	2.300	4.590	5.500	4.880	2.160	34.660	362	5519
3.26	1.47	2.120	4.600	5.320	4.730	2.190	36.990	367	5395
	1.47	2.220	4.860	5.320	4.730	2.190	36.990	367	5395
3.28	1.46	2.270	4.630	5.420	4.330	2.830	36.740	360	5546
	1.46	2.380	4.890	5.420	4.330	2.830	36.740	360	5546
3.32	1.46	2.210	4.660	5.440	4.380	2.440	35.900	350	5526
o (o	1.46	2.300	4.900	5.440	4.380	2.440	35.900	350	5526
3.42	1.49	2.290	4.700	5.330	4.330	1.920	36.600	360	5394
2.40	1.49	2.360	4.800	5.330	4.330	1.920	36.600	360	5394
3.42	1.33 1.33	2.220	4.590	5.410	4.160 4.160	2.040	37.400	360	5401 5401
3.42	1.55	2.410 2.310	4.780 4.800	5.410 5.250	4.100	2.040 2.470	37.400	360 367	5401 5397
3.42	1.61	2.310	4.800 5.300	5.250 5.250	4.320	2.470	41.800 41.800	367	5397
3.43	1.49	2.440	4.850	5.440	4.010	1.990	38.600	360	5402
5.45	1.49	2.260	5.100	5.440	4.010	1.990	38.600	367	5402
3.43	1.46	2.320	4.900	5.570	4.090	2.010	36.200	360	5527
5.15	1.46	2.500	5.130	5.660	4.090	2.010	36.200	360	5527
3.44	1.41	2.270	4.980	5.460	4.020	1.980	36.110	360	5399
	1.41	2.400	5.170	5.550	4.020	1.980	36.110	360	5399
3.54	1.46	2.330	4.580	5.630	4.250	2.110	35.140	370	5430
	1.46	2.500	4.800	5.800	4.250	2.110	35.140	370	5430
3.55	1.44	2.300	4.680	5.880	4.290	2.180	34.600	370	5432
	1.44	2.510	4.900	5.790	4.290	2.180	34.600	370	5432
3.56	1.42	2.310	4.970	5.310	4.060	2.040	37.900	377	5439
	1.42	2.500	5.250	5.420	4.060	2.040	37.900	377	5439
3.60	1.39	2.390	4.880	5.900	4.420	2.110	32.300	362	5448
	1.39	2.440	5.100	5.790	4.420	2.110	32.300	362	5448

International Journal of Engineering

Skewness	Kawa	ıbata Eva.			Concentrate	ed Loading	Method		
Cm	G	HG.5	HG5	EM		-	PBS	- Fw.	gr Art. no
	1.44	2.400	5.100	5.70			35.100	367	7 5451
3.61	1.44	2.520	5.330	5.60			35.100	367	
2.64	1.39	2.200	4.870	5.31			38.100	360	
3.64	1.39	2.410	5.110	5.24			38.100	360	
2.44	1.42	2.420	5.110	5.10			38.400	360	
3.66	1.42	2.490	5.100	5.22			38.400	360	
2 77	1.40	2.380	5.010	5.26	50 3.910	1.860	38.120	365	5 5488
3.77	1.40	2.440	5.240	5.24	40 3.910	1.860	38.120	365	5 5488
2 77	1.45	2.470	4.980	5.27	0 3.920	1.880	38.060	367	7 5485
3.77	1.45	2.620	5.200	5.19	0 3.920	1.880	38.60	367	7 5485
3.77	1.53	2.570	5.180	5.21	0 3.900) 1.970	38.80	375	5 5490
5.11	1.53	2.630	5.360	5.24	40 3.900	0 1.970	38.80	375	5 5490
3.83	1.60	2.610	5.030	4.90	0 4.010) 1.910	39.00	372	2 5497
5.85	1.60	2.800	5.240	5.02			39.00	372	
3.84	1.51	2.530	4.980	4.81			38.90	380	
5.04	1.51	2.670	5100	4.88			38.90	380	
3.86	1.49	2.310	4.730	4.93			38.70	380	
5.00	1.49	2.480	4.950	4.98			38.70	380	
3.88	1.47	2.440	5.150	5.33			36.550	370	
5.00	1.47	2.600	5.360	5.49			36.550	370	
3.91	1.50	2.560	5.050	5.24			37.990	372	
5.91	1.50	2.700	5.250	5.33			37.990	372	
3.92	1.49	2.480	4.990	5.44			37.110	365	
5.72	1.49	2.600	5.050	5.37			37.110	365	
3.92	1.51	2.520	5.080	5.26			37.820	365	
5.72	1.51	2.600	5.220	5.29			37.820	365	
3.94	1.52	2.550	4.300	5.21			37.940	355	
5.51	1.52	2.540	4.520	5.17			37.940	355	
3.96	1.58	2.560	5.100	5.08			38.010	365	
	1.58	2.550	5.320	5.12			38.010	365	
3.97	1.54	2.490	4.990	4.91			38.100	365	
	1.54	2.680	5.170	4.98			38.100	365	
3.98	1.51	2.510	5.120	4.90			38.200	355	
	1.51	2.620	5.300	4.92			38.200	355	
4.00	1.54	2.590	5.190	5.06			38.110	365	
	1.54	2.720	5.370	5.04			38.110	365	
4.13	1.51	2.520	5.080	5.22			37.700	370	
	1.51 1.47	2.640 2.470	5.210 4.490	5.01 5.13			37.700	370 365	
4.14	1.47						37.960		
	1.47	2.500 2.510	4.610 5.180	5.21 4.97			37.960 37.950	365 360	
4.15	1.52	2.550	5.310	5.03			37.950	360	
	1.52	2.540	5.200	4.88			38.300	365	
4.16	1.53	2.340	5.430	4.80			38.300	365	
	1.53	2.490	5.130	4.68			38.220	367	
4.20	1.58	2.720	5.330	4.79			38.220	367	
	1.56	2.530	5.180	4.99			38.100	367	
4.21	1.56	2.650	5.220	5.05			38.100	367	
	1.25	2.490	4.980	4.94			37.890	347	
4.22	1.25	2.510	5.100	4.96			37.890	347	
	1.23	2.540	5.270	4.89			38.240	370	
4.22	1.57	2.600	5.400	4.91			38.240	370	
	1.57	2.560	5.500	4.86			38.300	370	
4.23	1.52	2.650	5.720	4.88			38.300	370	
	1.52	2.510	5.370	5.01			37.400	372	
4.24	1.53	2.600	5.500	5.09			37.400	372	
			2.200	2.02		1.770	271.00	571	=>

Continuation of the appendix

184- Vol. 18, No. 2, May 2005

International Journal of Engineering

Skewness	Kawabata Eva.System				Con	centrated	_				
Cm	G	HG.5	HG5		EML	EHF	MG	PBS	_	Fw.gr	Art. no
	1.54	2.490	5.220		5.100	4.120	1.910	37.550	-	370	5438
4.30	1.54	2.530	5.180		5.110	4.120	1.910	37.550		370	5438
	1.51	2.510	4.990		5.280	4.230	2.030	37.030		367	5445
4.30	1.51	2.550	5.150		5.300	4.230	2.030	37.030		367	5445
	1.53	2.520	5.100		5.110	4.130	1.940	37.440		362	5455
4.32	1.53	2.610	4.980		5.190	4.130	1.940	37.440		362	5455
1.22	1.52	2.550	5.050		5.290	4.070	1.990	37.660		369	5378
4.33	1.52	2.400	5.200		5.230	4.070	1.990	37.660		369	5378
1.22	1.53	2.560	5.120		5.060	4.080	2.020	37.960		365	5388
4.33	1.53	2.610	5.060		5.110	4.080	2.020	37.960		365	5388
1.24	1.51	2.480	4.990		5.240	4.180	2.100	37.170		367	5457
4.34	1.51	2.380	5.180		5.270	4.180	2.100	37.170		367	5457
4.27	1.57	2.440	5.200		5.380	3.900	2.230	37.910		362	5458
4.37	1.57	2.340	5.410		5.330	3.900	2.230	37.910		362	5458
4.27	1.52	2.540	5.050		5.110	4.050	1.970	37.650		365	5465
4.37	1.52	2.660	5.320		5.010	4.050	1.970	37.650		365	5465
4 40	1.56	2.510	5.100		4.970	3.780	1.870	38.120		365	5463
4.40	1.56	2.700	5.420		4.970	3.780	1.870	38.120		365	5463
4.49	1.55	2.570	5.170		4.920	3.810	1.920	37.890		365	5473
4.49	1.55	2.720	5.320		4.910	3.810	1.920	37.890		365	5473
4.50	1.56	2.520	5.060		4.810	3.710	1.930	38.340		372	5476
4.50	1.56	2.750	5.300		4.830	3.710	1.930	38.340		372	5476
4.50	1.57	2.540	5.180		4.590	3.620	1.840	38.350		370	5481
4.50	1.57	2.550	5.200		4.660	3.620	1.840	38.350		370	5481
4.51	1.62	2.550	5.200		4.710	3.610	1.810	38.400		355	5482
4.51	1.62	2.490	5.320		4.680	3.610	1.810	38.400		355	5482
4.91	1.59	2.530	5.190		4.830	3.700	1.950	38.340		350	5420
4.71	1.59	2.490	5.180		4.880	3.700	1.950	38.340		350	5420
4.93	1.56	2.540	5.210		4.900	3.780	1.870	38.100		365	5377
4.75	1.56	2.600	5.400		4.930	3.780	1.870	38.100		365	5377
5.18	1.57	2.550	5.060		4.880	3.790	1.850	38.120		357	5474
5.10	1.57	2.700	5.400		4.830	3.790	1.850	38.120		357	5474 5202
5.20	1.64	2.580	5.300		4.770	3.700	1.850	38.330		360	5393 5202
5.20	1.64	2.720	5.510		4.710	3.700	1.850	38.330		360	5393
5.24	1.59	2.600	5.220		4.910	3.770	1.930	38.110		365	5472
5.24	1.59	2.550	5.250		4.890	3.770	1.930	38.110		365	5472
5.28	1.55	2.550	5.270		4.690	3.600	1.900	38.320		360	5442 5442
5.20	1.55	2.600	5.300		4.660	3.600	1.900 1.810	38.320 38.310		360	5442
5.30	1.59 1.59	2.490 2.600	5.130 5.200		4.240 4.440	3.570 3.570	1.810	38.310		365 365	5373 5373
0.00	1.59	2.800	5.200 5.500		4.440	3.610	1.810	38.310		363 357	5375 5456
5.32	1.60	2.700	5.550		4.400 4.330	3.610	1.790	38.400 38.400		357 357	5456 5456
	1.60	2.900	5.480		4.330 4.370	3.580	1.790	38.400 38.600		367 367	5436 5409
5.35	1.61	2.780	5.600		4.370	3.580	1.760	38.600		367	5409 5409
. <u></u>	1.01	2.770	5.000		4 .300	5.560	1.700	50.000		507	5407

Continuation of the appendix

eg)

	U		2	$\langle \mathcal{O} \rangle$	\mathcal{O}	
					c	•
HG.5 =	Hysteresis	of	shea	r force at	0.5	shear angle in
	gf./cm					

- HG5 = Hysteresis of shear force at 5° shear angle in gf./cm Fw.gr = Fabric length weight in grams

International Journal of Engineering

Art no. =	Article number
EML =	Strain at 200-gram load in percentage
EHF =	Strain at 150-gram load in percentage
MG =	Maximum distance (strain) between loading-
	unloading curves in percentage
PBS =	Slope at critical point in gram force