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T cells of the immune system, upon maturation, differentiate into
either Th1 or Th2 cells that have different functions. The decision
to which cell type to differentiate depends on the concentrations
of transcription factors T-bet (x1) and GATA-3 (x2). The population
density of the T cells, φ(t, x1, x2), satisfies a conservation law
∂φ/∂t + (∂/∂x1)( f1φ) + (∂/∂x2)( f2φ) = gφ where f i depends on
(t, x1, x2) and, in a nonlinear nonlocal way, on φ. It is proved that,
as t → ∞, φ(t, x1, x2) converges to a linear combination of 1, 2,
or 4 Dirac measures. Numerical simulations and their biological
implications are discussed.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The development of a multicellular organism from a single fertilized egg cell to specialized cells
depends on programs of gene expression. Following the initial stage of cell determination is a mat-
uration process called differentiation by which cells acquire specific recognizable phenotypes and
functions. In particular, the T lymphocytes of the immune system, upon maturation, differentiate into
either Th1 or Th2 cells that have different functions. The decision to which of the cell type to differ-
entiate depends on the concentration of transcription factors T-bet (x1) and GATA-3 (x2). If x1 is high
(low) and x2 is low (high), the T cell will differentiate into Th1 (Th2).

A mathematical model by Yates et al. [15] describes the differentiation process in terms of two
differential equations

dxi

dt
= f i(t, x1, x2, φ) (i = 1,2), (1.1)
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where φ(t, x1, x2) is the population density of cells with concentration (x1, x2) at time t; φ satisfies
the conservation of mass law

∂φ

∂t
+ ∂

∂x1
( f1φ) + ∂

∂x2
( f2φ) = gφ, (1.2)

where g is the growth rate. Here f i(t, x1, x2, φ) is a nonlinear, nonlocal function of φ(t, x1, x2).
In this paper we analyze the asymptotic behavior of φ(t, x1, x2) as t → ∞. We prove that

φ(t, x1, x2) →
∑

ω jδ(a j
1,a j

2)
as t → ∞, (1.3)

where the limit is a linear combination of Dirac measures at (a j
1,a j

2), and the number of terms in the
linear combination is 1, 2 or 4, depending on the parameters which occur in the definition of the f i .
Conservation laws of the form (1.2), but with very different velocity terms ( f1, f2), were considered
in [6, Chapter 3], [7,8,16] and [9, Chapter 3], and some asymptotic estimates were derived in [6,7,9].
A theoretical study of bistable switches appeared in [3]. An analytic approach in studying multista-
tionary dynamics for neural networks was reported in [2,12,14]. We finally note that mathematical
models of differentiation of T cell and other cells appeared in [4,5] and [13], respectively; see also [1,
Chapter 9].

2. The mathematical model

Lymphocytes are white blood cells that play important roles in the immune system. T cells and B
cells are two major types of lymphocytes. B cells produce antibodies against pathogens while T cells
are involved in autoimmunity. Th lymphocytes represent a subtype of T cells that are identified by the
presence of surface antigens called CD4; they are referred to as CD4+ T cells. Other subtypes of T cells
include cytotoxic T cells (CD8+) and regulatory T cells. Th cells are the most numerous of the T cells
in a healthy person. After an initial antigenic stimulation, Th lymphocytes differentiate into either
one of two distinct types of cells called Th1 and Th2. Th1 cells make IFNγ that combat intracellular
pathogens, and this immune response, if abnormal, is associated with inflammatory and autoimmune
diseases. Th2 cells produce cytokines that activate B cells to produce antibodies against extracellular
pathogens; this response, if abnormal, is associated with allergies such as asthma. Whether a precur-
sor Th cell (henceforth to be denoted by Th0) becomes Th1 or Th2 depends on ‘polarizing’ signals.

The Yates et al. [15] model of Th differentiation is based on the interaction of two transcription
factors, T-bet and GATA-3. High protein level of T-bet or GATA-3 corresponds to the Th1 phenotype or
the Th2 phenotype. We shall denote by S1 and S2 the Th1 and Th2 polarizing cytokines, and by x1
and x2 the concentrations of T-bet and GATA-3, respectively, in a Th0 cell. Then the dynamics of x1
and x2 is described by

dx1

dt
= −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

S1

ρ1 + S1

)
· 1

1 + x2/γ2
+ β1, (2.1)

dx2

dt
= −μx2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

S2

ρ2 + S2

)
· 1

1 + x1/γ1
+ β2. (2.2)

The first term on the right-hand side of each equation represents the rate of protein degradation. The
last term βi is the constant basal rate of protein synthesis. The autoactivation rate of protein xi is
represented by the term

αi
xn

i

kn + xn ,

i i
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where n is the Hill exponent that tunes the sharpness of the activation switch. The contribution of
external signaling to the rate of growth in xi is given by the term

σi
Si

ρi + Si
.

The cross-inhibition between x1 and x2 occurs at both the autoactivation level and external (mem-
brane) signaling level, and is represented by the cross-inhibition factors

1

1 + xi/γi
.

The parameter γi represents the value of xi at which the ratio of production of x j , i �= j (due to the
combined autoactivation and external signaling) is halved.

We denote by φ(t, x1, x2) the population density of CD4+ T cells with concentration (x1, x2) at
time t . Then the total levels of expression of T-bet and GATA-3, at time t in the cell population are
given, respectively, by

∫
xiφ(t, x1, x2)dx1 dx2, i = 1,2.

If we denote by Ci(t) the exogenous (non-T cell) signals that stimulate T-bet and GATA-3 expressions,
then the total signal Si is given by

Si(t) = Ci(t) + ∫
xiφ(t, x1, x2)dx1 dx2∫

φ(t, x1, x2)dx1 dx2
, i = 1,2. (2.3)

Here, a normalization by total cell numbers is adopted to impose the limitation of access to cytokines
due to cell crowding. The evolution of the population density is then derived from the equation of
continuity, or mass conservation law:

∂φ

∂t
+ ∂

∂x1
( f1φ) + ∂

∂x2
( f2φ) = gφ, (2.4)

where

f1
(
x1, x2, S1(t)

) = −μx1 +
(
α1

xn
1

kn
1 + xn

1
+ σ1

S1(t)

ρ1 + S1(t)

)
· 1

1 + x2/γ2
+ β1, (2.5)

f2
(
x1, x2, S2(t)

) = −μx2 +
(
α2

xn
2

kn
2 + xn

2
+ σ2

S2(t)

ρ2 + S2(t)

)
· 1

1 + x1/γ1
+ β2. (2.6)

In [15], the extrinsic and intrinsic cytokine interactions during the differentiation process were
described in detail. Several numerical simulations have been made there to illustrate the changes
of percentage of population under varying magnitudes of stimulus. Switches of population between
Th0 to Th2 (high GATA-3) or from Th1 (high T-bet) to Th0, and then to Th2, under various levels of
stimulus by extrinsic cytokines IL4 and IL12 were demonstrated.

The primary aim of the present paper is to analyze the behavior of the dynamical system (2.1)–
(2.2) and the associated conservation law (2.4). We prove that when the parameters in (2.1)–(2.2)
belong to a well-defined regime Pi , 1 � i � 6, the solution φ(t, x1, x2) will tend to 1-peak Dirac
measure if i = 1, 2-peak Dirac measures if i = 2,3,4,5 and 4-peak Dirac measure if i = 6. We use
numerical simulation to examine the intermediate behavior of φ(t, x1, x2), and to draw biological
implications.
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Note that (2.4) is associated with the velocity field described by

dx1(t)

dt
= f1

(
x1(t), x2(t), S1(t)

)
, (2.7)

dx2(t)

dt
= f2

(
x1(t), x2(t), S2(t)

)
. (2.8)

We consider (2.4) on a (closed) domain

Ω = [0, A1] × [0, A2]

which is an attracting set for (2.7)–(2.8); for convenience, we choose

Ai = αi + σi + βi

μ
, i = 1,2. (2.9)

We assume that

φ(0, x1, x2)|∂Ω = 0,

and

φ(t, x1, x2)|∂Ω = 0 for all t > 0.

Assuming that g = g(t), and setting G(t) = ∫ t
0 g(s)ds,

ψ(t, x1, x2) = e−G(t)φ(t, x1, x2),

we can replace (2.4) by

∂ψ

∂t
+ ∂

∂x1
( f1ψ) + ∂

∂x2
( f2ψ) = 0, (2.10)

with

Si(t) = Ci(t)e−G(t)

N0
+

∫
xiψ(t, x1, x2)dx1 dx2

N0
, (2.11)

where N0 is the initial total population and the integral is taken over Ω.

Let Φ(t, x1, x2) be the solution map (flow map) of (2.7)–(2.8) and let Ω(t) = Φ(t,Ω). Then the
transport equation (2.10) yields

d

dt

∫
Ω(t)

ψ(t, x1, x2)dx1 dx2 = 0.

Furthermore, if Ω(t) → (ā1, ā2) as t → ∞ then for any continuous function h(x1, x2),

∫
h(x1, x2)ψ(t, x1, x2)dx1 dx2 → h(ā1, ā2)N0 as t → ∞,
Ω
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i.e.,

ψ(t, x1, x2) → N0δ(ā1,ā2) in measure as t → ∞. (2.12)

In the subsequent sections we study the behavior of the solution of (2.7), (2.8) in conjunction with
the behavior of Ω(t).

In Section 3 we prove existence and uniqueness for the initial value problem of Eq. (2.10). In
Sections 4–8, we establish the assertion (1.3) under some assumptions on the parameters of (2.5)–
(2.6). Numerical simulations illustrating the dynamics of the single-cell model and the formation of
peak-solutions as t increases are given in Section 9. In the concluding Section 10, we give a biological
interpretation of our results.

3. Existence and uniqueness

We shall prove the existence and uniqueness for Eq. (2.10) with initial values

ψ |t=0 = ψ0(x1, x2) in Ω, (3.1)

where

ψ0 vanishes on∂Ω,
∫
Ω(0)

ψ0 = N0,

ψ0,∇ψ0 are continuous functions in Ω,

G(t) and Ci(t) are continuous functions for t � 0. (3.2)

Set f = ( f1, f2) and write

f = f (t,x,ψ) = F (x) + H
(
t,x,ψ(t, ·)). (3.3)

The characteristic curves of (2.10) are given by

dξt,x

dτ
= F

(
ξt,x(τ )

) + H
(
t, ξt,x(τ ),ψ(τ , ·)), 0 < τ < t, (3.4)

ξt,x(t) = x. (3.5)

Note that if x ∈ Ω then ξt,x(τ ) ∈ Ω for all 0 � τ < t .
We introduce the space C1(Ω) of continuously differentiable functions ψ(x) with norm

‖ψ‖ = max
x∈Ω

(∣∣ψ(x)
∣∣ + ∣∣∇ψ(x)

∣∣)

and the space C1
T (Ω) of continuous functions ψ(t,x) in ΩT = [0, T ] × Ω with continuous derivative

∇xψ(t,x) in ΩT , and with norm

‖ψ‖T = max
x∈Ω, 0�t�T

(∣∣ψ(t,x)
∣∣ + ∣∣∇xψ(t,x)

∣∣).

Theorem 3.1. Under the condition (3.2) there exists a unique solution of (2.10), (3.1), with fi , Si defined by
(2.5), (2.6), (2.11), for all t > 0 such that ψ ∈ C1

T (Ω) for all T0 > 0.

0
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Proof. Take any constant M , M > ‖ψ0‖, and introduce the set

XM = {
ψ ∈ C1

T (Ω),‖ψ‖T � M
}

for T small to be determined. We define a mapping W from XM into itself and prove that it has a
unique fixed point. Given any ψ ∈ XM , set ψ̄ = W (ψ) where ψ̄ is the solution of

∂ψ̄

∂t
+ f (t,x,ψ) · ∇xψ̄ = −(∇x · f (t,x,ψ)

)
ψ̄, x ∈ Ω, 0 < t < T , (3.6)

ψ̄ |t=0 = ψ0, x ∈ Ω. (3.7)

Using the representation

ψ̄(t,x) = ψ̄
(
ξt,x(0)

) −
t∫

0

[∇x · f
(
τ , ξt,x(τ ),ψ(τ , ·))]ψ̄(

τ , ξt,x(τ )
)

dτ , (3.8)

we get

max
x∈Ω, 0�t�T

∣∣ψ(t,x)
∣∣ � |ψ0|L∞(Ω) + C T ,

where C is a constant which is actually independent of M .
Differentiating (3.6) with respect to xi and applying the preceding argument, we obtain a similar

bound on ∂ψ̄
∂xi

, so that

‖ψ̄‖T � ‖ψ0‖ + C T < M

if T is small enough. Hence W maps XM into XM . We next claim that W is a contraction. Indeed,
given two functions ψ1, ψ2 in XM , denote by ξ1

t,x , ξ2
t,x , the corresponding characteristic curves, and

set ψ̄i = W (ψi), ψ = ψ1 − ψ2, ψ̄ = ψ̄1 − ψ̄2. By ODE theory and (3.3),

∣∣ξ1
t,x(τ ) − ξ2

t,x(τ )
∣∣ � C T

[
max

x∈Ω, 0�t�T

∣∣ψ(t,x)
∣∣]. (3.9)

Using the representation (3.8) for each ψ̄i , we deduce that

max
x∈Ω, 0�t�T

∣∣ψ̄(t,x)
∣∣ � C T

[
max

x∈Ω, 0�t�T

∣∣ψ(t,x)
∣∣].

Similarly we obtain a bound on ∇ψ̄(t,x) by differentiating (3.6) with respect to xi , applying the
previous argument, and using (3.9). Hence

‖ψ̄‖T � C T ‖ψ‖T ,

so that W is a contraction if T is small enough, and thus existence and uniqueness for (2.10), (3.1)
follows for 0 � t � T .

We can extend the solution step-by-step to all t > 0 provided we can derive an a priori bound, say

‖ψ‖T0 � C + C exp(αT0) for all T0 > 0, (3.10)
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where C,α are constants. From (3.8) with ψ̄ = ψ and (3.3) we get, by Gronwall’s inequality,

sup
x∈Ω

∣∣ψ(t,x)
∣∣ � C + Ceαt .

Similarly, by differentiating (3.6) with respect to xi, we derive

sup
x∈Ω

∣∣∇ψ(t,x)
∣∣ � C + Ceαt .

Hence (3.10) holds and the proof of Theorem 3.1 is complete. �
4. Single cell

We consider the single-cell model (2.1)–(2.2) in which S1, S2 are regarded as nonnegative con-
stants. As we shall see, under some regimes of the parameter space, the system admits monostable,
bistable, and quadstable phases. In order to study the dynamics of a single-cell, we introduce upper
bounds f̂ i for the functions f i in (2.5), (2.6):

f̂ i(xi) = −μxi +
(
αi

xn
i

kn
i + xn

i

+ σi
Si

ρi + Si

)
+ βi, i = 1,2. (4.1)

Then f̂ i has the following properties:

f̂ i(0) > 0, f̂ ′
i (0) < 0, f̂ i(xi) < 0 for Ai � xi < ∞. (4.2)

Let Bi ∈ (0, Ai) be greater than the largest zero of f̂ i , i = 1,2. We also introduce lower bounds f̌ i
for f i :

f̌1(x1) = −μx1 +
(
α1

xn
1

kn
1 + xn

1
+ σ1

S1

ρ1 + S1

)
· 1

1 + B2/γ2
+ β1, (4.3)

f̌2(x2) = −μx2 +
(
α2

xn
2

kn
2 + xn

2
+ σ2

S2

ρ2 + S2

)
· 1

1 + B1/γ1
+ β2. (4.4)

Indeed,

f̌1(x1) � f1(x1, x2), for (x1, x2) ∈ [0, A1] × [0, B2],
f̌2(x2) � f2(x1, x2), for (x1, x2) ∈ [0, B1] × [0, A2].

Note that

f̌ i(0) > 0, f̌ ′
i (0) < 0, f̌ i(Bi) < 0 for i = 1,2. (4.5)

The functions f̂ i, f̌ i , extended to xi ∈ (Ai,∞) by the right-hand sides of (4.1), (4.3), (4.4), have a
unique inflection point ξ̃i , given by

ξ̃i = ki

(
n − 1

n + 1

)1/n

,
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where the slopes of f̂ i and of f̌ i are maximal. Therefore, if f̌ ′
i (ξ̃i) < 0, then f̌ ′

i (xi) cannot take positive
values. Set

ñ = (n + 1)1+1/n(n − 1)1−1/n/4n.

We consider the following parameter regimes:

Condition (M1): μ >
α1ñ

k1
,

Condition (M2): μ >
α2ñ

k2
,

Condition (B1): μ <
α1ñ

k1
· 1

1 + B2/γ2
,

Condition (B2): μ <
α2ñ

k2
· 1

1 + B1/γ1
.

Condition (Mi) is equivalent to the inequality f̂ ′
i (ξ̃i) < 0, i = 1,2. Under this condition both f̂ i

and f̌ i are strictly decreasing functions and have a unique zero.
Condition (Bi) is equivalent to f̌ ′

i (ξ̃i) > 0 and, in that case, if ξ̃i < Ai then each of f̂ i , f̌ i has two

critical points. Let p̂m
i , p̂M

i (respectively p̌m
i , p̌M

i ) be the local minimum and maximum of f̂ i (respec-

tively f̌ i ). Then, p̌m
i < p̌M

i , p̂m
i < p̂M

i , and

f̌ i
(

p̌m
i

)
< f̂ i

(
p̂m

i

)
, f̌ i

(
p̌M

i

)
< f̂ i

(
p̂M

i

)
.

We shall consider only the following cases as illustrated in Fig. 1. (Note that if ξ̃i > Ai for i = 1 or
i = 2, then only case (Mi) can occur for this i.)

(a) (Mi) holds for i = 1,2;
(b) (Bi) holds and f̂ i(p̂M

i ) < 0 for i = 1,2;

(c) (Bi) holds and f̌ i(p̌m
i ) > 0 for i = 1,2;

(d) (Bi) holds and f̂ i(p̂m
i ) < 0, f̌ i(p̌M

i ) > 0 for i = 1,2.

In cases (a), (b), and (c), f̂ i and f̌ i have a unique zero denoted by âi and ǎi , respectively. In case (d),
f̂ i and f̌ i have three zeros, denoted by (âi, b̂i, ĉi) and (ǎi, b̌i, či), respectively.

We shall establish the following dynamical phases for (2.1)–(2.2):

Monostable (MS): low x1–low x2; low x1–high x2; high x1–low x2;
high x1–high x2 states.

Bistable (BS-ll,lh): low x1–low x2 state and low x1–high x2 state;
(BS-ll,hl): low x1–low x2 state and high x1–low x2 state;
(BS-hl,hh): high x1–low x2 state and high x1–high x2 state;
(BS-lh,hh): low x1–high x2 state and high x1–high x2 state.

Quadstable (QS): low x1–low x2 state, high x1–low x2 state,
low x1–high x2 state, and high x1–high x2 state.

These notions of ‘low’ and ‘high’ express only relative magnitude relations between x1 and x2.
It will be shown that there exist six parameter regimes so that (2.1)–(2.2), with parameters in each of
these regimes admit, respectively, a unique stable equilibrium; two stable equilibria and one unstable
equilibrium; and four stable equilibria and five unstable equilibria. Moreover, every solution which is
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Fig. 1. f̂1 and f̌1 have one zero in cases (a), (b), (c), and three zeros in case (d).

initially not an unstable equilibrium point converges to one of the stable equilibria as time tends to
infinity.

In order to guarantee the convergence to equilibrium, we impose the following condition:

(α1 + σ1)

γ2
· (α2 + σ2)

γ1
<

∣∣∣∣μ − α1ñ

k1

∣∣∣∣ ·
∣∣∣∣μ − α2ñ

k2

∣∣∣∣. (4.6)

Theorem 4.1. Assume that condition (4.6) holds. Then

(i) phase (MS) takes place under conditions (M1) and (M2), or conditions (B1), (B2) with either f̂1(p̂M
1 ) < 0,

f̂2(p̂M
2 ) < 0 or with f̌1(p̌m

1 ) > 0, f̌2(p̌m
2 ) > 0;
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(ii) phase (BS-ll,lh) takes place under conditions (B2), f̂2(p̂m
2 ) < 0, f̌2(p̌M

2 ) > 0, and condition (M1), or (B1)

and f̂1(p̂M
1 ) < 0;

(iii) phase (BS-ll,hl) takes place under condition (B1), f̂1(p̂m
1 ) < 0, f̌1(p̌M

1 ) > 0, and condition (M2), or (B2),

f̂2(p̂M
2 ) < 0;

(iv) phase (BS-hl,hh) takes place under conditions (B2), f̂2(p̂m
2 ) < 0, f̌2(p̌M

2 ) > 0, and condition (M1), or

(B1) and f̌1(p̌m
1 ) > 0;

(v) phase (BS-lh,hh) takes place under condition (B1), f̂1(p̂m
1 ) < 0, f̌1(p̌M

1 ) > 0, and condition (M2), or

(B2), f̌2(p̌m
2 ) > 0;

(vi) phase (QS) takes place under conditions (B1), (B2), f̂ i(p̂m
i ) < 0, f̌ i(p̌M

i ) > 0, for i = 1,2.

The proof of Theorem 4.1 follows from an iteration scheme which is similar to that introduced in
Sections 5–8; in order to avoid repetition, the proof is omitted.

Remark 4.1. Note that

Condition (B1)′: μ <
α1ñ

k1
· 1

1 + A2/γ2
,

Condition (B2)′: μ <
α2ñ

k2
· 1

1 + A1/γ1

imply, respectively (B1) and (B2). Moreover, with Ai defined in (2.9), if conditions (B1)′ and (B2)′ are
satisfied then (4.6) holds. However, these conditions are more restrictive than conditions (B1), (B2),
and are not involved with the cytokine rates σ1, σ2.

Remark 4.2. The conditions expressed by the signs of f̂ i(p̂m
i ), f̌ i(p̌M

i ) depend on the levels of cy-
tokines S1, S2. There exist parameters so that phase (QS) takes place if both S1 and S2 are sufficiently
large. With the same parameters, the dynamics reduces to phase (BS-ll,lh) (respectively (BS-ll,hl)) if S2
(respectively S1) is sufficiently small and reduces to phase (MS) if both S1 and S2 are sufficiently
small. We shall illustrate this situation numerically in Section 9.

5. The population model

In the subsequent sections we shall consider the asymptotic behavior of ψ(t, x1, x2) and of the
corresponding dynamical system (2.7)–(2.8) in case Si = Si(t) is defined by (2.11). Typically g(t) =
2 day−1 for some time t < t0 and g(t) = 0 if t > t0, but Ci(t) may not vanish for large t . Throughout
this paper we assume that

Ci(t) → Ci(∞) � 0, G(t) → G(∞) > 0 as t → ∞. (5.1)

The derivation of the asymptotic behavior will be based on a sequence of approximations by means
of upper bounds f̂ (k)

i and lower bounds f̌ (k)
i of f i(x1, x2, Si(t)). In this section we construct these

functions for the case k = 0. As in the discussion in Section 4, we introduce an upper bound for
f i(x1, x2, Si(t)):

f̂ i(xi) = −μxi +
(
αi

xn
i

kn
i + xn

i

+ σi
Ĉ i + Ai

ρi + Ĉi + Ai

)
+ βi,

where Ĉi = sup{Ci(t)e−G(t)/N0: t ∈ [0,∞)}; f̂ i clearly satisfies (4.2). Let Bi be the largest zero of f̂ i .
Thus, [0, B1] × [0, B2] is an attracting set for (2.7)–(2.8).
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Fig. 2. f̂1 and f̌1 have two zeros.

Next we define a lower bound for f1 on R × [0, B2] and a lower bound for f2 on [0, B1] × R,
respectively:

f̌1(x1) = −μx1 +
(
α1

xn
1

kn
1 + xn

1
+ σ1

Č1

ρ1 + Č1

)
· 1

1 + B2/γ2
+ β1,

f̌2(x2) = −μx2 +
(
α2

xn
2

kn
2 + xn

2
+ σ2

Č2

ρ2 + Č2

)
· 1

1 + B1/γ1
+ β2,

where Či = inf{Ci(t)e−G(t)/N0: t ∈ [0,∞)}, i = 1,2; f̌ i clearly satisfies (4.5). The functions f̂ i, f̌ i share
other properties with those defined in Section 4. Indeed, under conditions (Mi), (Bi) with f̂ i(p̂M

i ) < 0,

or (Bi) with f̌ i(p̌m
i ) > 0, both f̂ i and f̌ i have a unique zero, denoted respectively by âi, ǎi ; under

conditions (Bi), each of f̂ i and f̌ i has a local minimum and a local maximum, denoted by p̂m
i , p̂M

i , and

p̌m
i , p̌M

i , respectively, and it can be computed that f̌ i(p̌m
i ) < f̂ i(p̂m

i ) and f̌ i(p̌M
i ) < f̂ i(p̂M

i ). Furthermore,

under conditions (Bi), and f̂ i(p̂m
i ) < 0, f̌ i(p̌M

i ) > 0, both f̂ i and f̌ i have three zeros, denoted by

(âi, b̂i, ĉi), (ǎi, b̌i, či), respectively; cf. Fig. 2.
Set

Smin
i (t) = inf

{
Si(s): s ∈ [t,∞)

}
, Smax

i (t) = sup
{

Si(s): s ∈ [t,∞)
}

for i = 1,2 and t � 0. Then Smin
i (t) � Či , Smax

i (t) � Ĉi + Ai , and Smin
i (t) � Si(t) � Smax

i (t). Note that
Smin

i (t) is nondecreasing, Smax
i (t) is nonincreasing, and

Smin
i (t)

ρi + Smin
i (t)

� Si(t)

ρi + Si(t)
�

Smax
i (t)

ρi + Smax
i (t)

for i = 1,2 and t � 0.
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We formulate the first step for the iteration scheme via the functions

f̂ (0)
i (xi) = −μxi +

(
αi

xn
i

kn
i + xn

i

+ σi
Smax

i (0)

ρi + Smax
i (0)

)
+ βi for i = 1,2,

f̌ (0)
1 (x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (0)

ρ1 + Smin
1 (0)

)
· 1

1 + B2/γ2
+ β1,

f̌ (0)
2 (x2) = −μx2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smin
2 (0)

ρ2 + Smin
2 (0)

)
· 1

1 + B1/γ1
+ β2.

Then f̂ (0)
i , f̌ (0)

i admit the same properties as in (4.2) and (4.5). Moreover,

f̌ i(xi) � f̌ (0)
i (xi) < f̂ (0)

i (xi) � f̂ i(xi), i = 1,2.

Therefore, f̂ i(p̂m
i ) < 0 implies f̂ (0)

i (p̂m
i ) < 0, whereas f̌ i(p̌M

i ) > 0 implies f̌ (0)
i (p̌M

i ) > 0. In addition,

f̌ (0)′
i (xi) < f̂ (0)′

i (xi) for all xi ∈ [0,∞), and both of f̂ (0)
i and f̌ (0)

i have their inflection points at
ξ̃i = ki(

n−1
n+1 )1/n where they attain their largest slopes. Observe that

f̌ (0)
i (xi) � f i

(
x1, x2, Si(t)

)
� f̂ (0)

i (xi) (5.2)

for i = 1,2 and (x1, x2) ∈ [0, B1] × [0, B2], t � 0. In addition, for all t � 0,

f1
(
x1, x2, S1(t)

)
� f̂ (0)

1 (x1) if (x1, x2) ∈ [0, A1] × [B2, A2], (5.3)

f2
(
x1, x2, S2(t)

)
� f̂ (0)

2 (x2) if (x1, x2) ∈ [B1, A1] × [0, A2]. (5.4)

In the sequel, x(t,x0) denotes the solution of (2.7)–(2.8) starting from point x0 at t = 0.

6. Asymptotic one-peak solution

Similarly to the case of Theorem 4.1(i) we assume that one of the following conditions holds:

(M1) and (M2); (6.1)

(B1) and (B2) with f̂1
(

p̂M
1

)
< 0, f̂2

(
p̂M

2

)
< 0; (6.2)

(B1) and (B2) with f̌1
(

p̌m
1

)
> 0, f̌2

(
p̌m

2

)
> 0. (6.3)

Then each f̂ (0)
i and f̌ (0)

i has a unique zero which is denoted by â(0)
i and ǎ(0)

i , respectively. Let ε0 > 0
be small so that

f̂ (0)
i (xi) � f̂ (0)

i

(
â(0)

i + ε0
)
< 0 for all xi � â(0)

i + ε0,

f̌ (0)
i (xi) � f̌ (0)

i

(
ǎ(0)

i − ε0
)
> 0 for all xi � ǎ(0)

i − ε0,

for i = 1,2; cf. Fig. 3. Combining these with inequalities (5.2)–(5.4), we deduce that there exists
a T0 > 0 such that any solution x(t,x0) starting from a point x0 ∈ [0, A1] × [0, A2] falls into the
rectangle

Ω(0) := [
ǎ(0)

1 − ε0, â(0)
1 + ε0

] × [
ǎ(0)

2 − ε0, â(0)
2 + ε0

] ⊂ [0, B1] × [0, B2]
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Fig. 3. The configuration of f̂ (0)
1 , f̌ (0)

1 , f̂ (1)
1 , f̌ (1)

1 and their zeros, under conditions (B1) and f̂1(p̂M
1 ) < 0.

for t � T0. Define

f̂ (1)
1 (x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (T0)

ρ1 + Smax
1 (T0)

)
· 1

1 + (ǎ(0)
2 − ε0)/γ2

+ β1,

f̌ (1)
1 (x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (T0)

ρ1 + Smin
1 (T0)

)
· 1

1 + (â(0)
2 + ε0)/γ2

+ β1,

f̂ (1)
2 (x2) = −μx2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (T0)

ρ2 + Smax
2 (T0)

)
· 1

1 + (ǎ(0)
1 − ε0)/γ1

+ β2,

f̌ (1)
2 (x2) = −μx2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smin
2 (T0)

ρ2 + Smin
2 (T0)

)
· 1

1 + (â(0)
1 + ε0)/γ1

+ β2.

Then f̌ (0)
i (xi) < f̌ (1)

i (xi) < f̂ (1)
i (xi) < f̂ (0)

i (xi) for xi ∈ [0, Ai], i = 1,2. Let â(1)
i and ǎ(1)

i denote the

unique zeros of f̂ (1)
i and f̌ (1)

i , respectively. Then â(1)
i < â(0)

i and ǎ(1)
i > ǎ(0)

i . Furthermore,

f̌ (1)
i (xi) � f i

(
x1, x2, Si(t)

)
� f̂ (1)

i (xi) (6.4)

for all (x1, x2) ∈ Ω(0) , t � T0, i = 1,2, and f̌ (1)
i (xi) > 0 for xi < ǎ(1)

i , f̂ (1)
i (xi) < 0 for xi > â(1)

i . Hence
for any small ε1 > 0 there exist a T1 > T0 such that any solution x(t,x0) starting from a point
x0 ∈ [0, A1] × [0, A2] falls into the region

Ω(1) := [
ǎ(1)

1 − ε1, â(1)
1 + ε1

] × [
ǎ(1)

2 − ε1, â(1)
2 + ε1

] ⊂ Ω(0)
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Fig. 4. Ω(0) and Ω(1) , for one-peak case.

for t � T1; cf. Fig. 4. We can proceed in a similar manner to define successively f̂ (k)
i and f̌ (k)

i , k � 2,
by

f̂ (k)
1 (x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (Tk−1)

ρ1 + Smax
1 (Tk−1)

)
· 1

1 + (ǎ(k−1)
2 − εk−1)/γ2

+ β1,

f̌ (k)
1 (x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (Tk−1)

ρ1 + Smin
1 (Tk−1)

)
· 1

1 + (â(k−1)
2 + εk−1)/γ2

+ β1,

f̂ (k)
2 (x2) = −μx2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (Tk−1)

ρ2 + Smax
2 (Tk−1)

)
· 1

1 + (ǎ(k−1)
1 − εk−1)/γ1

+ β2,

f̌ (k)
2 (x2) = −μx2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smin
2 (Tk−1)

ρ2 + Smin
2 (Tk−1)

)
· 1

1 + (â(k−1)
1 + εk−1)/γ1

+ β2

and their zeros â(k)
i , ǎ(k)

i , i.e.,

f̂ (k+1)
i

(
â(k)

i

) = 0, f̌ (k+1)
i

(
ǎ(k)

i

) = 0. (6.5)

We may clearly assume that εk → 0 and Tk → ∞ as k → ∞.
We can then prove that for any small εk > 0 there exists a Tk such that any solution x(t,x0)

starting from a point x0 ∈ [0, A1] × [0, A2] falls into the region Ω(k) := [ǎ(k)
1 − εk, â(k)

1 + εk] × [ǎ(k)
2 −

εk, â(k)
2 + εk] ⊂ Ω(k−1) for t � Tk .

We shall need the following conditions:

(α2 + σ2)

γ1
<

∣∣∣∣μ − α1ñ

k1

∣∣∣∣ − σ1

ρ1
,

(α1 + σ1)

γ2
<

∣∣∣∣μ − α2ñ

k2

∣∣∣∣ − σ2

ρ2
. (6.6)

Lemma 6.1. Under the conditions (6.6) and either (6.1), (6.2) or (6.3), the intersection
⋂∞

k=1 Ω(k) consists of
a single point (ā1, ā2).
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Proof. Note that for each i = 1,2, {ǎ(k)
i − εk} is an increasing sequence, {â(k)

i + εk} is a decreasing

sequence, ǎ(k)
i − εk < â(k)

i + εk for each k, and εk → 0 as k → ∞. Hence

ǎ∗
i = lim

k→∞
ǎ(k)

i and â∗
i = lim

k→∞
â(k)

i exist, and ǎ∗
i � â∗

i for i = 1,2.

Assuming that
⋂∞

k=1 Ω(k) is not a single point so that â∗
i > ǎ∗

i for either i = 1 or i = 2 (or both), we
shall derive a contradiction.

By passing to the limit in (6.5) we get

−μǎ∗
1 +

[
α1

(ǎ∗
1)

n

kn
1 + (ǎ∗

1)
n

+ σ1
Š1

ρ1 + Š1

]
· 1

1 + â∗
2/γ2

+ β1 = 0, (6.7)

−μâ∗
2 +

[
α2

(â∗
2)

n

kn
2 + (â∗

2)
n

+ σ2
Ŝ2

ρ2 + Ŝ2

]
· 1

1 + ǎ∗
1/γ1

+ β2 = 0, (6.8)

−μâ∗
1 +

[
α1

(â∗
1)

n

kn
1 + (â∗

1)
n

+ σ1
Ŝ1

ρ1 + Ŝ1

]
· 1

1 + ǎ∗
2/γ2

+ β1 = 0, (6.9)

−μǎ∗
2 +

[
α2

(ǎ∗
2)

n

kn
2 + (ǎ∗

2)
n

+ σ2
Š2

ρ2 + Š2

]
· 1

1 + â∗
1/γ1

+ β2 = 0, (6.10)

where

Ŝ i = lim
t→∞ Smax

i (t), Š i = lim
t→∞ Smin

i (t),

and

Ŝ1 � â∗
1 + C̄1, Š1 � ǎ∗

1 + C̄1, (6.11)

Ŝ2 � â∗
2 + C̄2, Š2 � ǎ∗

2 + C̄2, (6.12)

with

C̄i = lim
t→∞ Ci(t)e−G(t)/N0.

Taking the difference of (6.7), (6.9) we obtain

μ
(
â∗

1 − ǎ∗
1

) − α1

[
(â∗

1)
n

kn
1 + (â∗

1)
n

− (ǎ∗
1)

n

kn
1 + (ǎ∗

1)
n

]
· 1

1 + ǎ∗
2/γ2

=
[
α1

(ǎ∗
1)

n

kn
1 + (ǎ∗

1)
n

+ σ1
Š1

ρ1 + Š1

]
·
[

1

1 + ǎ∗
2/γ2

− 1

1 + â∗
2/γ2

]

+ σ1

[
Ŝ1

ρ1 + Ŝ1
− Š1

ρ1 + Š1

]
· 1

1 + ǎ∗
2/γ2

. (6.13)

Thus, by the mean value theorem and the estimates (6.11) for Ŝ1, Š1,

∣∣â∗
1 − ǎ∗

1

∣∣ ·
∣∣∣∣μ − α1ñ

k

∣∣∣∣ � (α1 + σ1)

γ

∣∣ǎ∗
2 − â∗

2

∣∣ + σ1

ρ

∣∣â∗
1 − ǎ∗

1

∣∣,

1 2 1
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or

∣∣â∗
1 − ǎ∗

1

∣∣ ·
[∣∣∣∣μ − α1ñ

k1

∣∣∣∣ − σ1

ρ1

]
� (α1 + σ1)

γ2

∣∣ǎ∗
2 − â∗

2

∣∣. (6.14)

Similarly, from (6.8), (6.10), (6.12) we obtain

∣∣ǎ∗
2 − â∗

2

∣∣ ·
[∣∣∣∣μ − α2ñ

k2

∣∣∣∣ − σ2

ρ2

]
� (α2 + σ2)

γ1

∣∣â∗
1 − ǎ∗

1

∣∣. (6.15)

Assuming that the LHS of (6.14) and (6.15) are positive, these two inequalities yield

[∣∣∣∣μ − α1ñ

k1

∣∣∣∣ − σ1

ρ1

]
·
[∣∣∣∣μ − α2ñ

k2

∣∣∣∣ − σ2

ρ2

]
<

(α2 + σ2)

γ1
· (α1 + σ1)

γ2
, (6.16)

which is a contradiction to (6.6). We thus conclude that ǎ∗
i = â∗

i for i = 1,2, which proves the
lemma. �

From Lemma 6.1 it follows that the limit (ā1, ā2) of Ω(k) (as k → ∞) satisfies the equations

−μa1 +
[
α1

an
1

kn
1 + an

1
+ σ1

a1 + C̄1

ρ1 + a1

]
· 1

1 + a2/γ2
+ β1 = 0, (6.17)

−μa2 +
[
α2

an
2

kn
2 + an

2
+ σ2

a2 + C̄2

ρ2 + a2

]
· 1

1 + a1/γ1
+ β2 = 0, (6.18)

and the solution is unique. We have thus proved:

Theorem 6.2. If (6.6) and one of the conditions (6.1), (6.2), or (6.3) hold, then the solution ψ of (2.10), (3.1),
with fi , Si defined by (2.5), (2.6), (2.11), satisfies:

lim
t→∞ψ(t, x1, x2) = N0δ(a1,a2), (6.19)

where δ(a1,a2) is the Dirac measure at point (a1,a2) which is uniquely determined from (6.17)–(6.18), and the
convergence in (6.19) is in the sense of convergence in measure as defined in (2.12).

7. Asymptotic two-peak solutions

Analogously to the case of Theorem 4.1(iii) we assume that

condition (B1) holds, f̂1
(

p̂m
1

)
< 0, and f̌1

(
p̌M

1

)
> 0, (7.1)

either condition (M2) holds, or (B2) and f̂2
(

p̂M
2

)
< 0 hold. (7.2)

Let â(0)
1 , b̂(0)

1 , ĉ(0)
1 (respectively ǎ(0)

1 , b̌(0)
1 , č(0)

1 ) be the zeros of f̂ (0)
1 (respectively f̌ (0)

1 ), and â(0)
2 , ǎ(0)

2 be

the zeros of f̂ (0)
2 , f̌ (0)

2 , respectively; cf. Fig. 5.
Then, by (7.1), (7.2) and (5.2)–(5.4), for any small ε0 > 0 there exists a T0 > 0 such that any solution

x(t,x0) starting from a point x0 ∈ [0, A1] × [0, A2] \ K (0) falls into the region

Ω(0) = Ω
(0)

l ∪ Ω
(0)
u
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Fig. 5. Configurations of functions f̂ (0)
1 , f̌ (0)

1 , f̂ (1)
1 , f̌ (1)

1 and their zeros, under condition (B1).

for all t � T0, where

K (0) = [
b̂(0)

1 , b̌(0)
1

] × [
ǎ(0)

2 , â(0)
2

]
,

Ω
(0)

l = [
ǎ(0)

1 − ε0, â(0)
1 + ε0

] × [
ǎ(0)

2 − ε0, â(0)
2 + ε0

]
,

Ω
(0)
u = [

č(0)
1 − ε0, ĉ(0)

1 + ε0
] × [

ǎ(0)
2 − ε0, â(0)

2 + ε0
]
.

Next, we define

f̂ (1)
1 (x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (T0)

ρ1 + Smax
1 (T0)

)
· 1

1 + (ǎ(0)
2 − ε0)/γ2

+ β1,

f̌ (1)
1 (x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (T0)

ρ1 + Smin
1 (T0)

)
· 1

1 + (â(0)
2 + ε0)/γ2

+ β1,

f̂ (1)

2,l (x2) = −μx2 +
(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (T0)

ρ2 + Smax
2 (T0)

)
· 1

1 + (ǎ(0)
1 − ε0)/γ1

+ β2,

f̌ (1)

2,l (x2) = −μx2 +
(
α2

xn
2

kn
2 + xn

2
+ σ2

Smin
2 (T0)

ρ2 + Smin
2 (T0)

)
· 1

1 + (â(0)
1 + ε0)/γ1

+ β2,

f̂ (1)
2,m(x2) = −μx2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (T0)

ρ2 + Smax
2 (T0)

)
· 1

1 + b̂(0)
1 /γ1

+ β2,

f̌ (1)
2,m(x2) = −μx2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smin
2 (T0)

ρ2 + Smin(T0)

)
· 1

1 + b̌(0)
/γ

+ β2,
2 1 1
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f̂ (1)
2,u(x2) = −μx2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (T0)

ρ2 + Smax
2 (T0)

)
· 1

1 + (č(0)
1 − ε0)/γ1

+ β2,

f̌ (1)
2,u(x2) = −μx2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smin
2 (T0)

ρ2 + Smin
2 (T0)

)
· 1

1 + (ĉ(0)
1 + ε0)/γ1

+ β2.

Let â(1)
2 , ǎ(1)

2 (respectively b̂(1)
2 , b̌(1)

2 ; ĉ(1)
2 , č(1)

2 ) be the zeros of f̂ (1)

2,l , f̌ (1)

2,l (respectively f̂ (1)
2,m, f̌ (1)

2,m;

f̂ (1)
2,u , f̌ (1)

2,u), respectively, and â(1)
1 , ǎ(1)

1 be the smallest, b̂(1)
1 , b̌(1)

1 be the middle, and ĉ(1)
1 , č(1)

1 be the

largest zeros of f̂ (1)
1 and f̌ (1)

1 , respectively. (Herein “l”, “m” and “u” mean lower, middle, and upper,
respectively.) Then for any small ε1 > 0 there exists a T1 > T0 such that any solution x(t,x0) starting
from a point x0 ∈ [0, A1] × [0, A2] \ K (1) falls into the region

Ω(1) = Ω
(1)

l ∪ Ω
(1)
u ⊂ Ω(0)

for t � T1, where

K (1) = [
b̂(1)

1 , b̌(1)
1

] × [
b̌(1)

2 , b̂(1)
2

] ⊂ K (0),

Ω
(1)

l = [
ǎ(1)

1 − ε1, â(1)
1 + ε1

] × [
ǎ(1)

2 − ε1, â(1)
2 + ε1

] ⊂ Ω
(0)

l ,

Ω
(1)
u = [

č(1)
1 − ε1, ĉ(1)

1 + ε1
] × [

č(1)
2 − ε1, ĉ(1)

2 + ε1
] ⊂ Ω

(0)
u .

In addition, for t � T1,

Si(t) · N0 = Ci(t)e−G(t) +
∫ ∫

Ω(1)∪K (1)

xiψ dx1 dx2.

We proceed to define successively

f̂ (k)

1,l (x1) = −μx1 +
(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (Tk−1)

ρ2 + Smax
2 (Tk−1)

)
· 1

1 + (ǎ(k−1)
2 − εk−1)/γ2

+ β1,

f̌ (k)

1,l (x1) = −μx1 +
(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (Tk−1)

ρ1 + Smin
1 (Tk−1)

)
· 1

1 + (â(k−1)
2 + εk−1)/γ2

+ β1,

f̂ (k)
1,m(x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (Tk−1)

ρ1 + Smax
1 (Tk−1)

)
· 1

1 + b̌(k−1)
2 /γ2

+ β1,

f̌ (k)
1,m(x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (Tk−1)

ρ1 + Smin
1 (Tk−1)

)
· 1

1 + b̂(k−1)
2 /γ2

+ β1,

f̂ (k)
1,u(x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (Tk−1)

ρ1 + Smax
1 (Tk−1)

)
· 1

1 + (č(k−1)
2 − εk−1)/γ2

+ β1,

f̌ (k)
1,u(x1) = −μx1 +

(
α1

x1sn

kn
1 + xn

1
+ σ1

Smin
1 (Tk−1)

ρ1 + Smin
1 (Tk−1)

)
· 1

1 + (ĉ(k−1)
2 + εk−1)/γ2

+ β1,

and similarly f̂ (k)
2,u, f̌ (k)

2,u, f̂ (k)
2,m, f̌ (k)

2,m, f̂ (k)

2,l , f̌ (k)

2,l , their zeros â(k)
i , ǎ(k)

i , b̂(k)
i , b̌(k)

i , ĉ(k)
i , č(k)

i , i = 1,2, and do-

mains Ω(k) . Note that the sets Ω(k) as well as the rectangles [b̂(k)
1 , b̌(k)

1 ] × [b̌(k)
2 , b̂(k)

2 ] are shrinking as
k increases. Suppose that



754 A. Friedman et al. / J. Differential Equations 247 (2009) 736–769
[
ǎ(k)

1 , â(k)
1

] → {a1},
[
b̂(k)

1 , b̌(k)
1

] → {b1},
[
č(k)

1 , ĉ(k)
1

] → {c1}, (7.3)
[
ǎ(k)

2 , â(k)
2

] → {a2},
[
b̂(k)

2 , b̌(k)
2

] → {b2},
[
č(k)

2 , ĉ(k)
2

] → {c2} (7.4)

as k → ∞. Then Ω(k) → {(a1,a2), (c1, c2)} as k → ∞, and

S1(t) → w l · a1 + wu · c1 + C̄1,

S2(t) → w l · a2 + wu · c2 + C̄2

as t → ∞, for some w l, wu � 0 with w l + wu = 1. Herein, w l, wu represent the percentages of
cells whose concentrations tend to levels (a1,a2) and (c1, c2), respectively. Notice that points (a1,a2),
(c1, c2), and w l, wu satisfy the equations

−μa1 +
[
α1

an
1

kn
1 + an

1
+ σ1

w l · a1 + wu · c1 + C̄1

ρ1 + (w l · a1 + wu · c1 + C̄1)

]
· 1

1 + a2/γ2
+ β1 = 0, (7.5)

−μc1 +
[
α1

cn
1

kn
1 + cn

1
+ σ1

w l · a1 + wu · c1 + C̄1

ρ1 + (w l · a1 + wu · c1 + C̄1)

]
· 1

1 + c2/γ2
+ β1 = 0, (7.6)

−μa2 +
[
α2

an
2

kn
2 + an

2
+ σ2

w l · a2 + wu · c2 + C̄2

ρ2 + (w l · a2 + wu · c2 + C̄2)

]
· 1

1 + a1/γ1
+ β2 = 0, (7.7)

−μc2 +
[
α2

cn
2

kn
2 + cn

2
+ σ2

w l · a2 + wu · c2 + C̄2

ρ2 + (w l · a2 + wu · c2 + C̄2)

]
· 1

1 + c1/γ1
+ β2 = 0. (7.8)

We have thus derived an asymptotic two-peak solution ψ = nl · δ(a1,a2) + nu · δ(c1,c2) , with nl = N0 · w l ,
nu = N0 · nu.

Notice that ā1, ā2, c̄1, c̄2, w l , wu are not determined uniquely from Eqs. (7.5)–(7.8); these quantities
depend also on the initial condition (3.1).

We next establish (7.3), (7.4). Following the argument in the proof of Lemma 6.1, we argue that
if (7.3) and (7.4) are not true then

∞⋂
k=1

Ω(k) =
3⋃

i=1

Ri (disjoint union),

where each Ri is either a rectangle or a single point, and at least one Ri is a rectangle. We de-
note by (ǎ∗

1, â∗
2) the upper-left vertex of R1 which is diagonally opposed to (â∗

1, ǎ∗
2); if R1 is a single

point then we take ǎ∗
1 = ǎ∗

1, â∗
2 = â∗

2. Similarly we designate the vertices (b̂∗
1, b̌∗

2), (b̌
∗
1, b̂∗

2) for R2, and
(ĉ∗

1, č∗
2), (č∗

1, ĉ∗
2) for R3. Then analogous to (6.7)–(6.10), the coordinates of these vertices satisfy the

following equations:

f1
(
ǎ∗

1, â∗
2, Š1

) = 0, f2
(
ǎ∗

1, â∗
2, Ŝ2

) = 0, (7.9)

f1
(
â∗

1, ǎ∗
2, Ŝ1

) = 0, f2
(
â∗

1, ǎ∗
2, Š2

) = 0, (7.10)

f1
(
b̂∗

1, b̌∗
2, Š1

) = 0, f2
(
b̂∗

1, b̌∗
2, Ŝ2

) = 0,

f1
(
b̌∗

1, b̂∗
2, Ŝ1

) = 0, f2
(
b̌∗

1, b̂∗
2, Š2

) = 0,

f1
(
č∗

1, ĉ∗
2, Š1

) = 0, f2
(
č∗

1, ĉ∗
2, Ŝ2

) = 0, (7.11)

f1
(
ĉ∗

1, č∗
2, Ŝ1

) = 0, f2
(
ĉ∗

1, č∗
2, Š2

) = 0. (7.12)

Furthermore,
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Ŝ1 �
[
v1â∗

1 + v2b̌∗
1 + v3ĉ∗

1

]
/v + C̄1, (7.13)

Š1 �
[
v1ǎ∗

1 + v2b̂∗
1 + v3č∗

1

]
/v + C̄1, (7.14)

Ŝ2 �
[
v1â∗

2 + v2b̌∗
2 + v3ĉ∗

2

]
/v + C̄2, (7.15)

Š2 �
[
v1â∗

2 + v2b̌∗
2 + v3č∗

2

]
/v + C̄2, (7.16)

where v1, v2, v3 are the areas of the regions R1, R2, R3, and v1 + v2 + v3 = v . Among the three
quantities

(
â∗

1 − ǎ∗
1

)
,

(
b̌∗

1 − b̂∗
1

)
,

(
ĉ∗

1 − č∗
1

)
,

we pick the largest one, say (â∗
1 − ǎ∗

1), and the corresponding two equations from (7.9), (7.10),

f1
(
ǎ∗

1, â∗
2, Š1

) = 0, f1
(
â∗

1, ǎ∗
2, Ŝ1

) = 0 (7.17)

(analogously to Eqs. (6.7), (6.9)). Similarly, among the quantities

(
â∗

2 − ǎ∗
2

)
,

(
b̌∗

2 − b̂∗
2

)
,

(
ĉ∗

2 − č∗
2

)
,

we pick the largest one, say (ĉ∗
2 − č∗

2), and the corresponding equations (7.11), (7.12),

f2
(
č∗

1, ĉ∗
2, Ŝ2

) = 0, f2
(
ĉ∗

1, č∗
2, Š2

) = 0 (7.18)

(analogously to Eqs. (6.8), (6.10)). From (7.13)–(7.16) we deduce that

Ŝ1 − Š1 �
[
v1

(
â∗

1 − ǎ∗
1

) + v2
(
b̌∗

1 − b̂∗
1

) + v3
(
ĉ∗

1 − č∗
1

)]
/v

� â∗
1 − ǎ∗

1, (7.19)

Ŝ2 − Š2 �
[
v1

(
â∗

2 − ǎ∗
2

) + v2
(
b̌∗

2 − b̂∗
2

) + v3
(
ĉ∗

2 − č∗
2

)]
/v

� ĉ∗
2 − č∗

2. (7.20)

We use (7.17) and (7.19) to estimate |â∗
1 − ǎ∗

1| in terms of |â∗
2 − ǎ∗

2|, as in the derivation of (6.12). We
next use (7.18) and (7.20) to estimate |ĉ∗

2 − č∗
2| in terms of |ĉ∗

1 − č∗
1|. Finally, from the two estimates

on |â∗
1 − ǎ∗

1| and |ĉ∗
2 − č∗

2| and the inequalities

∣∣â∗
2 − ǎ∗

2

∣∣ �
∣∣ĉ∗

2 − č∗
2

∣∣ and
∣∣ĉ∗

1 − č∗
1

∣∣ �
∣∣â∗

1 − ǎ∗
1

∣∣, (7.21)

we derive the estimates (6.14), (6.15) which yield a contradiction to (6.6). Assertions (7.3) and (7.4)
are thus established.

We summarize:

Theorem 7.1. If conditions (6.6), (7.1) and (7.2) hold then the solution ψ of (2.10), (3.1), with fi , Si defined
by (2.5), (2.6), (2.11), satisfies:

lim
t→∞ψ(t, x2, x2) = nlδ(a1,a2) + nuδ(c1,c2), (7.22)

where nl + nu = N0 and the points (a1,a2) and (c1, c2) together with the weights w l = nl/N0 , wu = nu/N0
satisfy Eqs. (7.5)–(7.8); the convergence in (7.22) is in the sense of convergence in measure.
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Remark 7.1. Theorem 7.1 extends to the case where instead of (7.1), (7.2) we assume that

condition (B2) holds, f̂2
(

p̂m
2

)
< 0, and f̌2

(
p̌M

2

)
> 0, and

either condition (M1) holds, or (B1) and f̂1
(

p̂M
1

)
< 0 hold.

8. Asymptotic four-peak solutions

In this section we assume, analogously to the case of Theorem 4.1(vi), that

conditions (B1), (B2) hold, and f̂ i
(

p̂m
i

)
< 0, f̌ i

(
p̂M

i

)
> 0, i = 1,2. (8.1)

As in Sections 6, 7, in view of (8.1) and (5.3)–(5.4), for any small ε0 > 0, there exists a T0 > 0 such
that any solution x(t,x0) starting from a point x0 ∈ [0, A1] × [0, A2] \ K (0) , falls into one of the four
rectangles

Ω(0) = Ω
(0)

ll ∪ Ω
(0)

ul ∪ Ω
(0)

lu ∪ Ω
(0)
uu

for t � T0, where

K (0) = Ω
(0)

ml ∪ Ω
(0)

lm ∪ Ω
(0)
mm ∪ Ω

(0)
um ∪ Ω

(0)
mu,

Ω
(0)

ll = [
ǎ(0)

1 − ε0, â(0)
1 + ε0

] × [
ǎ(0)

2 − ε0, â(0)
2 + ε0

]
,

Ω
(0)

ul = [
č(0)

1 − ε0, ĉ(0)
1 + ε0

] × [
ǎ(0)

2 − ε0, â(0)
2 + ε0

]
,

Ω
(0)

lu = [
ǎ(0)

1 − ε0, â(0)
1 + ε0

] × [
č(0)

2 − ε0, ĉ(0)
2 + ε0

]
,

Ω
(0)
uu = [

č(0)
1 − ε0, ĉ(0)

1 + ε0
] × [

č(0)
2 − ε0, ĉ(0)

2 + ε0
]
,

Ω
(0)

ml = [
b̂(0)

1 , b̌(0)
1

] × [
ǎ(0)

2 , â(0)
2

]
, Ω

(0)

lm = [
ǎ(0)

1 , â(0)
1

] × [
b̂(0)

2 , b̌(0)
2

]
,

Ω
(0)
mm = [

b̂(0)
1 , b̌(0)

1

] × [
b̂(0)

2 , b̌(0)
2

]
, Ω

(0)
um = [

č(0)
1 , ĉ(0)

1

] × [
b̂(0)

2 , b̌(0)
2

]
,

Ω
(0)
mu = [

b̂(0)
1 , b̌(0)

1

] × [
č(0)

2 , ĉ(0)
2

]
.

We then need to concentrate only on the dynamics in Ω(0) and K (0) . Define

f̂ (1)

1,l (x1) = −μx1 +
(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (T0)

ρ1 + Smax
1 (T0)

)
· 1

1 + (ǎ(0)
2 − ε0)/γ2

+ β1,

f̌ (1)

1,l (x1) = −μx1 +
(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (T0)

ρ1 + Smin
1 (T0)

)
· 1

1 + (â(0)
2 + ε0)/γ2

+ β1,

f̂ (1)
1,m(x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (T0)

ρ1 + Smax
1 (T0)

)
· 1

1 + b̂(0)
2 /γ2

+ β1,

f̌ (1)
1,m(x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (T0)

ρ1 + Smin
1 (T0)

)
· 1

1 + b̌(0)
2 /γ2

+ β1,

f̂ (1)
1,u(x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (T0)

ρ1 + Smax
1 (T0)

)
· 1

1 + (č(0)
2 − ε0)/γ2

+ β1,

f̌ (1)
1,u(x1) = −μx1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (T0)

ρ1 + Smin(T0)

)
· 1

1 + (ĉ(0) + ε )/γ
+ β1,
1 2 0 2
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and similarly, by interchanging indices i = 1 and i = 2, define

f̂ (1)

2,l (x2), f̌ (1)

2,l (x2), f̂ (1)
2,m(x2), f̌ (1)

2,m(x2), f̂ (1)
2,u(x2), f̌ (1)

2,u(x2).

Next, let â(1)

i,l , ǎ(1)

i,l (respectively â(1)
i,m, ǎ(1)

i,m; â(1)
i,u , ǎ(1)

i,u ) be the smallest zeros, b̂(1)

i,l , b̌(1)

i,l (respectively b̂(1)
i,m,

b̌(1)
i,m; b̂(1)

i,u , b̌(1)
i,u ) be the middle zeros, and ĉ(1)

i,l , č(1)

i,l (respectively ĉ(1)
i,m, č(1)

i,m; ĉ(1)
i,u , č(1)

i,u ) be the largest

zeros of f̂ (1)

i,l , f̌ (1)

i,l (respectively f̂ (1)
i,m, f̌ (1)

i,m; f̂ (1)
i,u , f̌ (1)

i,u ). Then for any small ε1 > 0 there exists a T1 > T0

such that any solution x(t,x0) starting from a point x0 ∈ [0, A1] × [0, A2] \ K (1) falls into one of the
four rectangles

Ω(1) = Ω
(1)

ll ∪ Ω
(1)

ul ∪ Ω
(1)

lu ∪ Ω
(1)
uu ⊂ Ω(0)

for t � T1, where

K (1) = Ω
(1)

ml ∪ Ω
(1)

lm ∪ Ω
(1)
mm ∪ Ω

(1)
um ∪ Ω

(1)
mu ⊂ K (0),

Ω
(1)

ll = [
ǎ(1)

1,l − ε1, â(1)

1,l + ε1
] × [

ǎ(1)

2,l − ε1, â(1)

2,l + ε1
] ⊂ Ω

(0)

ll ,

Ω
(1)

ul = [
č(1)

1,l − ε1, ĉ(1)

1,l + ε1
] × [

ǎ(1)
2,u − ε1, â(1)

2,u + ε1
] ⊂ Ω

(0)

ul ,

Ω
(1)

lu = [
ǎ(1)

1,u − ε1, â(1)
1,u + ε1

] × [
č(1)

2,l − ε1, ĉ(1)

2,l + ε1
] ⊂ Ω

(0)

lu ,

Ω
(1)
uu = [

č(1)
1,u − ε1, ĉ(1)

1,u + ε1
] × [

č(1)
2,u − ε1, ĉ(1)

2,u + ε1
] ⊂ Ω

(0)
uu ,

Ω
(1)

ml = [
b̂(1)

1,l , b̌(1)

1,l

] × [
ǎ(1)

2,m, â(1)
2,m

] ⊂ Ω
(0)

ml , Ω
(1)

lm = [
ǎ(1)

1,m, â(1)
1,m

] × [
b̂(1)

2,l , b̌(1)

2,l

] ⊂ Ω
(0)

lm ,

Ω
(1)
mm = [

b̂(1)
1,m, b̌(1)

1,m

] × [
b̂(1)

2,m, b̌(1)
2,m

] ⊂ Ω
(0)
mm, Ω

(1)
um = [

č(1)
1,m, ĉ(1)

1,m

] × [
b̂(1)

2,u, b̌(1)
2,u

] ⊂ Ω
(0)
um,

Ω
(1)
mu = [

b̂(1)
1,u, b̌(1)

1,u

] × [
č(1)

2,m, ĉ(1)
2,m

] ⊂ Ω
(0)
mu;

Fig. 6 describes the four components of Ω(1) and the five components of K (1) .
We then consider the dynamics on Ω(1) ∪ K (1) . Successively, we can define â(k)

i,∗, ǎ(k)
i,∗ , b̂(k)

i,∗, b̌(k)
i,∗ ,

ĉ(k)
i,∗, č(k)

i,∗ , i = 1,2,∗ = l,m,u, and Ω(k) and K (k) , for k > 2. Using (6.6) we can extend the argument
used in Lemma 6.1 and in Section 7 to show that each of the following intervals converges to a single
point as k → ∞:

[
ǎ(k)

i,∗, â(k)
i,∗

] → {ai,∗},
[
b̂(k)

i,∗, b̌(k)
i,∗

] → {bi,∗},
[
č(k)

i,∗, ĉ(k)
i,∗

] → {ci,∗}, i = 1,2, ∗ = l,m,u,

so that

Ω(k) → {
(a1,l,a2,l), (c1,l,a2,u), (a1,u, c2,l), (c1,u, c2,u)

}
as k → ∞.

In addition,

S1(t) → S1 = w ll · a1,l + wul · c1,l + w lu · a1,u + wuu · c1,u + C̄1,

S2(t) → S2 = w ll · a2,l + wul · a2,u + w lu · c2,l + wuu · c2,u + C̄2

as t → ∞, for some w ll, wul, w lu, wuu � 0 with w ll + wul + w lu + wuu = 1. Here, w ll, wul, w lu, wuu
represent the percentage of cells whose concentrations tend to levels (a1,l,a2,l), (c1,l,a2,u), (a1,u, c2,l),

(c1,u, c2,u), respectively. Notice that these points together with the w ’s weights satisfy



758 A. Friedman et al. / J. Differential Equations 247 (2009) 736–769
Fig. 6. Notations for Ω(1) and its components, for the four-peak case.

f i(a1,l,a2,l, w ll · a1,l + wul · c1,l + w lu · a1,u + wuu · c1,u + C̄i) = 0, (8.2)

f i(c1,l,a2,u, w ll · a1,l + wul · c1,l + w lu · a1,u + wuu · c1,u + C̄i) = 0, (8.3)

f i(a1,u, c2,l, w ll · a1,l + wul · c1,l + w lu · a1,u + wuu · c1,u + C̄i) = 0, (8.4)

f i(c1,u, c2,u, w ll · a1,l + wul · c1,l + w lu · a1,u + wuu · c1,u + C̄i) = 0 (8.5)

for i = 1,2.
Setting nll = N0 · w ll , nlu = N0 · w lu, nul = N0 · wul, nuu = N0 · wuu, we summarize:

Theorem 8.1. If the conditions (6.6) and (8.1) hold then the solution ψ of (2.10), (3.1), with fi , Si defined by
(2.5), (2.6), (2.11), satisfies:

lim
t→∞ψ(t, x2, x2) = nll · δ(a1,l,a2,l) + nul · δ(c1,l,a2,u) + nlu · δ(a1,u,c2,l) + nuu · δ(c1,u,c2,u), (8.6)

where nll +nlu +nul +nuu = N0; the points (a1,l,a2,l), (c1,l,a2,u), (a1,u, c2,l), (c1,u, c2,u) and the weights w ll ,
w lu , wul , wuu satisfy Eqs. (8.2)–(8.5) and the convergence in (8.6) is in the sense of convergence in measure.

9. Numerical illustrations

In this section, we provide numerical simulations for the single-cell model (2.1), (2.2) and for the
population model (2.4).

The single-cell model is a system of two ordinary differential equations (ODEs) which can be
easily solved by the Runge–Kutta method, using ode45 in MATLAB. The population model (2.4) is es-
sentially an integro-differential equation. The integrations in the Si(t) need to be carried out through
quadrature rule (numerical integration); we shall use Simpson’s rule which has third order accu-
racy. The solution of Eq. (2.4) is then obtained by using Lax–Friedrichs method [10,11]. Notice that
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the asymptotic solution of the population model becomes singular for large time. In order to ob-
tain highly accurate solution, refinement is definitely needed at the places where population density
tends to grow, and the corresponding quadrature rule has to be redesigned; this we have done for
the one-peak case, but not for the multi-peak cases: we stopped the numerical simulations after the
asymptotic singular solutions are observed.

9.1. The single-cell model

In Fig. 7, we first demonstrate the single-cell model results. The parameters for (a)–(e) are chosen
as those in [15], namely,

μ = 5 day−1, α1 = α2 = 5 day−1, σ1 = σ2 = 5 day−1, (9.1)

k1 = k2 = 1, ρ1 = ρ2 = 1, γ1 = 1, γ2 = 0.5, (9.2)

β1 = β2 = 0.05 day−1, n = 6. (9.3)

For these parameters, we take A1 = A2 = 2.01. Then

α1ñ

k1
· 1

1 + A2/γ2
< μ <

α1ñ

k1
,

α2ñ

k2
· 1

1 + A1/γ1
< μ <

α2ñ

k2
,

so that the conditions (M1) and (M2) are not satisfied. Thus, f̂ i defined in (4.1) has a local minimum
and a local maximum for i = 1,2.

In addition, conditions (B1), (B2) hold for the Bi defined in Section 4. This gives the flexibility for
the system to be either monostable or bistable under different choices of S1 and S2. For example, the
system is

(a) monostable (MS) for S1 = 0.05, S2 = 0.025, with the choice of B1 = 0.058 and B2 = 0.035; in this
case (B1), (B2) hold and f̂ i(p̂M

i ) < 0 (i = 1,2);
(b) bistable (BS-ll,hl) for S1 = 1.2, S2 = 0.025 with B1 = 1.181 and B2 = 0.035; in this case (B1), (B2)

hold, and f̂1(p̂m
1 ) < 0, f̌1(p̌M

1 ) > 0, f̂2(p̂M
2 ) < 0;

(c) bistable (BS-ll,lh) for S1 = 0.05, S2 = 1.3 with B1 = 0.058 and B2 = 1.493; in this case (B1), (B2)
hold and f̂2(p̂m

2 ) < 0, f̌2(p̌M
2 ) > 0, f̂1(p̂M

1 ) < 0 hold.

Each of these cases is shown in Fig. 7, where we chose 36 different initial conditions (x1(0), x2(0))

and depicted their evolution. The blue curve is the nullcline of f1 while the red curve is the nullcline
of f2. We can clearly see that the solutions converge to a single stable equilibrium in case (a) and to
two stable equilibria in cases (b) and (c). The bistable-ll,hl (bistable-ll,lh) system with low x1–low x2
and high x1–low x2 states (low x1–low x2 and low x1–high x2 states), shown in case (b) ((c)) can
become monostable with high x1–low x2 state (low x1–high x2), shown in (d) ((e)) by increasing the
value of S1 (S2). Notice that (d) ((e)) satisfies conditions (B1), f̌1(p̌m

1 ) > 0 and (B2), f̂2(p̂M
2 ) < 0 with

B1 = 1.626 and B2 = 0.035 ((B2), f̌2(p̌m
2 ) > 0, (B1), f̂1(p̂M

1 ) < 0 with B1 = 0.058 and B2 = 1.626). It
is also possible to switch from bistable-ll,hl (bistable-ll,lh) to monostable by decreasing S2 (S1).

However, the system with parameters (9.1)–(9.3) cannot be quadstable due to the strong mutual
inhibition (i.e., small γ1, γ2). If we decrease the mutual inhibition by taking parameters γ1 = γ2 = 30,
σ1 = σ2 = 2, k1 = k2 = 0.6, but keep all the other parameters the same, then conditions (B1), (B2),
f̂ i(p̂m

i ) < 0, f̌ i(p̌M
i ) > 0, i = 1,2, are satisfied, and by Theorem 4.1(iv), the system is quadstable, as

illustrated in Fig. 8.
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Fig. 7. Single-cell model. (a) Monostable: the stable equilibrium is (x1, x2) ≈ (0.055,0.033). (b) Bistable-ll,hl: the stable equilib-
ria are (x1, x2) ≈ (0.556,0.026) and (1.368,0.020); the unstable equilibrium is (x1, x2) ≈ (0.976,0.022). (c) Bistable-ll,lh: the
stable equilibria are (0.032,0.602) and (0.022,1.444); the unstable equilibrium is (0.027,0.904). (d) Monostable: the stable
equilibrium is (1.549,0.020). (e) Monostable: the stable equilibrium is (0.042,1.544). Notice that the dark blue curve is the
nullcline of f1 while the red curve is the nullcline of f2. The black curves converge to ll state, the green curves converge to hl
state, and the light blue curves converge to lh state. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)
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Fig. 8. Single-cell model. Quadstable: S1 = 0.04, S2 = 1.6, the stable equilibria are (x1, x2) ≈ (0.211,0.211), (0.204,1.186),
(1.186,0.204), (1.146,1.146) and the unstable equilibria (x1, x2) ≈ (0.208,0.531), (0.531,0.208), (0.535,0.535), (0.543,1.171),
(1.171,0.543).

9.2. The population model

Since in the population model (2.4) S1 and S2 are not constant and their evolution depends on
both the initial population of cells and the external signals C1(t), C2(t), one may expect interesting be-
havior; for example, the system may switch from one-peak to two-peak profile at intermediate times.
In the subsequent numerical simulations we adapt the normalized population density ψ(t, x1, x2),
take A1, A2 as in Section 9.1, and choose the initial condition

ψ0(x1, x2) = const = 1

A1 A2
(9.4)

so that N0 = 1. Although in (3.1) we assumed that ψ0 = 0 on ∂Ω , the results of Sections 6–8 do not
actually use this assumption. Furthermore, the simulations given below do not significantly change if
we modify (9.4) near the boundary ∂Ω so as to make ψ0 vanish there.

In Sections 9.2.1–9.2.3 we take Ci(t) = 0, i.e., there is no external stimulus. In Section 9.2.4 we
examine the effect of the stimulus Ci(t).

We first demonstrate one-, two-, and four-peak solutions by choosing specific parameters in the
regimes we discussed in Theorem 4.1.

9.2.1. Asymptotic one-peak solution
In Fig. 9 we show numerical results under conditions (M1) and (M2) which guarantee a single

attracting point. Notice that we choose k1 = k2 = 2 instead of k1 = k2 = 1 in [15] in order to satisfy
conditions (M1) and (M2). In Fig. 9(a), 9(b), 9(c) we have plotted ψ and the corresponding vector
field ( f1, f2) at times t = 0.05,0.2,5. Since (M1) and (M2) are satisfied no matter what S1 and S2 are,
there is only one stable equilibrium point (although the sufficient condition (6.6) in Theorem 6.2 is not
satisfied). The vectors ( f1, f2) all point toward the attracting point. The normalized population density
gets more and more concentrated at an attracting point, and (S1(t), S2(t)) converges to (ā1, ā2) ≈
(0.054,0.081).

9.2.2. Asymptotic two-peak solution
Fig. 10 displays bistable case (bistable-ll,lh) with two-peak solution. We choose parameters

σ1 = σ2 = 2, γ1 = 30, γ2 = 1, k1 = 5, k2 = 0.6. We see that the population density starts to ac-
cumulate at two attracting points and the population density is higher in low x1–high x2 state as
proved in Section 7. The weights w1 and w2 in the asymptotic solution depend on the initial popu-
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Fig. 9. Monostable: k1 = k2 = 2 but all other parameters are as in (9.1)–(9.3). (a) t = 0.05, (b) t = 0.2, (c) t = 5.

lation density. If most of the population density is initially in the attraction basin of low x1–low x2

state, then the weight for the Dirac function with center at low x1–low x2 state would be higher (not
shown here).
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Fig. 10. Bistable (BS-ll,lh): σ1 = σ2 = 2, γ1 = 30, γ2 = 1, k1 = 5, k2 = 0.6 and all other parameters are as in (9.1)–(9.3).
(a) t = 0.05, (b) t = 0.2, (c) t = 1.
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9.2.3. Asymptotic four-peak solution
In Fig. 11, the population density becomes highly concentrated at four attracting points as we

expect from Theorem 8.1. The weights w11, wu1, w1u and wuu depend on the parameters of the
system as well as on initial population density. The parameters chosen satisfy the condition (B1)′ and
(B2)′ (and (6.6) is also satisfied). Note that the mutual inhibition is small (i.e., γ1 and γ2 are large).

9.2.4. Effect of the stimulus
In the previous subsections we have assumed that Ci(t) ≡ 0 (no external stimulus). We now want

to examine the effect of these stimuli. We take the parameters as in (9.1)–(9.3): Fig. 12 shows how
with no stimuli (i.e., with C1(t) ≡ C2(t) ≡ 0) the uniform populations begin to evolve and move into
low x1–low x2 peak; this is interpreted biologically as no cell differentiation. In Fig. 13 we choose
C1(t)exp−G(t) = 0.5 and C2(t)exp−G(t) = 1.5 for all t > 0. We see that the solution develops a two-
peak solution. Due to the larger stimulus of x2 (i.e., C2(t) > C1(t)), as well as the stronger inhibition
of x1 by x2, the low x1–high x2 peak appears instead of high x1–low x2 peak.

In Fig. 14 we use the same stimuli as in Fig. 13, but have taken ψ0 to be constant for x1 < A1/5
and zero elsewhere. Thus we give GATA-3 initial density advantage as well as stimulus advantage. We
see that the population density moves again toward two-peak solution, low x1–low x2 and low x1–
high x2, but the population density at the low x1–high x2 is larger than in Fig. 13. In both Figs. 13
and 14, the low x1–high x2 can be interpreted biologically as a population of differentiated Th2 cells.

10. Conclusions

In this paper, we considered a conservative law of the form

∂φ

∂t
+ ∂

∂x1
( f1φ) + ∂

∂x2
( f2φ) = gφ, φ = φ(t, x1, x2), (10.1)

where the velocity vector f = ( f1, f2) is a nonlinear nonlocal function of φ. This equation arises as
a model of T cell differentiation where x = (x1, x2), and x1, x2 are the concentrations of transcription
factors T-bet and GATA-3, respectively. A precursor T cell growing at rate g with x1 large (small) and
x2 small (large) will differentiate into Th1 (Th2) T cell. Th1 and Th2 have different functions: Th1
T cells combat intracellular pathogens while Th2 T cells induce the activation of B cells to combat
extracellular pathogens. A ‘good’ balance between these two populations of cells is maintained in
homeostasis. The function φ(t, x1, x2) represents the population density of T cells with concentrations
(x1, x2) at time t . Within an individual cell the concentrations of x1 and x2 vary according to the
equations

dxi

dt
= f i

(
t, x1, x2, φ(t, ·)), i = 1,2, (10.2)

and the dependence on t and φ(t, ·) arises from stimuli Si(t) consisting of a stimulus which arises
from within the entire population of the T cells and of an external stimulus Ci .

It is natural to ask what is the behavior of φ at intermediate and large times and how this depends
on Ci(t) and on the initial condition. In this paper, we have depicted six regions from the space of
parameters that are introduced in the definition of the f i . We proved that for the first regime the
function φ(t, x1, x2) converges to a 1-peak solution as t → ∞; for regimes 2, 3, 4, and 5, φ converges
to a 2-peak solution, and for regime 6, φ converges to a 4-peak solution; this was illustrated in
Figs. 9–11 when Ci(t) ≡ 0.

Numerical simulations given in Figs. 12–14, show how the location of these peaks depends on the
external signals Ci(t) and the initial conditions. We interpret a peak centered at (x0

1, x0
2) with x0

1, x0
2

small as a population of T cell that do not differentiate. A peak with x0
1 small, x0

2 large represents a
population of T cells that differentiate into Th2. In a similar way, we interpret the case of x0

1 large,
x0

2 small. Finally, a situation where both x0
1 and x0

2 are large in viewed as abnormal: Since the con-
centrations of both T-bet and GATA-3 are large, the cell receive conflicting instructions to differentiate
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Fig. 11. Quadstable: σ1 = σ2 = 2, γ1 = γ2 = 30, k1 = k2 = 0.6 and all other parameters are as in (9.1)–(9.3). (a) t = 0.05,
(b) t = 0.2, (c) t = 1.

simultaneously to Th1 and Th2. This situation arises in Fig. 11 where the mutual inhibition is weak
(namely, γ1 = γ2 = 30). Hence one of the conclusions of our simulations is that, in homeostasis, the
mutual inhibition cannot be too weak.
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Fig. 12. Monostable result: the parameters are as in (9.1)–(9.3). The population density moves toward low x1–low x2 state at
(a) t = 0.05, (b) t = 1.0 and (c) t = 5.

The results of the paper are obtained by approximating the full dynamical system (10.2) from
above and below by a sequence of dynamical systems where in each step of approximation the total
signaling is constant but is ‘sharper’ than in the previous step. This method is quite general and
could be applied to more general functions f (t, x, φ(·)) and in any number of dimensions for the x
variable.
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Fig. 13. The parameters are as in (9.1)–(9.3). A uniform density evolves toward two stable points under external stimulus
C1(t)e−G(t) = 0.5, C1(t)e−G(t) = 1.5. (a) t = 0.01, (b) t = 0.1 and (c) at t = 1.



768 A. Friedman et al. / J. Differential Equations 247 (2009) 736–769
Fig. 14. The parameters are as in (9.1)–(9.3). A uniform density at x1 < A1/5 evolves toward two stable points under external
stimulus C1(t)e−G(t) = 0.5, C1(t)e−G(t) = 1.5. (a) t = 0.01, (b) t = 0.1 and (c) at t = 1.
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