Asymptotic phases in a cell differentiation model

Avner Friedman ${ }^{\text {a }}$, Chiu-Yen Kao ${ }^{\text {a }}$, Chih-Wen Shih ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Mathematical Biosciences Institute, Department of Mathematics, The Ohio State University, OH 43210, United States
${ }^{\text {b }}$ Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan 300, ROC

A R T I CLE I N F O

Article history:

Received 15 November 2008
Available online 29 April 2009

Keywords:

Cell differentiation
Th1/Th2 cells
Conservation law
Multistationary
Integro-differential equation
Transcription factors

Abstract

T cells of the immune system, upon maturation, differentiate into either Th1 or Th2 cells that have different functions. The decision to which cell type to differentiate depends on the concentrations of transcription factors T-bet $\left(x_{1}\right)$ and GATA-3 (x_{2}). The population density of the T cells, $\phi\left(t, x_{1}, x_{2}\right)$, satisfies a conservation law $\partial \phi / \partial t+\left(\partial / \partial x_{1}\right)\left(f_{1} \phi\right)+\left(\partial / \partial x_{2}\right)\left(f_{2} \phi\right)=g \phi$ where f_{i} depends on (t, x_{1}, x_{2}) and, in a nonlinear nonlocal way, on ϕ. It is proved that, as $t \rightarrow \infty, \phi\left(t, x_{1}, x_{2}\right)$ converges to a linear combination of 1,2 , or 4 Dirac measures. Numerical simulations and their biological implications are discussed.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The development of a multicellular organism from a single fertilized egg cell to specialized cells depends on programs of gene expression. Following the initial stage of cell determination is a maturation process called differentiation by which cells acquire specific recognizable phenotypes and functions. In particular, the T lymphocytes of the immune system, upon maturation, differentiate into either Th1 or Th2 cells that have different functions. The decision to which of the cell type to differentiate depends on the concentration of transcription factors T-bet (x_{1}) and GATA-3 (x_{2}). If x_{1} is high (low) and x_{2} is low (high), the T cell will differentiate into Th1 (Th2).

A mathematical model by Yates et al. [15] describes the differentiation process in terms of two differential equations

$$
\begin{equation*}
\frac{d x_{i}}{d t}=f_{i}\left(t, x_{1}, x_{2}, \phi\right) \quad(i=1,2), \tag{1.1}
\end{equation*}
$$

[^0]0022-0396/\$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2009.03.033
where $\phi\left(t, x_{1}, x_{2}\right)$ is the population density of cells with concentration (x_{1}, x_{2}) at time $t ; \phi$ satisfies the conservation of mass law

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\frac{\partial}{\partial x_{1}}\left(f_{1} \phi\right)+\frac{\partial}{\partial x_{2}}\left(f_{2} \phi\right)=g \phi \tag{1.2}
\end{equation*}
$$

where g is the growth rate. Here $f_{i}\left(t, x_{1}, x_{2}, \phi\right)$ is a nonlinear, nonlocal function of $\phi\left(t, x_{1}, x_{2}\right)$.
In this paper we analyze the asymptotic behavior of $\phi\left(t, x_{1}, x_{2}\right)$ as $t \rightarrow \infty$. We prove that

$$
\begin{equation*}
\phi\left(t, x_{1}, x_{2}\right) \rightarrow \sum \omega_{j} \delta_{\left(\bar{a}_{1}^{j}, \bar{a}_{2}^{j}\right)} \quad \text { as } t \rightarrow \infty \tag{1.3}
\end{equation*}
$$

where the limit is a linear combination of Dirac measures at $\left(\bar{a}_{1}^{j}, \bar{a}_{2}^{j}\right)$, and the number of terms in the linear combination is 1,2 or 4 , depending on the parameters which occur in the definition of the f_{i}. Conservation laws of the form (1.2), but with very different velocity terms (f_{1}, f_{2}), were considered in [6, Chapter 3], $[7,8,16$] and [9, Chapter 3], and some asymptotic estimates were derived in [6,7,9]. A theoretical study of bistable switches appeared in [3]. An analytic approach in studying multistationary dynamics for neural networks was reported in [2,12,14]. We finally note that mathematical models of differentiation of T cell and other cells appeared in [4,5] and [13], respectively; see also [1, Chapter 9].

2. The mathematical model

Lymphocytes are white blood cells that play important roles in the immune system. T cells and B cells are two major types of lymphocytes. B cells produce antibodies against pathogens while T cells are involved in autoimmunity. Th lymphocytes represent a subtype of T cells that are identified by the presence of surface antigens called CD4; they are referred to as CD4 ${ }^{+}$T cells. Other subtypes of T cells include cytotoxic T cells (CD8 ${ }^{+}$) and regulatory T cells. Th cells are the most numerous of the T cells in a healthy person. After an initial antigenic stimulation, Th lymphocytes differentiate into either one of two distinct types of cells called Th1 and Th2. Th1 cells make IFN γ that combat intracellular pathogens, and this immune response, if abnormal, is associated with inflammatory and autoimmune diseases. Th2 cells produce cytokines that activate B cells to produce antibodies against extracellular pathogens; this response, if abnormal, is associated with allergies such as asthma. Whether a precursor Th cell (henceforth to be denoted by Th0) becomes Th1 or Th2 depends on 'polarizing' signals.

The Yates et al. [15] model of Th differentiation is based on the interaction of two transcription factors, T-bet and GATA-3. High protein level of T-bet or GATA-3 corresponds to the Th1 phenotype or the Th2 phenotype. We shall denote by S_{1} and S_{2} the Th1 and Th2 polarizing cytokines, and by x_{1} and x_{2} the concentrations of T-bet and GATA-3, respectively, in a Th0 cell. Then the dynamics of x_{1} and x_{2} is described by

$$
\begin{align*}
& \frac{d x_{1}}{d t}=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}}{\rho_{1}+S_{1}}\right) \cdot \frac{1}{1+x_{2} / \gamma_{2}}+\beta_{1}, \tag{2.1}\\
& \frac{d x_{2}}{d t}=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}}{\rho_{2}+S_{2}}\right) \cdot \frac{1}{1+x_{1} / \gamma_{1}}+\beta_{2} . \tag{2.2}
\end{align*}
$$

The first term on the right-hand side of each equation represents the rate of protein degradation. The last term β_{i} is the constant basal rate of protein synthesis. The autoactivation rate of protein x_{i} is represented by the term

$$
\alpha_{i} \frac{x_{i}^{n}}{k_{i}^{n}+x_{i}^{n}},
$$

where n is the Hill exponent that tunes the sharpness of the activation switch. The contribution of external signaling to the rate of growth in x_{i} is given by the term

$$
\sigma_{i} \frac{S_{i}}{\rho_{i}+S_{i}} .
$$

The cross-inhibition between x_{1} and x_{2} occurs at both the autoactivation level and external (membrane) signaling level, and is represented by the cross-inhibition factors

$$
\frac{1}{1+x_{i} / \gamma_{i}} .
$$

The parameter γ_{i} represents the value of x_{i} at which the ratio of production of $x_{j}, i \neq j$ (due to the combined autoactivation and external signaling) is halved.

We denote by $\phi\left(t, x_{1}, x_{2}\right)$ the population density of CD4 ${ }^{+} \mathrm{T}$ cells with concentration (x_{1}, x_{2}) at time t. Then the total levels of expression of T-bet and GATA-3, at time t in the cell population are given, respectively, by

$$
\int x_{i} \phi\left(t, x_{1}, x_{2}\right) d x_{1} d x_{2}, \quad i=1,2 .
$$

If we denote by $C_{i}(t)$ the exogenous (non-T cell) signals that stimulate T-bet and GATA-3 expressions, then the total signal S_{i} is given by

$$
\begin{equation*}
S_{i}(t)=\frac{C_{i}(t)+\int x_{i} \phi\left(t, x_{1}, x_{2}\right) d x_{1} d x_{2}}{\int \phi\left(t, x_{1}, x_{2}\right) d x_{1} d x_{2}}, \quad i=1,2 . \tag{2.3}
\end{equation*}
$$

Here, a normalization by total cell numbers is adopted to impose the limitation of access to cytokines due to cell crowding. The evolution of the population density is then derived from the equation of continuity, or mass conservation law:

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\frac{\partial}{\partial x_{1}}\left(f_{1} \phi\right)+\frac{\partial}{\partial x_{2}}\left(f_{2} \phi\right)=g \phi \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
& f_{1}\left(x_{1}, x_{2}, S_{1}(t)\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}(t)}{\rho_{1}+S_{1}(t)}\right) \cdot \frac{1}{1+x_{2} / \gamma_{2}}+\beta_{1}, \tag{2.5}\\
& f_{2}\left(x_{1}, x_{2}, S_{2}(t)\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}(t)}{\rho_{2}+S_{2}(t)}\right) \cdot \frac{1}{1+x_{1} / \gamma_{1}}+\beta_{2} . \tag{2.6}
\end{align*}
$$

In [15], the extrinsic and intrinsic cytokine interactions during the differentiation process were described in detail. Several numerical simulations have been made there to illustrate the changes of percentage of population under varying magnitudes of stimulus. Switches of population between Th0 to Th2 (high GATA-3) or from Th1 (high T-bet) to Th0, and then to Th2, under various levels of stimulus by extrinsic cytokines IL4 and IL12 were demonstrated.

The primary aim of the present paper is to analyze the behavior of the dynamical system (2.1)(2.2) and the associated conservation law (2.4). We prove that when the parameters in (2.1)-(2.2) belong to a well-defined regime $P_{i}, 1 \leqslant i \leqslant 6$, the solution $\phi\left(t, x_{1}, x_{2}\right)$ will tend to 1 -peak Dirac measure if $i=1$, 2-peak Dirac measures if $i=2,3,4,5$ and 4 -peak Dirac measure if $i=6$. We use numerical simulation to examine the intermediate behavior of $\phi\left(t, x_{1}, x_{2}\right)$, and to draw biological implications.

Note that (2.4) is associated with the velocity field described by

$$
\begin{align*}
\frac{d x_{1}(t)}{d t} & =f_{1}\left(x_{1}(t), x_{2}(t), S_{1}(t)\right) \tag{2.7}\\
\frac{d x_{2}(t)}{d t} & =f_{2}\left(x_{1}(t), x_{2}(t), S_{2}(t)\right) \tag{2.8}
\end{align*}
$$

We consider (2.4) on a (closed) domain

$$
\Omega=\left[0, A_{1}\right] \times\left[0, A_{2}\right]
$$

which is an attracting set for (2.7)-(2.8); for convenience, we choose

$$
\begin{equation*}
A_{i}=\frac{\alpha_{i}+\sigma_{i}+\beta_{i}}{\mu}, \quad i=1,2 \tag{2.9}
\end{equation*}
$$

We assume that

$$
\left.\phi\left(0, x_{1}, x_{2}\right)\right|_{\partial \Omega}=0
$$

and

$$
\left.\phi\left(t, x_{1}, x_{2}\right)\right|_{\partial \Omega}=0 \quad \text { for all } t>0
$$

Assuming that $g=g(t)$, and setting $G(t)=\int_{0}^{t} g(s) d s$,

$$
\psi\left(t, x_{1}, x_{2}\right)=e^{-G(t)} \phi\left(t, x_{1}, x_{2}\right)
$$

we can replace (2.4) by

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x_{1}}\left(f_{1} \psi\right)+\frac{\partial}{\partial x_{2}}\left(f_{2} \psi\right)=0 \tag{2.10}
\end{equation*}
$$

with

$$
\begin{equation*}
S_{i}(t)=\frac{C_{i}(t) e^{-G(t)}}{N_{0}}+\frac{\int x_{i} \psi\left(t, x_{1}, x_{2}\right) d x_{1} d x_{2}}{N_{0}} \tag{2.11}
\end{equation*}
$$

where N_{0} is the initial total population and the integral is taken over Ω.
Let $\Phi\left(t, x_{1}, x_{2}\right)$ be the solution map (flow map) of (2.7)-(2.8) and let $\Omega(t)=\Phi(t, \Omega)$. Then the transport equation (2.10) yields

$$
\frac{d}{d t} \int_{\Omega(t)} \psi\left(t, x_{1}, x_{2}\right) d x_{1} d x_{2}=0
$$

Furthermore, if $\Omega(t) \rightarrow\left(\bar{a}_{1}, \bar{a}_{2}\right)$ as $t \rightarrow \infty$ then for any continuous function $h\left(x_{1}, x_{2}\right)$,

$$
\int_{\Omega} h\left(x_{1}, x_{2}\right) \psi\left(t, x_{1}, x_{2}\right) d x_{1} d x_{2} \rightarrow h\left(\bar{a}_{1}, \bar{a}_{2}\right) N_{0} \quad \text { as } t \rightarrow \infty
$$

i.e.,

$$
\begin{equation*}
\psi\left(t, x_{1}, x_{2}\right) \rightarrow N_{0} \delta_{\left(\bar{a}_{1}, \bar{a}_{2}\right)} \quad \text { in measure as } t \rightarrow \infty \tag{2.12}
\end{equation*}
$$

In the subsequent sections we study the behavior of the solution of (2.7), (2.8) in conjunction with the behavior of $\Omega(t)$.

In Section 3 we prove existence and uniqueness for the initial value problem of Eq. (2.10). In Sections 4-8, we establish the assertion (1.3) under some assumptions on the parameters of (2.5)(2.6). Numerical simulations illustrating the dynamics of the single-cell model and the formation of peak-solutions as t increases are given in Section 9. In the concluding Section 10, we give a biological interpretation of our results.

3. Existence and uniqueness

We shall prove the existence and uniqueness for Eq. (2.10) with initial values

$$
\begin{equation*}
\left.\psi\right|_{t=0}=\psi_{0}\left(x_{1}, x_{2}\right) \quad \text { in } \Omega, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{gather*}
\psi_{0} \text { vanishes on } 2 \Omega, \quad \int_{\Omega(0)} \psi_{0}=N_{0} \\
\psi_{0}, \nabla \psi_{0} \text { are continuous functions in } \Omega \\
G(t) \text { and } C_{i}(t) \text { are continuous functions for } t \geqslant 0 \tag{3.2}
\end{gather*}
$$

Set $f=\left(f_{1}, f_{2}\right)$ and write

$$
\begin{equation*}
f=f(t, \mathbf{x}, \psi)=F(\mathbf{x})+H(t, \mathbf{x}, \psi(t, \cdot)) \tag{3.3}
\end{equation*}
$$

The characteristic curves of (2.10) are given by

$$
\begin{gather*}
\frac{d \xi_{t, \mathbf{x}}}{d \tau}=F\left(\xi_{t, \mathbf{x}}(\tau)\right)+H\left(t, \xi_{t, \mathbf{x}}(\tau), \psi(\tau, \cdot)\right), \quad 0<\tau<t \tag{3.4}\\
\xi_{t, \mathbf{x}}(t)=\mathbf{x} \tag{3.5}
\end{gather*}
$$

Note that if $\mathbf{x} \in \Omega$ then $\xi_{t, \mathbf{x}}(\tau) \in \Omega$ for all $0 \leqslant \tau<t$.
We introduce the space $C^{1}(\Omega)$ of continuously differentiable functions $\psi(\mathbf{x})$ with norm

$$
\|\psi\|=\max _{\mathbf{x} \in \Omega}(|\psi(\mathbf{x})|+|\nabla \psi(\mathbf{x})|)
$$

and the space $C_{T}^{1}(\Omega)$ of continuous functions $\psi(t, \mathbf{x})$ in $\Omega_{T}=[0, T] \times \Omega$ with continuous derivative $\nabla_{\mathbf{x}} \psi(t, \mathbf{x})$ in Ω_{T}, and with norm

$$
\|\psi\|_{T}=\max _{\mathbf{x} \in \Omega, 0 \leqslant t \leqslant T}\left(|\psi(t, \mathbf{x})|+\left|\nabla_{\mathbf{x}} \psi(t, \mathbf{x})\right|\right)
$$

Theorem 3.1. Under the condition (3.2) there exists a unique solution of (2.10), (3.1), with f_{i}, S_{i} defined by (2.5), (2.6), (2.11), for all $t>0$ such that $\psi \in C_{T_{0}}^{1}(\Omega)$ for all $T_{0}>0$.

Proof. Take any constant $M, M>\left\|\psi_{0}\right\|$, and introduce the set

$$
X_{M}=\left\{\psi \in C_{T}^{1}(\Omega),\|\psi\|_{T} \leqslant M\right\}
$$

for T small to be determined. We define a mapping W from X_{M} into itself and prove that it has a unique fixed point. Given any $\psi \in X_{M}$, set $\bar{\psi}=W(\psi)$ where $\bar{\psi}$ is the solution of

$$
\begin{gather*}
\frac{\partial \bar{\psi}}{\partial t}+f(t, \mathbf{x}, \psi) \cdot \nabla_{\mathbf{x}} \bar{\psi}=-\left(\nabla_{\mathbf{x}} \cdot f(t, \mathbf{x}, \psi)\right) \bar{\psi}, \quad \mathbf{x} \in \Omega, \quad 0<t<T, \tag{3.6}\\
\left.\bar{\psi}\right|_{t=0}=\psi_{0}, \quad \mathbf{x} \in \Omega \tag{3.7}
\end{gather*}
$$

Using the representation

$$
\begin{equation*}
\bar{\psi}(t, \mathbf{x})=\bar{\psi}\left(\xi_{t, \mathbf{x}}(0)\right)-\int_{0}^{t}\left[\nabla_{\mathbf{x}} \cdot f\left(\tau, \xi_{t, \mathbf{x}}(\tau), \psi(\tau, \cdot)\right)\right] \bar{\psi}\left(\tau, \xi_{t, \mathbf{x}}(\tau)\right) d \tau, \tag{3.8}
\end{equation*}
$$

we get

$$
\max _{\mathbf{x} \in \Omega, 0 \leqslant t \leqslant T}|\psi(t, \mathbf{x})| \leqslant\left|\psi_{0}\right|_{L^{\infty}(\Omega)}+C T
$$

where C is a constant which is actually independent of M.
Differentiating (3.6) with respect to x_{i} and applying the preceding argument, we obtain a similar bound on $\frac{\partial \bar{\psi}}{\partial x_{i}}$, so that

$$
\|\bar{\psi}\|_{T} \leqslant\left\|\psi_{0}\right\|+C T<M
$$

if T is small enough. Hence W maps X_{M} into X_{M}. We next claim that W is a contraction. Indeed, given two functions ψ_{1}, ψ_{2} in X_{M}, denote by $\xi_{t, \mathbf{x}}^{1}, \xi_{t, \mathbf{x}}^{2}$, the corresponding characteristic curves, and set $\bar{\psi}_{i}=W\left(\psi_{i}\right), \psi=\psi_{1}-\psi_{2}, \bar{\psi}=\bar{\psi}_{1}-\bar{\psi}_{2}$. By ODE theory and (3.3),

$$
\begin{equation*}
\left|\xi_{t, \mathbf{x}}^{1}(\tau)-\xi_{t, \mathbf{x}}^{2}(\tau)\right| \leqslant C T\left[\max _{\mathbf{x} \in \Omega, 0 \leqslant t \leqslant T}|\psi(t, \mathbf{x})|\right] . \tag{3.9}
\end{equation*}
$$

Using the representation (3.8) for each $\bar{\psi}_{i}$, we deduce that

$$
\max _{\mathbf{x} \in \Omega, 0 \leqslant t \leqslant T}|\bar{\psi}(t, \mathbf{x})| \leqslant C T\left[\max _{\mathbf{x} \in \Omega, 0 \leqslant t \leqslant T}|\psi(t, \mathbf{x})|\right] .
$$

Similarly we obtain a bound on $\nabla \bar{\psi}(t, \mathbf{x})$ by differentiating (3.6) with respect to x_{i}, applying the previous argument, and using (3.9). Hence

$$
\|\bar{\psi}\|_{T} \leqslant C T\|\psi\|_{T}
$$

so that W is a contraction if T is small enough, and thus existence and uniqueness for (2.10), (3.1) follows for $0 \leqslant t \leqslant T$.

We can extend the solution step-by-step to all $t>0$ provided we can derive an a priori bound, say

$$
\begin{equation*}
\|\psi\|_{T_{0}} \leqslant C+C \exp \left(\alpha T_{0}\right) \text { for all } T_{0}>0, \tag{3.10}
\end{equation*}
$$

where C, α are constants. From (3.8) with $\bar{\psi}=\psi$ and (3.3) we get, by Gronwall's inequality,

$$
\sup _{\mathbf{x} \in \Omega}|\psi(t, \mathbf{x})| \leqslant C+C e^{\alpha t} .
$$

Similarly, by differentiating (3.6) with respect to x_{i}, we derive

$$
\sup _{\mathbf{x} \in \Omega}|\nabla \psi(t, \mathbf{x})| \leqslant C+C e^{\alpha t}
$$

Hence (3.10) holds and the proof of Theorem 3.1 is complete.

4. Single cell

We consider the single-cell model (2.1)-(2.2) in which S_{1}, S_{2} are regarded as nonnegative constants. As we shall see, under some regimes of the parameter space, the system admits monostable, bistable, and quadstable phases. In order to study the dynamics of a single-cell, we introduce upper bounds \hat{f}_{i} for the functions f_{i} in (2.5), (2.6):

$$
\begin{equation*}
\hat{f}_{i}\left(x_{i}\right)=-\mu x_{i}+\left(\alpha_{i} \frac{x_{i}^{n}}{k_{i}^{n}+x_{i}^{n}}+\sigma_{i} \frac{S_{i}}{\rho_{i}+S_{i}}\right)+\beta_{i}, \quad i=1,2 . \tag{4.1}
\end{equation*}
$$

Then \hat{f}_{i} has the following properties:

$$
\begin{equation*}
\hat{f}_{i}(0)>0, \quad \hat{f}_{i}^{\prime}(0)<0, \quad \hat{f}_{i}\left(x_{i}\right)<0 \quad \text { for } A_{i} \leqslant x_{i}<\infty \tag{4.2}
\end{equation*}
$$

Let $B_{i} \in\left(0, A_{i}\right)$ be greater than the largest zero of $\hat{f}_{i}, i=1,2$. We also introduce lower bounds \check{f}_{i} for f_{i} :

$$
\begin{align*}
& \check{f}_{1}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}}{\rho_{1}+S_{1}}\right) \cdot \frac{1}{1+B_{2} / \gamma_{2}}+\beta_{1}, \tag{4.3}\\
& \check{f}_{2}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}}{\rho_{2}+S_{2}}\right) \cdot \frac{1}{1+B_{1} / \gamma_{1}}+\beta_{2} . \tag{4.4}
\end{align*}
$$

Indeed,

$$
\begin{array}{ll}
\check{f}_{1}\left(x_{1}\right) \leqslant f_{1}\left(x_{1}, x_{2}\right), & \text { for }\left(x_{1}, x_{2}\right) \in\left[0, A_{1}\right] \times\left[0, B_{2}\right], \\
\check{f}_{2}\left(x_{2}\right) \leqslant f_{2}\left(x_{1}, x_{2}\right), & \text { for }\left(x_{1}, x_{2}\right) \in\left[0, B_{1}\right] \times\left[0, A_{2}\right] .
\end{array}
$$

Note that

$$
\begin{equation*}
\check{f}_{i}(0)>0, \quad \check{f}_{i}^{\prime}(0)<0, \quad \check{f}_{i}\left(B_{i}\right)<0 \quad \text { for } i=1,2 . \tag{4.5}
\end{equation*}
$$

The functions $\hat{f}_{i}, \check{f}_{i}$, extended to $x_{i} \in\left(A_{i}, \infty\right)$ by the right-hand sides of (4.1), (4.3), (4.4), have a unique inflection point $\tilde{\xi}_{i}$, given by

$$
\tilde{\xi}_{i}=k_{i}\left(\frac{n-1}{n+1}\right)^{1 / n}
$$

where the slopes of \hat{f}_{i} and of \check{f}_{i} are maximal. Therefore, if $\check{f}_{i}^{\prime}\left(\tilde{\xi}_{i}\right)<0$, then $\check{f}_{i}^{\prime}\left(x_{i}\right)$ cannot take positive values. Set

$$
\tilde{n}=(n+1)^{1+1 / n}(n-1)^{1-1 / n} / 4 n
$$

We consider the following parameter regimes:

$$
\begin{aligned}
& \text { Condition (M1): } \quad \mu>\frac{\alpha_{1} \tilde{n}}{k_{1}}, \\
& \text { Condition (M2): } \quad \mu>\frac{\alpha_{2} \tilde{n}}{k_{2}}, \\
& \text { Condition (B1): } \quad \mu<\frac{\alpha_{1} \tilde{n}}{k_{1}} \cdot \frac{1}{1+B_{2} / \gamma_{2}}, \\
& \text { Condition (B2): } \quad \mu<\frac{\alpha_{2} \tilde{n}}{k_{2}} \cdot \frac{1}{1+B_{1} / \gamma_{1}} .
\end{aligned}
$$

Condition ($\mathrm{M} i$) is equivalent to the inequality $\hat{f}_{i}^{\prime}\left(\tilde{\xi}_{i}\right)<0, i=1,2$. Under this condition both \hat{f}_{i} and \check{f}_{i} are strictly decreasing functions and have a unique zero.

Condition (Bi) is equivalent to $\check{f}_{i}^{\prime}\left(\tilde{\xi}_{i}\right)>0$ and, in that case, if $\tilde{\xi}_{i}<A_{i}$ then each of $\hat{f}_{i}, \check{f}_{i}$ has two critical points. Let $\hat{p}_{i}^{\mathrm{m}}, \hat{p}_{i}^{\mathrm{M}}$ (respectively $\check{p}_{i}^{\mathrm{m}}, \check{p}_{i}^{\mathrm{M}}$) be the local minimum and maximum of \hat{f}_{i} (respectively \check{f}_{i}. Then, $\check{p}_{i}^{\mathrm{m}}<\check{p}_{i}^{\mathrm{M}}, \hat{p}_{i}^{\mathrm{m}}<\hat{p}_{i}^{\mathrm{M}}$, and

$$
\check{f}_{i}\left(\check{p}_{i}^{\mathrm{m}}\right)<\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{m}}\right), \quad \check{f}_{i}\left(\check{p}_{i}^{\mathrm{M}}\right)<\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{M}}\right)
$$

We shall consider only the following cases as illustrated in Fig. 1. (Note that if $\tilde{\xi}_{i}>A_{i}$ for $i=1$ or $i=2$, then only case (Mi) can occur for this i.)
(a) ($\mathrm{M} i$) holds for $i=1,2$;
(b) (Bi) holds and $\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{M}}\right)<0$ for $i=1,2$;
(c) (Bi) holds and $\check{f}_{i}\left(\check{p}_{i}^{\mathrm{m}}\right)>0$ for $i=1,2$;
(d) ($\mathrm{B} i)$ holds and $\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{m}}\right)<0, \check{f}_{i}\left(\check{p}_{i}^{\mathrm{M}}\right)>0$ for $i=1,2$.

In cases (a), (b), and (c), \hat{f}_{i} and \check{f}_{i} have a unique zero denoted by \hat{a}_{i} and \check{a}_{i}, respectively. In case (d), \hat{f}_{i} and \check{f}_{i} have three zeros, denoted by $\left(\hat{a}_{i}, \hat{b}_{i}, \hat{c}_{i}\right)$ and $\left(\check{a}_{i}, \check{b}_{i}, \check{c}_{i}\right)$, respectively.

We shall establish the following dynamical phases for (2.1)-(2.2):
Monostable (MS): low x_{1}-low x_{2}; low x_{1}-high x_{2}; high x_{1}-low x_{2};
high x_{1}-high x_{2} states.
Bistable (BS-ll,lh): low x_{1}-low x_{2} state and low x_{1}-high x_{2} state;
(BS-ll,hl): low x_{1}-low x_{2} state and high x_{1}-low x_{2} state;
(BS-hl,hh): high x_{1}-low x_{2} state and high x_{1}-high x_{2} state;
(BS-lh,hh): low x_{1}-high x_{2} state and high x_{1}-high x_{2} state.
Quadstable (QS): low x_{1}-low x_{2} state, high x_{1}-low x_{2} state,
low x_{1}-high x_{2} state, and high x_{1}-high x_{2} state.
These notions of 'low' and 'high' express only relative magnitude relations between x_{1} and x_{2}. It will be shown that there exist six parameter regimes so that (2.1)-(2.2), with parameters in each of these regimes admit, respectively, a unique stable equilibrium; two stable equilibria and one unstable equilibrium; and four stable equilibria and five unstable equilibria. Moreover, every solution which is

Fig. 1. \hat{f}_{1} and \check{f}_{1} have one zero in cases (a), (b), (c), and three zeros in case (d).
initially not an unstable equilibrium point converges to one of the stable equilibria as time tends to infinity.

In order to guarantee the convergence to equilibrium, we impose the following condition:

$$
\begin{equation*}
\frac{\left(\alpha_{1}+\sigma_{1}\right)}{\gamma_{2}} \cdot \frac{\left(\alpha_{2}+\sigma_{2}\right)}{\gamma_{1}}<\left|\mu-\frac{\alpha_{1} \tilde{n}}{k_{1}}\right| \cdot\left|\mu-\frac{\alpha_{2} \tilde{n}}{k_{2}}\right| . \tag{4.6}
\end{equation*}
$$

Theorem 4.1. Assume that condition (4.6) holds. Then
(i) phase (MS) takes place under conditions (M1) and (M2), or conditions (B1), (B2) with either $\hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{M}}\right)<0$, $\hat{f}_{2}\left(\hat{p}_{2}^{\mathrm{M}}\right)<0$ or with $\check{f}_{1}\left(\check{p}_{1}^{\mathrm{m}}\right)>0, \check{f}_{2}\left(\check{p}_{2}^{\mathrm{m}}\right)>0$;
(ii) phase (BS-ll,lh) takes place under conditions (B2), $\hat{f}_{2}\left(\hat{p}_{2}^{\mathrm{m}}\right)<0, \check{f}_{2}\left(\check{p}_{2}^{\mathrm{M}}\right)>0$, and condition (M1), or (B1) and $\hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{M}}\right)<0$;
(iii) phase (BS-ll,hl) takes place under condition (B1), $\hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{m}}\right)<0, \check{f}_{1}\left(\check{p}_{1}^{\mathrm{M}}\right)>0$, and condition (M2), or (B2), $\hat{f}_{2}\left(\hat{p}_{2}^{\mathrm{M}}\right)<0$;
(iv) phase (BS-hl,hh) takes place under conditions (B2), $\hat{f}_{2}\left(\hat{p}_{2}^{\mathrm{m}}\right)<0, \check{f}_{2}\left(\check{p}_{2}^{\mathrm{M}}\right)>0$, and condition (M1), or (B1) and $\check{f}_{1}\left(\check{p}_{1}^{\mathrm{m}}\right)>0$;
(v) phase (BS-lh,hh) takes place under condition (B1), $\hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{m}}\right)<0, \check{f}_{1}\left(\check{p}_{1}^{\mathrm{M}}\right)>0$, and condition (M2), or (B2), $\check{f}_{2}\left(\check{p}_{2}^{\mathrm{m}}\right)>0$;
(vi) phase (QS) takes place under conditions (B1), (B2), $\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{m}}\right)<0, \check{f}_{i}\left(\check{p}_{i}^{\mathrm{M}}\right)>0$, for $i=1,2$.

The proof of Theorem 4.1 follows from an iteration scheme which is similar to that introduced in Sections 5-8; in order to avoid repetition, the proof is omitted.

Remark 4.1. Note that

$$
\begin{aligned}
& \text { Condition (B1)': } \mu<\frac{\alpha_{1} \tilde{n}}{k_{1}} \cdot \frac{1}{1+A_{2} / \gamma_{2}} \\
& \text { Condition (B2)': } \mu<\frac{\alpha_{2} \tilde{n}}{k_{2}} \cdot \frac{1}{1+A_{1} / \gamma_{1}}
\end{aligned}
$$

imply, respectively (B1) and (B2). Moreover, with A_{i} defined in (2.9), if conditions (B1) ${ }^{\prime}$ and (B2)' are satisfied then (4.6) holds. However, these conditions are more restrictive than conditions (B1), (B2), and are not involved with the cytokine rates σ_{1}, σ_{2}.

Remark 4.2. The conditions expressed by the signs of $\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{m}}\right), \check{f}_{i}\left(\check{p}_{i}^{\mathrm{M}}\right)$ depend on the levels of cytokines S_{1}, S_{2}. There exist parameters so that phase (QS) takes place if both S_{1} and S_{2} are sufficiently large. With the same parameters, the dynamics reduces to phase (BS-ll,lh) (respectively (BS-ll,hl)) if S_{2} (respectively S_{1}) is sufficiently small and reduces to phase (MS) if both S_{1} and S_{2} are sufficiently small. We shall illustrate this situation numerically in Section 9.

5. The population model

In the subsequent sections we shall consider the asymptotic behavior of $\psi\left(t, x_{1}, x_{2}\right)$ and of the corresponding dynamical system (2.7)-(2.8) in case $S_{i}=S_{i}(t)$ is defined by (2.11). Typically $g(t)=$ 2 day $^{-1}$ for some time $t<t_{0}$ and $g(t)=0$ if $t>t_{0}$, but $C_{i}(t)$ may not vanish for large t. Throughout this paper we assume that

$$
\begin{equation*}
C_{i}(t) \rightarrow C_{i}(\infty) \geqslant 0, \quad G(t) \rightarrow G(\infty)>0 \quad \text { as } t \rightarrow \infty \tag{5.1}
\end{equation*}
$$

The derivation of the asymptotic behavior will be based on a sequence of approximations by means of upper bounds $\hat{f}_{i}^{(k)}$ and lower bounds $\breve{f}_{i}^{(k)}$ of $f_{i}\left(x_{1}, x_{2}, S_{i}(t)\right)$. In this section we construct these functions for the case $k=0$. As in the discussion in Section 4, we introduce an upper bound for $f_{i}\left(x_{1}, x_{2}, S_{i}(t)\right)$:

$$
\hat{f}_{i}\left(x_{i}\right)=-\mu x_{i}+\left(\alpha_{i} \frac{x_{i}^{n}}{k_{i}^{n}+x_{i}^{n}}+\sigma_{i} \frac{\hat{C}_{i}+A_{i}}{\rho_{i}+\hat{C}_{i}+A_{i}}\right)+\beta_{i}
$$

where $\hat{C}_{i}=\sup \left\{C_{i}(t) e^{-G(t)} / N_{0}: t \in[0, \infty)\right\} ; \hat{f}_{i}$ clearly satisfies (4.2). Let B_{i} be the largest zero of \hat{f}_{i}. Thus, $\left[0, B_{1}\right] \times\left[0, B_{2}\right]$ is an attracting set for (2.7)-(2.8).

Fig. 2. \hat{f}_{1} and \check{f}_{1} have two zeros.

Next we define a lower bound for f_{1} on $\mathbb{R} \times\left[0, B_{2}\right]$ and a lower bound for f_{2} on $\left[0, B_{1}\right] \times \mathbb{R}$, respectively:

$$
\begin{aligned}
& \check{f}_{1}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{\check{C}_{1}}{\rho_{1}+\check{C}_{1}}\right) \cdot \frac{1}{1+B_{2} / \gamma_{2}}+\beta_{1} \\
& \check{f}_{2}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{\check{C}_{2}}{\rho_{2}+\check{C}_{2}}\right) \cdot \frac{1}{1+B_{1} / \gamma_{1}}+\beta_{2}
\end{aligned}
$$

where $\check{C}_{i}=\inf \left\{C_{i}(t) e^{-G(t)} / N_{0}: t \in[0, \infty)\right\}, i=1,2 ; \check{f}_{i}$ clearly satisfies (4.5). The functions $\hat{f}_{i}, \check{f}_{i}$ share other properties with those defined in Section 4. Indeed, under conditions ($\mathrm{M} i$), ($\mathrm{B} i)$ with $\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{M}}\right)<0$, or ($\mathrm{B} i$) with $\check{f}_{i}\left(\check{p}_{i}^{\mathrm{m}}\right)>0$, both \hat{f}_{i} and \check{f}_{i} have a unique zero, denoted respectively by $\hat{a}_{i}, \check{a}_{i}$; under conditions ($\mathrm{B} i$), each of \hat{f}_{i} and \check{f}_{i} has a local minimum and a local maximum, denoted by $\hat{p}_{i}^{\mathrm{m}}, \hat{p}_{i}^{\mathrm{M}}$, and $\check{p}_{i}^{\mathrm{m}}, \check{p}_{i}^{\mathrm{M}}$, respectively, and it can be computed that $\check{f}_{i}\left(\check{p}_{i}^{\mathrm{m}}\right)<\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{m}}\right)$ and $\check{f}_{i}\left(\check{p}_{i}^{\mathrm{M}}\right)<\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{M}}\right)$. Furthermore, under conditions (Bi), and $\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{m}}\right)<0, \check{f}_{i}\left(\check{p}_{i}^{\mathrm{M}}\right)>0$, both \hat{f}_{i} and \check{f}_{i} have three zeros, denoted by $\left(\hat{a}_{i}, \hat{b}_{i}, \hat{c}_{i}\right),\left(\check{a}_{i}, \check{b}_{i}, \check{c}_{i}\right)$, respectively; cf. Fig. 2.

Set

$$
S_{i}^{\min }(t)=\inf \left\{S_{i}(s): s \in[t, \infty)\right\}, \quad S_{i}^{\max }(t)=\sup \left\{S_{i}(s): s \in[t, \infty)\right\}
$$

for $i=1,2$ and $t \geqslant 0$. Then $S_{i}^{\min }(t) \geqslant \check{C}_{i}, S_{i}^{\max }(t) \leqslant \hat{C}_{i}+A_{i}$, and $S_{i}^{\min }(t) \leqslant S_{i}(t) \leqslant S_{i}^{\max }(t)$. Note that $S_{i}^{\min }(t)$ is nondecreasing, $S_{i}^{\max }(t)$ is nonincreasing, and

$$
\frac{S_{i}^{\min }(t)}{\rho_{i}+S_{i}^{\min }(t)} \leqslant \frac{S_{i}(t)}{\rho_{i}+S_{i}(t)} \leqslant \frac{S_{i}^{\max }(t)}{\rho_{i}+S_{i}^{\max }(t)} \quad \text { for } i=1,2 \text { and } t \geqslant 0
$$

We formulate the first step for the iteration scheme via the functions

$$
\begin{aligned}
& \hat{f}_{i}^{(0)}\left(x_{i}\right)=-\mu x_{i}+\left(\alpha_{i} \frac{x_{i}^{n}}{k_{i}^{n}+x_{i}^{n}}+\sigma_{i} \frac{S_{i}^{\max }(0)}{\rho_{i}+S_{i}^{\max }(0)}\right)+\beta_{i} \quad \text { for } i=1,2, \\
& \check{f}_{1}^{(0)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\min }(0)}{\rho_{1}+S_{1}^{\min }(0)}\right) \cdot \frac{1}{1+B_{2} / \gamma_{2}}+\beta_{1}, \\
& \check{f}_{2}^{(0)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\min }(0)}{\rho_{2}+S_{2}^{\min }(0)}\right) \cdot \frac{1}{1+B_{1} / \gamma_{1}}+\beta_{2} .
\end{aligned}
$$

Then $\hat{f}_{i}^{(0)}, \check{f}_{i}^{(0)}$ admit the same properties as in (4.2) and (4.5). Moreover,

$$
\check{f}_{i}\left(x_{i}\right) \leqslant \check{f}_{i}^{(0)}\left(x_{i}\right)<\hat{f}_{i}^{(0)}\left(x_{i}\right) \leqslant \hat{f}_{i}\left(x_{i}\right), \quad i=1,2 .
$$

Therefore, $\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{m}}\right)<0$ implies $\hat{f}_{i}^{(0)}\left(\hat{p}_{i}^{\mathrm{m}}\right)<0$, whereas $\check{f}_{i}\left(\check{p}_{i}^{\mathrm{M}}\right)>0$ implies $\check{f}_{i}^{(0)}\left(\check{p}_{i}^{\mathrm{M}}\right)>0$. In addition, $\breve{f}_{i}^{(0)^{\prime}}\left(x_{i}\right)<\hat{f}_{i}^{(0)^{\prime}}\left(x_{i}\right)$ for all $x_{i} \in[0, \infty)$, and both of $\hat{f}_{i}^{(0)}$ and $\check{f}_{i}^{(0)}$ have their inflection points at $\tilde{\xi}_{i}=k_{i}\left(\frac{n-1}{n+1}\right)^{1 / n}$ where they attain their largest slopes. Observe that

$$
\begin{equation*}
\check{f}_{i}^{(0)}\left(x_{i}\right) \leqslant f_{i}\left(x_{1}, x_{2}, S_{i}(t)\right) \leqslant \hat{f}_{i}^{(0)}\left(x_{i}\right) \tag{5.2}
\end{equation*}
$$

for $i=1,2$ and $\left(x_{1}, x_{2}\right) \in\left[0, B_{1}\right] \times\left[0, B_{2}\right], t \geqslant 0$. In addition, for all $t \geqslant 0$,

$$
\begin{array}{ll}
f_{1}\left(x_{1}, x_{2}, S_{1}(t)\right) \leqslant \hat{f}_{1}^{(0)}\left(x_{1}\right) & \text { if }\left(x_{1}, x_{2}\right) \in\left[0, A_{1}\right] \times\left[B_{2}, A_{2}\right], \\
f_{2}\left(x_{1}, x_{2}, S_{2}(t)\right) \leqslant \hat{f}_{2}^{(0)}\left(x_{2}\right) & \text { if }\left(x_{1}, x_{2}\right) \in\left[B_{1}, A_{1}\right] \times\left[0, A_{2}\right] . \tag{5.4}
\end{array}
$$

In the sequel, $\mathbf{x}\left(t, \mathbf{x}_{0}\right)$ denotes the solution of (2.7)-(2.8) starting from point \mathbf{x}_{0} at $t=0$.

6. Asymptotic one-peak solution

Similarly to the case of Theorem 4.1(i) we assume that one of the following conditions holds:

$$
\begin{align*}
& \text { (M1) and (M2); } \tag{6.1}\\
& \text { (B1) and (B2) with } \hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{M}}\right)<0, \hat{f}_{2}\left(\hat{p}_{2}^{\mathrm{M}}\right)<0 ; \tag{6.2}\\
& \text { (B1) and (B2) with } \check{f}_{1}\left(\check{p}_{1}^{\mathrm{m}}\right)>0, \check{f}_{2}\left(\check{p}_{2}^{\mathrm{m}}\right)>0 . \tag{6.3}
\end{align*}
$$

Then each $\hat{f}_{i}^{(0)}$ and $\check{f}_{i}^{(0)}$ has a unique zero which is denoted by $\hat{a}_{i}^{(0)}$ and $\check{a}_{i}^{(0)}$, respectively. Let $\varepsilon_{0}>0$ be small so that

$$
\begin{aligned}
& \hat{f}_{i}^{(0)}\left(x_{i}\right) \leqslant \hat{f}_{i}^{(0)}\left(\hat{a}_{i}^{(0)}+\varepsilon_{0}\right)<0 \text { for all } x_{i} \geqslant \hat{a}_{i}^{(0)}+\varepsilon_{0}, \\
& \check{f}_{i}^{(0)}\left(x_{i}\right) \geqslant \check{f}_{i}^{(0)}\left(\check{a}_{i}^{(0)}-\varepsilon_{0}\right)>0 \text { for all } x_{i} \leqslant \check{a}_{i}^{(0)}-\varepsilon_{0},
\end{aligned}
$$

for $i=1,2$; cf. Fig. 3. Combining these with inequalities (5.2)-(5.4), we deduce that there exists a $T_{0}>0$ such that any solution $\mathbf{x}\left(t, \mathbf{x}_{0}\right)$ starting from a point $\mathbf{x}_{0} \in\left[0, A_{1}\right] \times\left[0, A_{2}\right]$ falls into the rectangle

$$
\Omega^{(0)}:=\left[\check{a}_{1}^{(0)}-\varepsilon_{0}, \hat{a}_{1}^{(0)}+\varepsilon_{0}\right] \times\left[\check{a}_{2}^{(0)}-\varepsilon_{0}, \hat{a}_{2}^{(0)}+\varepsilon_{0}\right] \subset\left[0, B_{1}\right] \times\left[0, B_{2}\right]
$$

Fig. 3. The configuration of $\hat{f}_{1}^{(0)}, \breve{f}_{1}^{(0)}, \hat{f}_{1}^{(1)}, \breve{f}_{1}^{(1)}$ and their zeros, under conditions (B1) and $\hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{M}}\right)<0$.
for $t \geqslant T_{0}$. Define

$$
\begin{aligned}
& \hat{f}_{1}^{(1)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\max }\left(T_{0}\right)}{\rho_{1}+S_{1}^{\max }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\check{a}_{2}^{(0)}-\varepsilon_{0}\right) / \gamma_{2}}+\beta_{1}, \\
& \check{f}_{1}^{(1)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\min }\left(T_{0}\right)}{\rho_{1}+S_{1}^{\min }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\hat{a}_{2}^{(0)}+\varepsilon_{0}\right) / \gamma_{2}}+\beta_{1}, \\
& \hat{f}_{2}^{(1)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\max }\left(T_{0}\right)}{\rho_{2}+S_{2}^{\max }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\check{a}_{1}^{(0)}-\varepsilon_{0}\right) / \gamma_{1}}+\beta_{2}, \\
& \check{f}_{2}^{(1)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\min }\left(T_{0}\right)}{\rho_{2}+S_{2}^{\min }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\hat{a}_{1}^{(0)}+\varepsilon_{0}\right) / \gamma_{1}}+\beta_{2} .
\end{aligned}
$$

Then $\check{f}_{i}^{(0)}\left(x_{i}\right)<\check{f}_{i}^{(1)}\left(x_{i}\right)<\hat{f}_{i}^{(1)}\left(x_{i}\right)<\hat{f}_{i}^{(0)}\left(x_{i}\right)$ for $x_{i} \in\left[0, A_{i}\right], i=1,2$. Let $\hat{a}_{i}^{(1)}$ and $\check{a}_{i}^{(1)}$ denote the unique zeros of $\hat{f}_{i}^{(1)}$ and $\check{f}_{i}^{(1)}$, respectively. Then $\hat{a}_{i}^{(1)}<\hat{a}_{i}^{(0)}$ and $\check{a}_{i}^{(1)}>\check{a}_{i}^{(0)}$. Furthermore,

$$
\begin{equation*}
\check{f}_{i}^{(1)}\left(x_{i}\right) \leqslant f_{i}\left(x_{1}, x_{2}, S_{i}(t)\right) \leqslant \hat{f}_{i}^{(1)}\left(x_{i}\right) \tag{6.4}
\end{equation*}
$$

for all $\left(x_{1}, x_{2}\right) \in \Omega^{(0)}, t \geqslant T_{0}, i=1,2$, and $\check{f}_{i}^{(1)}\left(x_{i}\right)>0$ for $x_{i}<\check{a}_{i}^{(1)}, \hat{f}_{i}^{(1)}\left(x_{i}\right)<0$ for $x_{i}>\hat{a}_{i}^{(1)}$. Hence for any small $\varepsilon_{1}>0$ there exist a $T_{1}>T_{0}$ such that any solution $\mathbf{x}\left(t, \mathbf{x}_{0}\right)$ starting from a point $\mathbf{x}_{0} \in\left[0, A_{1}\right] \times\left[0, A_{2}\right]$ falls into the region

$$
\Omega^{(1)}:=\left[\check{a}_{1}^{(1)}-\varepsilon_{1}, \hat{a}_{1}^{(1)}+\varepsilon_{1}\right] \times\left[\check{a}_{2}^{(1)}-\varepsilon_{1}, \hat{a}_{2}^{(1)}+\varepsilon_{1}\right] \subset \Omega^{(0)}
$$

Fig. 4. $\Omega^{(0)}$ and $\Omega^{(1)}$, for one-peak case.
for $t \geqslant T_{1}$; cf. Fig. 4. We can proceed in a similar manner to define successively $\hat{f}_{i}^{(k)}$ and $\check{f}_{i}^{(k)}, k \geqslant 2$, by

$$
\begin{aligned}
& \hat{f}_{1}^{(k)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\max }\left(T_{k-1}\right)}{\rho_{1}+S_{1}^{\max }\left(T_{k-1}\right)}\right) \cdot \frac{1}{1+\left(\check{a}_{2}^{(k-1)}-\varepsilon_{k-1}\right) / \gamma_{2}}+\beta_{1}, \\
& \check{f}_{1}^{(k)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\min }\left(T_{k-1}\right)}{\rho_{1}+S_{1}^{\min }\left(T_{k-1}\right)}\right) \cdot \frac{1}{1+\left(\hat{a}_{2}^{(k-1)}+\varepsilon_{k-1}\right) / \gamma_{2}}+\beta_{1}, \\
& \hat{f}_{2}^{(k)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\max }\left(T_{k-1}\right)}{\rho_{2}+S_{2}^{\max }\left(T_{k-1}\right)}\right) \cdot \frac{1}{1+\left(\check{a}_{1}^{(k-1)}-\varepsilon_{k-1}\right) / \gamma_{1}}+\beta_{2}, \\
& \check{f}_{2}^{(k)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\min }\left(T_{k-1}\right)}{\rho_{2}+S_{2}^{\min }\left(T_{k-1}\right)}\right) \cdot \frac{1}{1+\left(\hat{a}_{1}^{(k-1)}+\varepsilon_{k-1}\right) / \gamma_{1}}+\beta_{2}
\end{aligned}
$$

and their zeros $\hat{a}_{i}^{(k)}, \breve{a}_{i}^{(k)}$, i.e.,

$$
\begin{equation*}
\hat{f}_{i}^{(k+1)}\left(\hat{a}_{i}^{(k)}\right)=0, \quad \check{f}_{i}^{(k+1)}\left(\check{a}_{i}^{(k)}\right)=0 . \tag{6.5}
\end{equation*}
$$

We may clearly assume that $\varepsilon_{k} \rightarrow 0$ and $T_{k} \rightarrow \infty$ as $k \rightarrow \infty$.
We can then prove that for any small $\varepsilon_{k}>0$ there exists a T_{k} such that any solution $\mathbf{x}\left(t, \mathbf{x}_{0}\right)$ starting from a point $\mathbf{x}_{0} \in\left[0, A_{1}\right] \times\left[0, A_{2}\right]$ falls into the region $\Omega^{(k)}:=\left[\check{a}_{1}^{(k)}-\varepsilon_{k}, \hat{a}_{1}^{(k)}+\varepsilon_{k}\right] \times\left[\check{a}_{2}^{(k)}-\right.$ $\left.\varepsilon_{k}, \hat{a}_{2}^{(k)}+\varepsilon_{k}\right] \subset \Omega^{(k-1)}$ for $t \geqslant T_{k}$.

We shall need the following conditions:

$$
\begin{equation*}
\frac{\left(\alpha_{2}+\sigma_{2}\right)}{\gamma_{1}}<\left|\mu-\frac{\alpha_{1} \tilde{n}}{k_{1}}\right|-\frac{\sigma_{1}}{\rho_{1}}, \quad \frac{\left(\alpha_{1}+\sigma_{1}\right)}{\gamma_{2}}<\left|\mu-\frac{\alpha_{2} \tilde{n}}{k_{2}}\right|-\frac{\sigma_{2}}{\rho_{2}} . \tag{6.6}
\end{equation*}
$$

Lemma 6.1. Under the conditions (6.6) and either (6.1), (6.2) or (6.3), the intersection $\bigcap_{k=1}^{\infty} \Omega^{(k)}$ consists of a single point (\bar{a}_{1}, \bar{a}_{2}).

Proof. Note that for each $i=1,2,\left\{\check{a}_{i}^{(k)}-\varepsilon_{k}\right\}$ is an increasing sequence, $\left\{\hat{a}_{i}^{(k)}+\varepsilon_{k}\right\}$ is a decreasing sequence, $\check{a}_{i}^{(k)}-\varepsilon_{k}<\hat{a}_{i}^{(k)}+\varepsilon_{k}$ for each k, and $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$. Hence

$$
\check{a}_{i}^{*}=\lim _{k \rightarrow \infty} \check{a}_{i}^{(k)} \text { and } \hat{a}_{i}^{*}=\lim _{k \rightarrow \infty} \hat{a}_{i}^{(k)} \text { exist, and } \check{a}_{i}^{*} \leqslant \hat{a}_{i}^{*} \text { for } i=1,2 .
$$

Assuming that $\bigcap_{k=1}^{\infty} \Omega^{(k)}$ is not a single point so that $\hat{a}_{i}^{*}>\check{a}_{i}^{*}$ for either $i=1$ or $i=2$ (or both), we shall derive a contradiction.

By passing to the limit in (6.5) we get

$$
\begin{align*}
& -\mu \check{a}_{1}^{*}+\left[\alpha_{1} \frac{\left(\check{a}_{1}^{*}\right)^{n}}{k_{1}^{n}+\left(\check{a}_{1}^{*}\right)^{n}}+\sigma_{1} \frac{\check{S}_{1}}{\rho_{1}+\check{S}_{1}}\right] \cdot \frac{1}{1+\hat{a}_{2}^{*} / \gamma_{2}}+\beta_{1}=0, \tag{6.7}\\
& -\mu \hat{a}_{2}^{*}+\left[\alpha_{2} \frac{\left(\hat{a}_{2}^{*}\right)^{n}}{k_{2}^{n}+\left(\hat{a}_{2}^{*}\right)^{n}}+\sigma_{2} \frac{\hat{S}_{2}}{\rho_{2}+\hat{S}_{2}}\right] \cdot \frac{1}{1+\check{a}_{1}^{*} / \gamma_{1}}+\beta_{2}=0, \tag{6.8}\\
& -\mu \hat{a}_{1}^{*}+\left[\alpha_{1} \frac{\left(\hat{a}_{1}^{*}\right)^{n}}{k_{1}^{n}+\left(\hat{a}_{1}^{*}\right)^{n}}+\sigma_{1} \frac{\hat{S}_{1}}{\rho_{1}+\hat{S}_{1}}\right] \cdot \frac{1}{1+\check{a}_{2}^{*} / \gamma_{2}}+\beta_{1}=0, \tag{6.9}\\
& -\mu \check{a}_{2}^{*}+\left[\alpha_{2} \frac{\left(\check{a}_{2}^{*}\right)^{n}}{k_{2}^{n}+\left(\check{a}_{2}^{*}\right)^{n}}+\sigma_{2} \frac{\check{S}_{2}}{\rho_{2}+\check{S}_{2}}\right] \cdot \frac{1}{1+\hat{a}_{1}^{*} / \gamma_{1}}+\beta_{2}=0, \tag{6.10}
\end{align*}
$$

where

$$
\hat{S}_{i}=\lim _{t \rightarrow \infty} S_{i}^{\max }(t), \quad \check{s}_{i}=\lim _{t \rightarrow \infty} S_{i}^{\min }(t),
$$

and

$$
\begin{array}{ll}
\hat{S}_{1} \leqslant \hat{a}_{1}^{*}+\bar{C}_{1}, & \check{s}_{1} \geqslant \check{a}_{1}^{*}+\bar{C}_{1}, \\
\hat{S}_{2} \leqslant \hat{a}_{2}^{*}+\bar{C}_{2}, & \check{s}_{2} \geqslant \check{a}_{2}^{*}+\bar{c}_{2}, \tag{6.12}
\end{array}
$$

with

$$
\bar{C}_{i}=\lim _{t \rightarrow \infty} C_{i}(t) e^{-G(t)} / N_{0} .
$$

Taking the difference of (6.7), (6.9) we obtain

$$
\begin{align*}
& \mu\left(\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right)-\alpha_{1}\left[\frac{\left(\hat{a}_{1}^{*}\right)^{n}}{k_{1}^{n}+\left(\hat{a}_{1}^{*}\right)^{n}}-\frac{\left(\check{a}_{1}^{*}\right)^{n}}{k_{1}^{n}+\left(\check{a}_{1}^{*}\right)^{n}}\right] \cdot \frac{1}{1+\check{a}_{2}^{*} / \gamma_{2}} \\
& =\left[\alpha_{1} \frac{\left(\check{a}_{1}^{*}\right)^{n}}{k_{1}^{n}+\left(\check{a}_{1}^{*}\right)^{n}}+\sigma_{1} \frac{\check{S}_{1}}{\rho_{1}+\check{S}_{1}}\right] \cdot\left[\frac{1}{1+\check{a}_{2}^{*} / \gamma_{2}}-\frac{1}{1+\hat{a}_{2}^{*} / \gamma_{2}}\right] \\
& \quad+\sigma_{1}\left[\frac{\hat{S}_{1}}{\rho_{1}+\hat{S}_{1}}-\frac{\check{S}_{1}}{\rho_{1}+\check{S}_{1}}\right] \cdot \frac{1}{1+\check{a}_{2}^{*} / \gamma_{2}} . \tag{6.13}
\end{align*}
$$

Thus, by the mean value theorem and the estimates (6.11) for $\hat{S}_{1}, \check{S}_{1}$,

$$
\left|\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right| \cdot\left|\mu-\frac{\alpha_{1} \tilde{n}}{k_{1}}\right| \leqslant \frac{\left(\alpha_{1}+\sigma_{1}\right)}{\gamma_{2}}\left|\check{a}_{2}^{*}-\hat{a}_{2}^{*}\right|+\frac{\sigma_{1}}{\rho_{1}}\left|\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right|,
$$

or

$$
\begin{equation*}
\left|\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right| \cdot\left[\left|\mu-\frac{\alpha_{1} \tilde{n}}{k_{1}}\right|-\frac{\sigma_{1}}{\rho_{1}}\right] \leqslant \frac{\left(\alpha_{1}+\sigma_{1}\right)}{\gamma_{2}}\left|\check{a}_{2}^{*}-\hat{a}_{2}^{*}\right| . \tag{6.14}
\end{equation*}
$$

Similarly, from (6.8), (6.10), (6.12) we obtain

$$
\begin{equation*}
\left|\check{a}_{2}^{*}-\hat{a}_{2}^{*}\right| \cdot\left[\left|\mu-\frac{\alpha_{2} \tilde{n}}{k_{2}}\right|-\frac{\sigma_{2}}{\rho_{2}}\right] \leqslant \frac{\left(\alpha_{2}+\sigma_{2}\right)}{\gamma_{1}}\left|\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right| . \tag{6.15}
\end{equation*}
$$

Assuming that the LHS of (6.14) and (6.15) are positive, these two inequalities yield

$$
\begin{equation*}
\left[\left|\mu-\frac{\alpha_{1} \tilde{n}}{k_{1}}\right|-\frac{\sigma_{1}}{\rho_{1}}\right] \cdot\left[\left|\mu-\frac{\alpha_{2} \tilde{n}}{k_{2}}\right|-\frac{\sigma_{2}}{\rho_{2}}\right]<\frac{\left(\alpha_{2}+\sigma_{2}\right)}{\gamma_{1}} \cdot \frac{\left(\alpha_{1}+\sigma_{1}\right)}{\gamma_{2}}, \tag{6.16}
\end{equation*}
$$

which is a contradiction to (6.6). We thus conclude that $\breve{a}_{i}^{*}=\hat{a}_{i}^{*}$ for $i=1,2$, which proves the lemma.

From Lemma 6.1 it follows that the limit $\left(\bar{a}_{1}, \bar{a}_{2}\right)$ of $\Omega^{(k)}$ (as $\left.k \rightarrow \infty\right)$ satisfies the equations

$$
\begin{align*}
& -\mu \bar{a}_{1}+\left[\alpha_{1} \frac{\bar{a}_{1}^{n}}{k_{1}^{n}+\bar{a}_{1}^{n}}+\sigma_{1} \frac{\bar{a}_{1}+\bar{c}_{1}}{\rho_{1}+\bar{a}_{1}}\right] \cdot \frac{1}{1+\bar{a}_{2} / \gamma_{2}}+\beta_{1}=0 \tag{6.17}\\
& -\mu \bar{a}_{2}+\left[\alpha_{2} \frac{\bar{a}_{2}^{n}}{k_{2}^{n}+\bar{a}_{2}^{n}}+\sigma_{2} \frac{\bar{a}_{2}+\bar{c}_{2}}{\rho_{2}+\bar{a}_{2}}\right] \cdot \frac{1}{1+\bar{a}_{1} / \gamma_{1}}+\beta_{2}=0 \tag{6.18}
\end{align*}
$$

and the solution is unique. We have thus proved:
Theorem 6.2. If (6.6) and one of the conditions (6.1), (6.2), or (6.3) hold, then the solution ψ of (2.10), (3.1), with f_{i}, S_{i} defined by (2.5), (2.6), (2.11), satisfies:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \psi\left(t, x_{1}, x_{2}\right)=N_{0} \delta_{\left(\bar{a}_{1}, \bar{a}_{2}\right)}, \tag{6.19}
\end{equation*}
$$

where $\delta_{\left(\bar{a}_{1}, \bar{a}_{2}\right)}$ is the Dirac measure at point $\left(\bar{a}_{1}, \bar{a}_{2}\right)$ which is uniquely determined from (6.17)-(6.18), and the convergence in (6.19) is in the sense of convergence in measure as defined in (2.12).

7. Asymptotic two-peak solutions

Analogously to the case of Theorem 4.1(iii) we assume that

$$
\begin{equation*}
\text { condition (B1) holds, } \quad \hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{m}}\right)<0, \quad \text { and } \quad \check{f}_{1}\left(\check{p}_{1}^{\mathrm{M}}\right)>0 \tag{7.1}
\end{equation*}
$$

either condition (M2) holds, or (B2) and $\hat{f}_{2}\left(\hat{p}_{2}^{\mathrm{M}}\right)<0$ hold.
Let $\hat{a}_{1}^{(0)}, \hat{b}_{1}^{(0)}, \hat{c}_{1}^{(0)}$ (respectively $\check{a}_{1}^{(0)}, \check{b}_{1}^{(0)}, \check{c}_{1}^{(0)}$) be the zeros of $\hat{f}_{1}^{(0)}$ (respectively $\check{f}_{1}^{(0)}$), and $\hat{a}_{2}^{(0)}, \check{a}_{2}^{(0)}$ be the zeros of $\hat{f}_{2}^{(0)}, \breve{f}_{2}^{(0)}$, respectively; cf. Fig. 5.

Then, by (7.1), (7.2) and (5.2)-(5.4), for any small $\varepsilon_{0}>0$ there exists a $T_{0}>0$ such that any solution $\mathbf{x}\left(t, \mathbf{x}_{0}\right)$ starting from a point $\mathbf{x}_{0} \in\left[0, A_{1}\right] \times\left[0, A_{2}\right] \backslash K^{(0)}$ falls into the region

$$
\Omega^{(0)}=\Omega_{1}^{(0)} \cup \Omega_{\mathrm{u}}^{(0)}
$$

Fig. 5. Configurations of functions $\hat{f}_{1}^{(0)}, \check{f}_{1}^{(0)}, \hat{f}_{1}^{(1)}, \check{f}_{1}^{(1)}$ and their zeros, under condition (B1).
for all $t \geqslant T_{0}$, where

$$
\begin{aligned}
& K^{(0)}=\left[\hat{b}_{1}^{(0)}, \check{b}_{1}^{(0)}\right] \times\left[\check{a}_{2}^{(0)}, \hat{a}_{2}^{(0)}\right], \\
& \Omega_{1}^{(0)}=\left[\check{a}_{1}^{(0)}-\varepsilon_{0}, \hat{a}_{1}^{(0)}+\varepsilon_{0}\right] \times\left[\check{a}_{2}^{(0)}-\varepsilon_{0}, \hat{a}_{2}^{(0)}+\varepsilon_{0}\right], \\
& \Omega_{\mathrm{u}}^{(0)}=\left[\check{c}_{1}^{(0)}-\varepsilon_{0}, \hat{c}_{1}^{(0)}+\varepsilon_{0}\right] \times\left[\check{a}_{2}^{(0)}-\varepsilon_{0}, \hat{a}_{2}^{(0)}+\varepsilon_{0}\right] .
\end{aligned}
$$

Next, we define

$$
\begin{aligned}
& \hat{f}_{1}^{(1)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\max }\left(T_{0}\right)}{\rho_{1}+S_{1}^{\max }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\check{a}_{2}^{(0)}-\varepsilon_{0}\right) / \gamma_{2}}+\beta_{1}, \\
& \check{f}_{1}^{(1)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\min }\left(T_{0}\right)}{\rho_{1}+S_{1}^{\min }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\hat{a}_{2}^{(0)}+\varepsilon_{0}\right) / \gamma_{2}}+\beta_{1}, \\
& \hat{f}_{2,1}^{(1)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\max }\left(T_{0}\right)}{\rho_{2}+S_{2}^{\max }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\check{a}_{1}^{(0)}-\varepsilon_{0}\right) / \gamma_{1}}+\beta_{2}, \\
& \check{f}_{2,1}^{(1)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\min }\left(T_{0}\right)}{\rho_{2}+S_{2}^{\min }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\hat{a}_{1}^{(0)}+\varepsilon_{0}\right) / \gamma_{1}}+\beta_{2}, \\
& \hat{f}_{2, \mathrm{~m}}^{(1)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\max }\left(T_{0}\right)}{\rho_{2}+S_{2}^{\max }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\hat{b}_{1}^{(0)} / \gamma_{1}}+\beta_{2}, \\
& \check{f}_{2, \mathrm{~m}}^{(1)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\min }\left(T_{0}\right)}{\rho_{2}+S_{2}^{\min }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\check{b}_{1}^{(0)} / \gamma_{1}}+\beta_{2},
\end{aligned}
$$

$$
\begin{aligned}
& \hat{f}_{2, \mathrm{u}}^{(1)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\max }\left(T_{0}\right)}{\rho_{2}+S_{2}^{\max }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\check{c}_{1}^{(0)}-\varepsilon_{0}\right) / \gamma_{1}}+\beta_{2}, \\
& \check{f}_{2, \mathrm{u}}^{(1)}\left(x_{2}\right)=-\mu x_{2}+\left(\alpha_{2} \frac{x_{2}^{n}}{k_{2}^{n}+x_{2}^{n}}+\sigma_{2} \frac{S_{2}^{\min }\left(T_{0}\right)}{\rho_{2}+S_{2}^{\min }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\hat{c}_{1}^{(0)}+\varepsilon_{0}\right) / \gamma_{1}}+\beta_{2} .
\end{aligned}
$$

Let $\hat{a}_{2}^{(1)}, \check{a}_{2}^{(1)}$ (respectively $\hat{b}_{2}^{(1)}, \check{b}_{2}^{(1)} ; \hat{c}_{2}^{(1)}, \check{c}_{2}^{(1)}$) be the zeros of $\hat{f}_{2,1}^{(1)}, \check{f}_{2,1}^{(1)}$ (respectively $\hat{f}_{2, \mathrm{~m}}^{(1)}, \check{f}_{2, \mathrm{~m}}^{(1)}$; $\left.\hat{f}_{2, \mathrm{u}}^{(1)}, \check{f}_{2, \mathrm{u}}^{(1)}\right)$, respectively, and $\hat{a}_{1}^{(1)}, \check{a}_{1}^{(1)}$ be the smallest, $\hat{b}_{1}^{(1)}, \check{b}_{1}^{(1)}$ be the middle, and $\hat{c}_{1}^{(1)}, \check{c}_{1}^{(1)}$ be the largest zeros of $\hat{f}_{1}^{(1)}$ and $\check{f}_{1}^{(1)}$, respectively. (Herein " l ", " m " and " u " mean lower, middle, and upper, respectively.) Then for any small $\varepsilon_{1}>0$ there exists a $T_{1}>T_{0}$ such that any solution $\mathbf{x}\left(t, \mathbf{x}_{0}\right)$ starting from a point $\mathbf{x}_{0} \in\left[0, A_{1}\right] \times\left[0, A_{2}\right] \backslash K^{(1)}$ falls into the region

$$
\Omega^{(1)}=\Omega_{1}^{(1)} \cup \Omega_{\mathrm{u}}^{(1)} \subset \Omega^{(0)}
$$

for $t \geqslant T_{1}$, where

$$
\begin{aligned}
& K^{(1)}=\left[\hat{b}_{1}^{(1)}, \check{b}_{1}^{(1)}\right] \times\left[\check{b}_{2}^{(1)}, \hat{b}_{2}^{(1)}\right] \subset K^{(0)}, \\
& \Omega_{1}^{(1)}=\left[\check{a}_{1}^{(1)}-\varepsilon_{1}, \hat{a}_{1}^{(1)}+\varepsilon_{1}\right] \times\left[\check{a}_{2}^{(1)}-\varepsilon_{1}, \hat{a}_{2}^{(1)}+\varepsilon_{1}\right] \subset \Omega_{1}^{(0)}, \\
& \Omega_{\mathrm{u}}^{(1)}=\left[\check{c}_{1}^{(1)}-\varepsilon_{1}, \hat{c}_{1}^{(1)}+\varepsilon_{1}\right] \times\left[\check{c}_{2}^{(1)}-\varepsilon_{1}, \hat{c}_{2}^{(1)}+\varepsilon_{1}\right] \subset \Omega_{\mathrm{u}}^{(0)} .
\end{aligned}
$$

In addition, for $t \geqslant T_{1}$,

$$
S_{i}(t) \cdot N_{0}=C_{i}(t) e^{-G(t)}+\iint_{\Omega^{(1)} \cup K^{(1)}} x_{i} \psi d x_{1} d x_{2} .
$$

We proceed to define successively

$$
\begin{aligned}
& \hat{f}_{1,1}^{(k)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\max }\left(T_{k-1}\right)}{\rho_{2}+S_{2}^{\max }\left(T_{k-1}\right)}\right) \cdot \frac{1}{1+\left(\check{a}_{2}^{(k-1)}-\varepsilon_{k-1}\right) / \gamma_{2}}+\beta_{1}, \\
& \check{f}_{1,1}^{(k)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\min }\left(T_{k-1}\right)}{\rho_{1}+S_{1}^{\min }\left(T_{k-1}\right)}\right) \cdot \frac{1}{1+\left(\hat{a}_{2}^{(k-1)}+\varepsilon_{k-1}\right) / \gamma_{2}}+\beta_{1}, \\
& \hat{f}_{1, \mathrm{~m}}^{(k)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\max }\left(T_{k-1}\right)}{\rho_{1}+S_{1}^{\max }\left(T_{k-1}\right)}\right) \cdot \frac{1}{1+\check{b}_{2}^{(k-1)} / \gamma_{2}}+\beta_{1}, \\
& \check{f}_{1, \mathrm{~m}}^{(k)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\min }\left(T_{k-1}\right)}{\rho_{1}+S_{1}^{\min }\left(T_{k-1}\right)}\right) \cdot \frac{1}{1+\hat{b}_{2}^{(k-1)} / \gamma_{2}}+\beta_{1}, \\
& \hat{f}_{1, \mathrm{u}}^{(k)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\max }\left(T_{k-1}\right)}{\left.\rho_{1}+S_{1}^{\max \left(T_{k-1}\right)}\right) \cdot \frac{1}{1+\left(\check{c}_{2}^{(k-1)}-\varepsilon_{k-1}\right) / \gamma_{2}}+\beta_{1},}\right. \\
& \check{f}_{1, \mathrm{u}}^{(k)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1} s^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\min }\left(T_{k-1}\right)}{\rho_{1}+S_{1}^{\min }\left(T_{k-1}\right)}\right) \cdot \frac{1}{1+\left(\hat{c}_{2}^{(k-1)}+\varepsilon_{k-1}\right) / \gamma_{2}}+\beta_{1},
\end{aligned}
$$

and similarly $\hat{f}_{2, \mathrm{u}}^{(k)}, \check{f}_{2, \mathrm{u}}^{(k)}, \hat{f}_{2, \mathrm{~m}}^{(k)}, \check{f}_{2, \mathrm{~m}}^{(k)}, \hat{f}_{2,1}^{(k)}, \check{f}_{2,1}^{(k)}$, their zeros $\hat{a}_{i}^{(k)}, \breve{a}_{i}^{(k)}, \hat{b}_{i}^{(k)}, \breve{b}_{i}^{(k)}, \hat{c}_{i}^{(k)}, \check{c}_{i}^{(k)}, i=1,2$, and domains $\Omega^{(k)}$. Note that the sets $\Omega^{(k)}$ as well as the rectangles $\left[\hat{b}_{1}^{(k)}, \check{b}_{1}^{(k)}\right] \times\left[\check{b}_{2}^{(k)}, \hat{b}_{2}^{(k)}\right]$ are shrinking as k increases. Suppose that

$$
\begin{array}{lll}
{\left[\check{a}_{1}^{(k)}, \hat{a}_{1}^{(k)}\right] \rightarrow\left\{\bar{a}_{1}\right\},} & {\left[\hat{b}_{1}^{(k)}, \check{b}_{1}^{(k)}\right] \rightarrow\left\{\bar{b}_{1}\right\},} & {\left[\check{c}_{1}^{(k)}, \hat{c}_{1}^{(k)}\right] \rightarrow\left\{\bar{c}_{1}\right\},} \\
{\left[\check{a}_{2}^{(k)}, \hat{a}_{2}^{(k)}\right] \rightarrow\left\{\bar{a}_{2}\right\},} & {\left[\hat{b}_{2}^{(k)}, \check{b}_{2}^{(k)}\right] \rightarrow\left\{\bar{b}_{2}\right\},} & {\left[\check{c}_{2}^{(k)}, \hat{c}_{2}^{(k)}\right] \rightarrow\left\{\bar{c}_{2}\right\}} \tag{7.4}
\end{array}
$$

as $k \rightarrow \infty$. Then $\Omega^{(k)} \rightarrow\left\{\left(\bar{a}_{1}, \bar{a}_{2}\right),\left(\bar{c}_{1}, \bar{c}_{2}\right)\right\}$ as $k \rightarrow \infty$, and

$$
\begin{aligned}
& S_{1}(t) \rightarrow w_{1} \cdot \bar{a}_{1}+w_{\mathrm{u}} \cdot \bar{c}_{1}+\bar{c}_{1}, \\
& S_{2}(t) \rightarrow w_{1} \cdot \bar{a}_{2}+w_{\mathrm{u}} \cdot \bar{c}_{2}+\bar{c}_{2}
\end{aligned}
$$

as $t \rightarrow \infty$, for some $w_{1}, w_{\mathrm{u}} \geqslant 0$ with $w_{\mathrm{l}}+w_{\mathrm{u}}=1$. Herein, $w_{\mathrm{l}}, w_{\mathrm{u}}$ represent the percentages of cells whose concentrations tend to levels (\bar{a}_{1}, \bar{a}_{2}) and (\bar{c}_{1}, \bar{c}_{2}), respectively. Notice that points (\bar{a}_{1}, \bar{a}_{2}), (\bar{c}_{1}, \bar{c}_{2}), and w_{1}, w_{u} satisfy the equations

$$
\begin{align*}
& -\mu \bar{a}_{1}+\left[\alpha_{1} \frac{\bar{a}_{1}^{n}}{k_{1}^{n}+\bar{a}_{1}^{n}}+\sigma_{1} \frac{w_{1} \cdot \bar{a}_{1}+w_{\mathrm{u}} \cdot \bar{c}_{1}+\bar{c}_{1}}{\rho_{1}+\left(w_{1} \cdot \bar{a}_{1}+w_{\mathrm{u}} \cdot \bar{c}_{1}+\bar{c}_{1}\right)}\right] \cdot \frac{1}{1+\bar{a}_{2} / \gamma_{2}}+\beta_{1}=0, \tag{7.5}\\
& -\mu \bar{c}_{1}+\left[\alpha_{1} \frac{\bar{c}_{1}^{n}}{k_{1}^{n}+\bar{c}_{1}^{n}}+\sigma_{1} \frac{w_{1} \cdot \bar{a}_{1}+w_{\mathrm{u}} \cdot \bar{c}_{1}+\bar{c}_{1}}{\rho_{1}+\left(w_{1} \cdot \bar{a}_{1}+w_{\mathrm{u}} \cdot \bar{c}_{1}+\bar{c}_{1}\right)}\right] \cdot \frac{1}{1+\bar{c}_{2} / \gamma_{2}}+\beta_{1}=0, \tag{7.6}\\
& -\mu \bar{a}_{2}+\left[\alpha_{2} \frac{\bar{a}_{2}^{n}}{k_{2}^{n}+\bar{a}_{2}^{n}}+\sigma_{2} \frac{w_{1} \cdot \bar{a}_{2}+w_{\mathrm{u}} \cdot \bar{c}_{2}+\bar{c}_{2}}{\rho_{2}+\left(w_{1} \cdot \bar{a}_{2}+w_{\mathrm{u}} \cdot \bar{c}_{2}+\bar{c}_{2}\right)}\right] \cdot \frac{1}{1+\bar{a}_{1} / \gamma_{1}}+\beta_{2}=0, \tag{7.7}\\
& -\mu \bar{c}_{2}+\left[\alpha_{2} \frac{\bar{c}_{2}^{n}}{k_{2}^{n}+\bar{c}_{2}^{n}}+\sigma_{2} \frac{w_{1} \cdot \bar{a}_{2}+w_{\mathrm{u}} \cdot \bar{c}_{2}+\bar{c}_{2}}{\rho_{2}+\left(w_{1} \cdot \bar{a}_{2}+w_{\mathrm{u}} \cdot \bar{c}_{2}+\bar{c}_{2}\right)}\right] \cdot \frac{1}{1+\bar{c}_{1} / \gamma_{1}}+\beta_{2}=0 . \tag{7.8}
\end{align*}
$$

We have thus derived an asymptotic two-peak solution $\psi=n_{1} \cdot \delta_{\left(\bar{a}_{1}, \bar{a}_{2}\right)}+n_{\mathrm{u}} \cdot \delta_{\left(\bar{c}_{1}, \bar{c}_{2}\right)}$, with $n_{1}=N_{0} \cdot w_{1}$, $n_{\mathrm{u}}=N_{0} \cdot n_{\mathrm{u}}$.

Notice that $\bar{a}_{1}, \bar{a}_{2}, \bar{c}_{1}, \bar{c}_{2}, w_{1}, w_{\mathrm{u}}$ are not determined uniquely from Eqs. (7.5)-(7.8); these quantities depend also on the initial condition (3.1).

We next establish (7.3), (7.4). Following the argument in the proof of Lemma 6.1, we argue that if (7.3) and (7.4) are not true then

$$
\bigcap_{k=1}^{\infty} \Omega^{(k)}=\bigcup_{i=1}^{3} R_{i} \quad \text { (disjoint union), }
$$

where each R_{i} is either a rectangle or a single point, and at least one R_{i} is a rectangle. We denote by ($\breve{a}_{1}^{*}, \hat{a}_{2}^{*}$) the upper-left vertex of R_{1} which is diagonally opposed to ($\hat{a}_{1}^{*}, \breve{a}_{2}^{*}$); if R_{1} is a single point then we take $\check{a}_{1}^{*}=\check{a}_{1}^{*}, \hat{a}_{2}^{*}=\hat{a}_{2}^{*}$. Similarly we designate the vertices $\left(\hat{b}_{1}^{*}, \check{b}_{2}^{*}\right),\left(\check{b}_{1}^{*}, \hat{b}_{2}^{*}\right)$ for R_{2}, and $\left(\hat{c}_{1}^{*}, \check{c}_{2}^{*}\right),\left(\check{c}_{1}^{*}, \hat{c}_{2}^{*}\right)$ for R_{3}. Then analogous to (6.7)-(6.10), the coordinates of these vertices satisfy the following equations:

$$
\begin{array}{lc}
f_{1}\left(\check{a}_{1}^{*}, \hat{a}_{2}^{*}, \check{s}_{1}\right)=0, & f_{2}\left(\check{a}_{1}^{*}, \hat{a}_{2}^{*}, \hat{S}_{2}\right)=0, \\
f_{1}\left(\hat{a}_{1}^{*}, \check{a}_{2}^{*}, \hat{S}_{1}\right)=0, & f_{2}\left(\hat{a}_{1}^{*}, \check{a}_{2}^{*}, \check{s}_{2}\right)=0, \\
f_{1}\left(\hat{b}_{1}^{*}, \breve{b}_{2}^{*}, \check{s}_{1}\right)=0, & f_{2}\left(\hat{b}_{1}^{*}, \check{b}_{2}^{*}, \hat{S}_{2}\right)=0, \\
f_{1}\left(\check{b}_{1}^{*}, \hat{b}_{2}^{*}, \hat{S}_{1}\right)=0, & f_{2}\left(\check{b}_{1}^{*}, \hat{b}_{2}^{*}, \check{s}_{2}\right)=0, \\
f_{1}\left(\check{c}_{1}^{*}, \hat{c}_{2}^{*}, \check{s}_{1}\right)=0, & f_{2}\left(\check{c}_{1}^{*}, \hat{c}_{2}^{*}, \hat{S}_{2}\right)=0, \\
f_{1}\left(\hat{c}_{1}^{*},,_{2}^{*}, \hat{S}_{2}\right)=0, & f_{2}\left(\hat{c}_{1}^{*}, \check{c}_{2}^{*}, \check{S}_{2}\right)=0 . \tag{7.12}
\end{array}
$$

Furthermore,

$$
\begin{align*}
& \hat{S}_{1} \leqslant\left[v_{1} \hat{a}_{1}^{*}+v_{2} \check{b}_{1}^{*}+v_{3} \hat{c}_{1}^{*}\right] / v+\bar{c}_{1}, \tag{7.13}\\
& \check{S}_{1} \geqslant\left[v_{1} \check{a}_{1}^{*}+v_{2} \hat{b}_{1}^{*}+v_{3} \check{c}_{1}^{*}\right] / v+\bar{c}_{1}, \tag{7.14}\\
& \hat{S}_{2} \leqslant\left[v_{1} \hat{a}_{2}^{*}+v_{2} \check{b}_{2}^{*}+v_{3} \hat{c}_{2}^{*}\right] / v+\bar{c}_{2}, \tag{7.15}\\
& \check{S}_{2} \geqslant\left[v_{1} \hat{a}_{2}^{*}+v_{2} \check{b}_{2}^{*}+v_{3} \check{c}_{2}^{*}\right] / v+\bar{c}_{2}, \tag{7.16}
\end{align*}
$$

where v_{1}, v_{2}, v_{3} are the areas of the regions R_{1}, R_{2}, R_{3}, and $v_{1}+v_{2}+v_{3}=v$. Among the three quantities

$$
\left(\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right), \quad\left(\check{b}_{1}^{*}-\hat{b}_{1}^{*}\right), \quad\left(\hat{c}_{1}^{*}-\check{c}_{1}^{*}\right),
$$

we pick the largest one, say $\left(\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right)$, and the corresponding two equations from (7.9), (7.10),

$$
\begin{equation*}
f_{1}\left(\check{a}_{1}^{*}, \hat{a}_{2}^{*}, \check{s}_{1}\right)=0, \quad f_{1}\left(\hat{a}_{1}^{*}, \check{a}_{2}^{*}, \hat{S}_{1}\right)=0 \tag{7.17}
\end{equation*}
$$

(analogously to Eqs. (6.7), (6.9)). Similarly, among the quantities

$$
\left(\hat{a}_{2}^{*}-\breve{a}_{2}^{*}\right), \quad\left(\breve{b}_{2}^{*}-\hat{b}_{2}^{*}\right), \quad\left(\hat{c}_{2}^{*}-\check{c}_{2}^{*}\right),
$$

we pick the largest one, say $\left(\hat{c}_{2}^{*}-\stackrel{\breve{c}}{2}_{*}^{*}\right)$, and the corresponding equations (7.11), (7.12),

$$
\begin{equation*}
f_{2}\left(\check{c}_{1}^{*}, \hat{c}_{2}^{*}, \hat{S}_{2}\right)=0, \quad f_{2}\left(\hat{c}_{1}^{*}, \check{c}_{2}^{*}, \check{S}_{2}\right)=0 \tag{7.18}
\end{equation*}
$$

(analogously to Eqs. (6.8), (6.10)). From (7.13)-(7.16) we deduce that

$$
\begin{align*}
\hat{S}_{1}-\check{S}_{1} & \leqslant\left[v_{1}\left(\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right)+v_{2}\left(\check{b}_{1}^{*}-\hat{b}_{1}^{*}\right)+v_{3}\left(\hat{c}_{1}^{*}-\check{c}_{1}^{*}\right)\right] / v \\
& \leqslant \hat{a}_{1}^{*}-\check{a}_{1}^{*} \tag{7.19}\\
\hat{S}_{2}-\check{s}_{2} & \leqslant\left[v_{1}\left(\hat{a}_{2}^{*}-\check{a}_{2}^{*}\right)+v_{2}\left(\check{b}_{2}^{*}-\hat{b}_{2}^{*}\right)+v_{3}\left(\hat{c}_{2}^{*}-\check{c}_{2}^{*}\right)\right] / v \\
& \leqslant \hat{c}_{2}^{*}-\check{c}_{2}^{*} \tag{7.20}
\end{align*}
$$

We use (7.17) and (7.19) to estimate $\left|\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right|$ in terms of $\left|\hat{a}_{2}^{*}-\check{a}_{2}^{*}\right|$, as in the derivation of (6.12). We next use (7.18) and (7.20) to estimate $\left|\hat{c}_{2}^{*}-\check{c}_{2}^{*}\right|$ in terms of $\left|\hat{c}_{1}^{*}-\check{c}_{1}^{*}\right|$. Finally, from the two estimates on $\left|\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right|$ and $\left|\hat{c}_{2}^{*}-\check{c}_{2}^{*}\right|$ and the inequalities

$$
\begin{equation*}
\left|\hat{a}_{2}^{*}-\check{a}_{2}^{*}\right| \leqslant\left|\hat{c}_{2}^{*}-\check{c}_{2}^{*}\right| \quad \text { and }\left|\hat{c}_{1}^{*}-\check{c}_{1}^{*}\right| \leqslant\left|\hat{a}_{1}^{*}-\check{a}_{1}^{*}\right|, \tag{7.21}
\end{equation*}
$$

we derive the estimates (6.14), (6.15) which yield a contradiction to (6.6). Assertions (7.3) and (7.4) are thus established.

We summarize:
Theorem 7.1. If conditions (6.6), (7.1) and (7.2) hold then the solution ψ of (2.10), (3.1), with f_{i}, S_{i} defined by (2.5), (2.6), (2.11), satisfies:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \psi\left(t, x_{2}, x_{2}\right)=n_{1} \delta_{\left(\bar{a}_{1}, \bar{a}_{2}\right)}+n_{\mathrm{u}} \delta_{\left(\bar{c}_{1}, \bar{c}_{2}\right)}, \tag{7.22}
\end{equation*}
$$

where $n_{1}+n_{\mathrm{u}}=N_{0}$ and the points $\left(\bar{a}_{1}, \bar{a}_{2}\right)$ and $\left(\bar{c}_{1}, \bar{c}_{2}\right)$ together with the weights $w_{1}=n_{1} / N_{0}, w_{\mathrm{u}}=n_{\mathrm{u}} / N_{0}$ satisfy Eqs. (7.5)-(7.8); the convergence in (7.22) is in the sense of convergence in measure.

Remark 7.1. Theorem 7.1 extends to the case where instead of (7.1), (7.2) we assume that condition (B2) holds, $\quad \hat{f}_{2}\left(\hat{p}_{2}^{\mathrm{m}}\right)<0$, and $\check{f}_{2}\left(\check{p}_{2}^{\mathrm{M}}\right)>0$, and either condition (M1) holds, or (B1) and $\hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{M}}\right)<0$ hold.

8. Asymptotic four-peak solutions

In this section we assume, analogously to the case of Theorem 4.1(vi), that

$$
\begin{equation*}
\text { conditions (B1), (B2) hold, and } \quad \hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{m}}\right)<0, \quad \check{f}_{i}\left(\hat{p}_{i}^{\mathrm{M}}\right)>0, \quad i=1,2 . \tag{8.1}
\end{equation*}
$$

As in Sections 6, 7, in view of (8.1) and (5.3)-(5.4), for any small $\varepsilon_{0}>0$, there exists a $T_{0}>0$ such that any solution $\mathbf{x}\left(t, \mathbf{x}_{0}\right)$ starting from a point $\mathbf{x}_{0} \in\left[0, A_{1}\right] \times\left[0, A_{2}\right] \backslash K^{(0)}$, falls into one of the four rectangles

$$
\Omega^{(0)}=\Omega_{\mathrm{ll}}^{(0)} \cup \Omega_{\mathrm{ul}}^{(0)} \cup \Omega_{\mathrm{lu}}^{(0)} \cup \Omega_{\mathrm{uu}}^{(0)}
$$

for $t \geqslant T_{0}$, where

$$
\begin{aligned}
& K^{(0)}=\Omega_{\mathrm{ml}}^{(0)} \cup \Omega_{\mathrm{lm}}^{(0)} \cup \Omega_{\mathrm{mm}}^{(0)} \cup \Omega_{\mathrm{um}}^{(0)} \cup \Omega_{\mathrm{mu}}^{(0)}, \\
& \Omega_{\mathrm{ll}}^{(0)}=\left[\check{a}_{1}^{(0)}-\varepsilon_{0}, \hat{a}_{1}^{(0)}+\varepsilon_{0}\right] \times\left[\check{a}_{2}^{(0)}-\varepsilon_{0}, \hat{a}_{2}^{(0)}+\varepsilon_{0}\right], \\
& \Omega_{\mathrm{ul}}^{(0)}=\left[\check{c}_{1}^{(0)}-\varepsilon_{0}, \hat{c}_{1}^{(0)}+\varepsilon_{0}\right] \times\left[\check{a}_{2}^{(0)}-\varepsilon_{0}, \hat{a}_{2}^{(0)}+\varepsilon_{0}\right], \\
& \Omega_{\mathrm{lu}}^{(0)}=\left[\check{a}_{1}^{(0)}-\varepsilon_{0}, \hat{a}_{1}^{(0)}+\varepsilon_{0}\right] \times\left[\check{c}_{2}^{(0)}-\varepsilon_{0}, \hat{c}_{2}^{(0)}+\varepsilon_{0}\right], \\
& \Omega_{\mathrm{uu}}^{(0)}=\left[\check{c}_{1}^{(0)}-\varepsilon_{0}, \hat{c}_{1}^{(0)}+\varepsilon_{0}\right] \times\left[\check{c}_{2}^{(0)}-\varepsilon_{0}, \hat{c}_{2}^{(0)}+\varepsilon_{0}\right], \\
& \Omega_{\mathrm{ml}}^{(0)}=\left[\hat{b}_{1}^{(0)}, \check{b}_{1}^{(0)}\right] \times\left[\check{a}_{2}^{(0)}, \hat{a}_{2}^{(0)}\right], \quad \Omega_{\mathrm{lm}}^{(0)}=\left[\check{a}_{1}^{(0)}, \hat{a}_{1}^{(0)}\right] \times\left[\hat{b}_{2}^{(0)}, \check{b}_{2}^{(0)}\right], \\
& \Omega_{\mathrm{mm}}^{(0)}=\left[\hat{b}_{1}^{(0)}, \check{b}_{1}^{(0)}\right] \times\left[\hat{b}_{2}^{(0)}, \check{b}_{2}^{(0)}\right], \quad \Omega_{\mathrm{um}}^{(0)}=\left[\check{c}_{1}^{(0)}, \hat{c}_{1}^{(0)}\right] \times\left[\hat{b}_{2}^{(0)}, \check{b}_{2}^{(0)}\right], \\
& \Omega_{\mathrm{mu}}^{(0)}=\left[\hat{b}_{1}^{(0)}, \check{b}_{1}^{(0)}\right] \times\left[\check{c}_{2}^{(0)}, \hat{c}_{2}^{(0)}\right] .
\end{aligned}
$$

We then need to concentrate only on the dynamics in $\Omega^{(0)}$ and $K^{(0)}$. Define

$$
\begin{aligned}
& \hat{f}_{1,1}^{(1)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\max }\left(T_{0}\right)}{\rho_{1}+S_{1}^{\max }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\check{a}_{2}^{(0)}-\varepsilon_{0}\right) / \gamma_{2}}+\beta_{1}, \\
& \check{f}_{1,1}^{(1)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\min }\left(T_{0}\right)}{\rho_{1}+S_{1}^{\min }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\hat{a}_{2}^{(0)}+\varepsilon_{0}\right) / \gamma_{2}}+\beta_{1}, \\
& \hat{f}_{1, \mathrm{~m}}^{(1)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\max }\left(T_{0}\right)}{\rho_{1}+S_{1}^{\max }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\hat{b}_{2}^{(0)} / \gamma_{2}}+\beta_{1}, \\
& \check{f}_{1, \mathrm{~m}}^{(1)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\min }\left(T_{0}\right)}{\rho_{1}+S_{1}^{\min }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\check{b}_{2}^{(0)} / \gamma_{2}}+\beta_{1}, \\
& \hat{f}_{1, \mathrm{u}}^{(1)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\max }\left(T_{0}\right)}{\rho_{1}+S_{1}^{\max }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\check{c}_{2}^{(0)}-\varepsilon_{0}\right) / \gamma_{2}}+\beta_{1}, \\
& \check{f}_{1, \mathrm{u}}^{(1)}\left(x_{1}\right)=-\mu x_{1}+\left(\alpha_{1} \frac{x_{1}^{n}}{k_{1}^{n}+x_{1}^{n}}+\sigma_{1} \frac{S_{1}^{\min }\left(T_{0}\right)}{\rho_{1}+S_{1}^{\min }\left(T_{0}\right)}\right) \cdot \frac{1}{1+\left(\hat{c}_{2}^{(0)}+\varepsilon_{0}\right) / \gamma_{2}}+\beta_{1},
\end{aligned}
$$

and similarly, by interchanging indices $i=1$ and $i=2$, define

$$
\hat{f}_{2,1}^{(1)}\left(x_{2}\right), \quad \check{f}_{2,1}^{(1)}\left(x_{2}\right), \quad \hat{f}_{2, \mathrm{~m}}^{(1)}\left(x_{2}\right), \quad \check{f}_{2, \mathrm{~m}}^{(1)}\left(x_{2}\right), \quad \hat{f}_{2, \mathrm{u}}^{(1)}\left(x_{2}\right), \quad \check{f}_{2, \mathrm{u}}^{(1)}\left(x_{2}\right)
$$

Next, let $\hat{a}_{i, 1}^{(1)}, \breve{a}_{i, 1}^{(1)}$ (respectively $\hat{a}_{i, \mathrm{~m}}^{(1)}, \check{a}_{i, \mathrm{~m}}^{(1)} ; \hat{a}_{i, \mathrm{u}}^{(1)}, \breve{a}_{i, \mathrm{u}}^{(1)}$) be the smallest zeros, $\hat{b}_{i, 1}^{(1)}, \check{b}_{i, 1}^{(1)}$ (respectively $\hat{b}_{i, \mathrm{~m}}^{(1)}$, $\check{b}_{i, \mathrm{~m}}^{(1)} ; \hat{b}_{i, \mathrm{u}}^{(1)}, \check{b}_{i, \mathrm{u}}^{(1)}$) be the middle zeros, and $\hat{c}_{i, 1}^{(1)}, \check{c}_{i, 1}^{(1)}$ (respectively $\left.\hat{c}_{i, \mathrm{~m}}^{(1)}, \check{c}_{i, \mathrm{~m}}^{(1)} ; \hat{c}_{i, \mathrm{u}}^{(1)}, \check{c}_{i, \mathrm{u}}^{(1)}\right)$ be the largest zeros of $\hat{f}_{i, 1}^{(1)}, \check{f}_{i, 1}^{(1)}$ (respectively $\left.\hat{f}_{i, \mathrm{~m}}^{(1)}, \breve{f}_{i, \mathrm{~m}}^{(1)} ; \hat{f}_{i, \mathrm{u}}^{(1)}, \breve{f}_{i, \mathrm{u}}^{(1)}\right)$. Then for any small $\varepsilon_{1}>0$ there exists a $T_{1}>T_{0}$ such that any solution $\mathbf{x}\left(t, \mathbf{x}_{0}\right)$ starting from a point $\mathbf{x}_{0} \in\left[0, A_{1}\right] \times\left[0, A_{2}\right] \backslash K^{(1)}$ falls into one of the four rectangles

$$
\Omega^{(1)}=\Omega_{\mathrm{II}}^{(1)} \cup \Omega_{\mathrm{ul}}^{(1)} \cup \Omega_{\mathrm{lu}}^{(1)} \cup \Omega_{\mathrm{uu}}^{(1)} \subset \Omega^{(0)}
$$

for $t \geqslant T_{1}$, where

$$
\begin{aligned}
K^{(1)} & =\Omega_{\mathrm{ml}}^{(1)} \cup \Omega_{\mathrm{lm}}^{(1)} \cup \Omega_{\mathrm{mm}}^{(1)} \cup \Omega_{\mathrm{um}}^{(1)} \cup \Omega_{\mathrm{mu}}^{(1)} \subset K^{(0)}, \\
\Omega_{\mathrm{ll}}^{(1)} & =\left[\check{a}_{1, \mathrm{l}}^{(1)}-\varepsilon_{1}, \hat{a}_{1, \mathrm{l}}^{(1)}+\varepsilon_{1}\right] \times\left[\check{a}_{2, \mathrm{l}}^{(1)}-\varepsilon_{1}, \hat{a}_{2, \mathrm{l}}^{(1)}+\varepsilon_{1}\right] \subset \Omega_{\mathrm{ll}}^{(0)}, \\
\Omega_{\mathrm{ul}}^{(1)} & =\left[\check{c}_{1, \mathrm{l}}^{(1)}-\varepsilon_{1}, \hat{c}_{1, \mathrm{l}}^{(1)}+\varepsilon_{1}\right] \times\left[\check{a}_{2, \mathrm{u}}^{(1)}-\varepsilon_{1}, \hat{a}_{2, \mathrm{u}}^{(1)}+\varepsilon_{1}\right] \subset \Omega_{\mathrm{ul}}^{(0)}, \\
\Omega_{\mathrm{lu}}^{(1)} & =\left[\check{a}_{1, \mathrm{u}}^{(1)}-\varepsilon_{1}, \hat{a}_{1, \mathrm{u}}^{(1)}+\varepsilon_{1}\right] \times\left[\check{c}_{2,1}^{(1)}-\varepsilon_{1}, \hat{c}_{2, \mathrm{l}}^{(1)}+\varepsilon_{1}\right] \subset \Omega_{\mathrm{lu}}^{(0)}, \\
\Omega_{\mathrm{uu}}^{(1)} & =\left[\check{c}_{1, \mathrm{u}}^{(1)}-\varepsilon_{1}, \hat{c}_{1, \mathrm{u}}^{(1)}+\varepsilon_{1}\right] \times\left[\check{c}_{2, \mathrm{u}}^{(1)}-\varepsilon_{1}, \hat{c}_{2, \mathrm{u}}^{(1)}+\varepsilon_{1}\right] \subset \Omega_{\mathrm{uu}}^{(0)}, \\
\Omega_{\mathrm{ml}}^{(1)} & =\left[\hat{b}_{1, \mathrm{l}}^{(1)}, \check{b}_{1,1}^{(1)}\right] \times\left[\check{a}_{2, \mathrm{~m}}^{(1)}, \hat{a}_{2, \mathrm{~m}}^{(1)}\right] \subset \Omega_{\mathrm{ml}}^{(0)}, \quad \Omega_{\mathrm{lm}}^{(1)}=\left[\check{a}_{1, \mathrm{~m}}^{(1)}, \hat{a}_{1, \mathrm{~m}}^{(1)}\right] \times\left[\hat{b}_{2, \mathrm{l}}^{(1)} \check{b}_{2, \mathrm{l}}^{(1)}\right] \subset \Omega_{\mathrm{lm}}^{(0)}, \\
\Omega_{\mathrm{mm}}^{(1)} & =\left[\hat{b}_{1, \mathrm{~m}}^{(1)}, \breve{b}_{1, \mathrm{~m}}^{(1)}\right] \times\left[\hat{b}_{2, \mathrm{~m}}^{(1)}, \breve{b}_{2, \mathrm{~m}}^{(1)}\right] \subset \Omega_{\mathrm{mm}}^{(0)}, \quad \Omega_{\mathrm{um}}^{(1)}=\left[\check{c}_{1, \mathrm{~m}}^{(1)}, \hat{c}_{1, \mathrm{~m}}^{(1)}\right] \times\left[\hat{b}_{2, \mathrm{u}}^{(1)}, \check{b}_{2, \mathrm{u}}^{(1)}\right] \subset \Omega_{\mathrm{um}}^{(0)}, \\
\Omega_{\mathrm{mu}}^{(1)} & =\left[\hat{b}_{1, \mathrm{u}}^{(1)}, \breve{b}_{1, \mathrm{u}}^{(1)}\right] \times\left[\check{c}_{2, \mathrm{~m}}^{(1)}, \hat{c}_{2, \mathrm{~m}}^{(1)}\right] \subset \Omega_{\mathrm{mu}}^{(0)} ;
\end{aligned}
$$

Fig. 6 describes the four components of $\Omega^{(1)}$ and the five components of $K^{(1)}$.
We then consider the dynamics on $\Omega^{(1)} \cup K^{(1)}$. Successively, we can define $\hat{a}_{i, *}^{(k)}, \breve{a}_{i, *}^{(k)}, \hat{b}_{i, *}^{(k)}, \breve{b}_{i, *}^{(k)}$, $\hat{c}_{i, *}^{(k)} \breve{c}_{i, *}^{(k)}, i=1,2, *=1, \mathrm{~m}, \mathrm{u}$, and $\Omega^{(k)}$ and $K^{(k)}$, for $k>2$. Using (6.6) we can extend the argument used in Lemma 6.1 and in Section 7 to show that each of the following intervals converges to a single point as $k \rightarrow \infty$:

$$
\left[\check{a}_{i, *}^{(k)}, \hat{a}_{i, *}^{(k)}\right] \rightarrow\left\{\bar{a}_{i, *}\right\}, \quad\left[\hat{b}_{i, *}^{(k)}, \breve{b}_{i, *}^{(k)}\right] \rightarrow\left\{\bar{b}_{i, *}\right\}, \quad\left[\check{c}_{i, *}^{(k)}, \hat{c}_{i, *}^{(k)}\right] \rightarrow\left\{\bar{c}_{i, *}\right\}, \quad i=1,2, *=1, \mathrm{~m}, \mathrm{u},
$$

so that

$$
\Omega^{(k)} \rightarrow\left\{\left(\bar{a}_{1, \mathrm{l}}, \bar{a}_{2,1}\right),\left(\bar{c}_{1,1}, \bar{a}_{2, \mathrm{u}}\right),\left(\bar{a}_{1, \mathrm{u}}, \bar{c}_{2,1}\right),\left(\bar{c}_{1, \mathrm{u}}, \bar{c}_{2, \mathrm{u}}\right)\right\} \quad \text { as } k \rightarrow \infty .
$$

In addition,

$$
\begin{aligned}
& S_{1}(t) \rightarrow \bar{S}_{1}=w_{\mathrm{ll}} \cdot \bar{a}_{1,1}+w_{\mathrm{ul}} \cdot \bar{c}_{1,1}+w_{\mathrm{lu}} \cdot \bar{a}_{1, \mathrm{u}}+w_{\mathrm{uu}} \cdot \bar{c}_{1, \mathrm{u}}+\bar{c}_{1}, \\
& S_{2}(t) \rightarrow \bar{S}_{2}=w_{\mathrm{ll}} \cdot \bar{a}_{2,1}+w_{\mathrm{ul}} \cdot \bar{a}_{2, \mathrm{u}}+w_{\mathrm{lu}} \cdot \bar{c}_{2,1}+w_{\mathrm{uu}} \cdot \bar{c}_{2, \mathrm{u}}+\bar{c}_{2}
\end{aligned}
$$

as $t \rightarrow \infty$, for some $w_{\mathrm{Il}}, w_{\mathrm{ul}}, w_{\mathrm{lu}}, w_{\mathrm{uu}} \geqslant 0$ with $w_{\mathrm{ll}}+w_{\mathrm{ul}}+w_{\mathrm{lu}}+w_{\mathrm{uu}}=1$. Here, $w_{\mathrm{II}}, w_{\mathrm{ul}}, w_{\mathrm{lu}}, w_{\mathrm{uu}}$ represent the percentage of cells whose concentrations tend to levels ($\left.\overline{1}_{1,1}, \bar{a}_{2,1}\right),\left(\bar{c}_{1,1}, \bar{a}_{2, \mathrm{u}}\right),\left(\bar{a}_{1, \mathrm{u}}, \bar{c}_{2,1}\right)$, ($\bar{c}_{1, \mathrm{u}}, \bar{c}_{2, \mathrm{u}}$), respectively. Notice that these points together with the w's weights satisfy

Fig. 6. Notations for $\Omega^{(1)}$ and its components, for the four-peak case.

$$
\begin{align*}
& f_{i}\left(\bar{a}_{1,1}, \bar{a}_{2, \mathrm{l}}, w_{\mathrm{Il}} \cdot \bar{a}_{1, \mathrm{l}}+w_{\mathrm{ul}} \cdot \bar{c}_{1, \mathrm{l}}+w_{\mathrm{lu}} \cdot \bar{a}_{1, \mathrm{u}}+w_{\mathrm{uu}} \cdot \bar{c}_{1, \mathrm{u}}+\bar{c}_{i}\right)=0, \tag{8.2}\\
& f_{i}\left(\bar{c}_{1, \mathrm{l}}, \bar{a}_{2, \mathrm{u}}, w_{\mathrm{ll}} \cdot \bar{a}_{1,1}+w_{\mathrm{ul}} \cdot \bar{c}_{1,1}+w_{\mathrm{lu}} \cdot \bar{a}_{1, \mathrm{u}}+w_{\mathrm{uu}} \cdot \bar{c}_{1, \mathrm{u}}+\bar{c}_{i}\right)=0, \tag{8.3}\\
& f_{i}\left(\bar{a}_{1, \mathrm{u}}, \bar{c}_{2, \mathrm{l}}, w_{\mathrm{ll}} \cdot \bar{a}_{1,1}+w_{\mathrm{ul}} \cdot \bar{c}_{1,1}+w_{\mathrm{lu}} \cdot \bar{a}_{1, \mathrm{u}}+w_{\mathrm{uu}} \cdot \bar{c}_{1, \mathrm{u}}+\bar{c}_{i}\right)=0, \tag{8.4}\\
& f_{i}\left(\bar{c}_{1, \mathrm{u},}, \bar{c}_{2, \mathrm{u}}, w_{\mathrm{ll}} \cdot \bar{a}_{1,1}+w_{\mathrm{ul}} \cdot \bar{c}_{1,1}+w_{\mathrm{lu}} \cdot \bar{a}_{1, \mathrm{u}}+w_{\mathrm{uu}} \cdot \bar{c}_{1, \mathrm{u}}+\bar{c}_{i}\right)=0 \tag{8.5}
\end{align*}
$$

for $i=1,2$.
Setting $n_{\mathrm{ll}}=N_{0} \cdot w_{\mathrm{Il}}, n_{\mathrm{lu}}=N_{0} \cdot w_{\mathrm{lu}}, n_{\mathrm{ul}}=N_{0} \cdot w_{\mathrm{ul}}, n_{\mathrm{uu}}=N_{0} \cdot w_{\mathrm{uu}}$, we summarize:
Theorem 8.1. If the conditions (6.6) and (8.1) hold then the solution ψ of (2.10), (3.1), with f_{i}, S_{i} defined by (2.5), (2.6), (2.11), satisfies:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \psi\left(t, x_{2}, x_{2}\right)=n_{11} \cdot \delta_{\left(\bar{a}_{1,1}, \overline{a_{2,1}}\right)}+n_{\mathrm{ul}} \cdot \delta_{\left(\bar{c}_{1,1}, \bar{a}_{2, \mathrm{u}}\right)}+n_{\mathrm{lu}} \cdot \delta_{\left(\bar{a}_{1, \mathrm{u}}, \bar{c}_{2,1}\right)}+n_{\mathrm{uu}} \cdot \delta_{\left(\bar{c}_{1, \mathrm{u}}, \bar{c}_{2, \mathrm{u}}\right.}, \tag{8.6}
\end{equation*}
$$

where $n_{\mathrm{II}}+n_{\mathrm{lu}}+n_{\mathrm{ul}}+n_{\mathrm{uu}}=N_{0}$; the points $\left(\bar{a}_{1,1}, \bar{a}_{2,1}\right),\left(\bar{c}_{1, \mathrm{l}}, \bar{a}_{2, \mathrm{u}}\right),\left(\bar{a}_{1, \mathrm{u}}, \bar{c}_{2,1}\right),\left(\bar{c}_{1, \mathrm{u}}, \bar{c}_{2, \mathrm{u}}\right)$ and the weights w_{II}, $w_{\mathrm{lu}}, w_{\mathrm{ul}}, w_{\mathrm{uu}}$ satisfy Eqs. (8.2)-(8.5) and the convergence in (8.6) is in the sense of convergence in measure.

9. Numerical illustrations

In this section, we provide numerical simulations for the single-cell model (2.1), (2.2) and for the population model (2.4).

The single-cell model is a system of two ordinary differential equations (ODEs) which can be easily solved by the Runge-Kutta method, using ode45 in MATLAB. The population model (2.4) is essentially an integro-differential equation. The integrations in the $S_{i}(t)$ need to be carried out through quadrature rule (numerical integration); we shall use Simpson's rule which has third order accuracy. The solution of Eq. (2.4) is then obtained by using Lax-Friedrichs method [10,11]. Notice that
the asymptotic solution of the population model becomes singular for large time. In order to obtain highly accurate solution, refinement is definitely needed at the places where population density tends to grow, and the corresponding quadrature rule has to be redesigned; this we have done for the one-peak case, but not for the multi-peak cases: we stopped the numerical simulations after the asymptotic singular solutions are observed.

9.1. The single-cell model

In Fig. 7, we first demonstrate the single-cell model results. The parameters for (a)-(e) are chosen as those in [15], namely,

$$
\begin{gather*}
\mu=5 \text { day }^{-1}, \quad \alpha_{1}=\alpha_{2}=5 \text { day }^{-1}, \quad \sigma_{1}=\sigma_{2}=5 \text { day }^{-1} \tag{9.1}\\
k_{1}=k_{2}=1, \quad \rho_{1}=\rho_{2}=1, \quad \gamma_{1}=1, \quad \gamma_{2}=0.5 \tag{9.2}\\
\beta_{1}=\beta_{2}=0.05 \text { day }^{-1}, \quad n=6 . \tag{9.3}
\end{gather*}
$$

For these parameters, we take $A_{1}=A_{2}=2.01$. Then

$$
\begin{aligned}
& \frac{\alpha_{1} \tilde{n}}{k_{1}} \cdot \frac{1}{1+A_{2} / \gamma_{2}}<\mu<\frac{\alpha_{1} \tilde{n}}{k_{1}} \\
& \frac{\alpha_{2} \tilde{n}}{k_{2}} \cdot \frac{1}{1+A_{1} / \gamma_{1}}<\mu<\frac{\alpha_{2} \tilde{n}}{k_{2}}
\end{aligned}
$$

so that the conditions (M1) and (M2) are not satisfied. Thus, \hat{f}_{i} defined in (4.1) has a local minimum and a local maximum for $i=1,2$.

In addition, conditions (B1), (B2) hold for the B_{i} defined in Section 4. This gives the flexibility for the system to be either monostable or bistable under different choices of S_{1} and S_{2}. For example, the system is
(a) monostable (MS) for $S_{1}=0.05, S_{2}=0.025$, with the choice of $B_{1}=0.058$ and $B_{2}=0.035$; in this case (B1), (B2) hold and $\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{M}}\right)<0(i=1,2)$;
(b) bistable (BS-ll,hl) for $S_{1}=1.2, S_{2}=0.025$ with $B_{1}=1.181$ and $B_{2}=0.035$; in this case (B1), (B2) hold, and $\hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{m}}\right)<0, \check{f}_{1}\left(\check{p}_{1}^{\mathrm{M}}\right)>0, \hat{f}_{2}\left(\hat{p}_{2}^{\mathrm{M}}\right)<0$;
(c) bistable (BS-ll,lh) for $S_{1}=0.05, S_{2}=1.3$ with $B_{1}=0.058$ and $B_{2}=1.493$; in this case (B1), (B2) hold and $\hat{f}_{2}\left(\hat{p}_{2}^{\mathrm{m}}\right)<0, \check{f}_{2}\left(\check{p}_{2}^{\mathrm{M}}\right)>0, \hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{M}}\right)<0$ hold.

Each of these cases is shown in Fig. 7, where we chose 36 different initial conditions ($x_{1}(0), x_{2}(0)$) and depicted their evolution. The blue curve is the nullcline of f_{1} while the red curve is the nullcline of f_{2}. We can clearly see that the solutions converge to a single stable equilibrium in case (a) and to two stable equilibria in cases (b) and (c). The bistable-ll,hl (bistable-ll,lh) system with low x_{1}-low x_{2} and high x_{1}-low x_{2} states (low x_{1}-low x_{2} and low x_{1}-high x_{2} states), shown in case (b) ((c)) can become monostable with high x_{1}-low x_{2} state (low x_{1}-high x_{2}), shown in (d) ((e)) by increasing the value of $S_{1}\left(S_{2}\right)$. Notice that (d) ((e)) satisfies conditions (B1), $\check{f}_{1}\left(\check{p}_{1}^{\mathrm{m}}\right)>0$ and (B2), $\hat{f}_{2}\left(\hat{p}_{2}^{\mathrm{M}}\right)<0$ with $B_{1}=1.626$ and $B_{2}=0.035\left((\mathrm{~B} 2), \check{f}_{2}\left(\check{p}_{2}^{\mathrm{m}}\right)>0\right.$, (B1), $\hat{f}_{1}\left(\hat{p}_{1}^{\mathrm{M}}\right)<0$ with $B_{1}=0.058$ and $\left.B_{2}=1.626\right)$. It is also possible to switch from bistable-ll,hl (bistable-ll,lh) to monostable by decreasing $S_{2}\left(S_{1}\right)$.

However, the system with parameters (9.1)-(9.3) cannot be quadstable due to the strong mutual inhibition (i.e., small γ_{1}, γ_{2}). If we decrease the mutual inhibition by taking parameters $\gamma_{1}=\gamma_{2}=30$, $\sigma_{1}=\sigma_{2}=2, k_{1}=k_{2}=0.6$, but keep all the other parameters the same, then conditions (B1), (B2), $\hat{f}_{i}\left(\hat{p}_{i}^{\mathrm{m}}\right)<0, \check{f}_{i}\left(\check{p}_{i}^{\mathrm{M}}\right)>0, i=1,2$, are satisfied, and by Theorem 4.1(iv), the system is quadstable, as illustrated in Fig. 8.

Fig. 7. Single-cell model. (a) Monostable: the stable equilibrium is $\left(x_{1}, x_{2}\right) \approx(0.055,0.033)$. (b) Bistable-ll,hl: the stable equilibria are $\left(x_{1}, x_{2}\right) \approx(0.556,0.026)$ and $(1.368,0.020)$; the unstable equilibrium is $\left(x_{1}, x_{2}\right) \approx(0.976,0.022)$. (c) Bistable-ll,lh: the stable equilibria are $(0.032,0.602)$ and $(0.022,1.444)$; the unstable equilibrium is $(0.027,0.904)$. (d) Monostable: the stable equilibrium is $(1.549,0.020)$. (e) Monostable: the stable equilibrium is $(0.042,1.544)$. Notice that the dark blue curve is the nullcline of f_{1} while the red curve is the nullcline of f_{2}. The black curves converge to ll state, the green curves converge to hl state, and the light blue curves converge to lh state. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 8. Single-cell model. Quadstable: $S_{1}=0.04, S_{2}=1.6$, the stable equilibria are $\left(x_{1}, x_{2}\right) \approx(0.211,0.211),(0.204,1.186)$, $(1.186,0.204),(1.146,1.146)$ and the unstable equilibria $\left(x_{1}, x_{2}\right) \approx(0.208,0.531),(0.531,0.208),(0.535,0.535),(0.543,1.171)$, (1.171, 0.543).

9.2. The population model

Since in the population model (2.4) S_{1} and S_{2} are not constant and their evolution depends on both the initial population of cells and the external signals $C_{1}(t), C_{2}(t)$, one may expect interesting behavior; for example, the system may switch from one-peak to two-peak profile at intermediate times. In the subsequent numerical simulations we adapt the normalized population density $\psi\left(t, x_{1}, x_{2}\right)$, take A_{1}, A_{2} as in Section 9.1, and choose the initial condition

$$
\begin{equation*}
\psi_{0}\left(x_{1}, x_{2}\right)=\text { const }=\frac{1}{A_{1} A_{2}} \tag{9.4}
\end{equation*}
$$

so that $N_{0}=1$. Although in (3.1) we assumed that $\psi_{0}=0$ on $\partial \Omega$, the results of Sections $6-8$ do not actually use this assumption. Furthermore, the simulations given below do not significantly change if we modify (9.4) near the boundary $\partial \Omega$ so as to make ψ_{0} vanish there.

In Sections 9.2.1-9.2.3 we take $C_{i}(t)=0$, i.e., there is no external stimulus. In Section 9.2.4 we examine the effect of the stimulus $C_{i}(t)$.

We first demonstrate one-, two-, and four-peak solutions by choosing specific parameters in the regimes we discussed in Theorem 4.1.

9.2.1. Asymptotic one-peak solution

In Fig. 9 we show numerical results under conditions (M1) and (M2) which guarantee a single attracting point. Notice that we choose $k_{1}=k_{2}=2$ instead of $k_{1}=k_{2}=1$ in [15] in order to satisfy conditions (M1) and (M2). In Fig. 9(a), 9(b), 9(c) we have plotted ψ and the corresponding vector field (f_{1}, f_{2}) at times $t=0.05,0.2,5$. Since (M1) and (M2) are satisfied no matter what S_{1} and S_{2} are, there is only one stable equilibrium point (although the sufficient condition (6.6) in Theorem 6.2 is not satisfied). The vectors (f_{1}, f_{2}) all point toward the attracting point. The normalized population density gets more and more concentrated at an attracting point, and ($S_{1}(t), S_{2}(t)$) converges to (\bar{a}_{1}, \bar{a}_{2}) \approx (0.054, 0.081).

9.2.2. Asymptotic two-peak solution

Fig. 10 displays bistable case (bistable-ll,lh) with two-peak solution. We choose parameters $\sigma_{1}=\sigma_{2}=2, \gamma_{1}=30, \gamma_{2}=1, k_{1}=5, k_{2}=0.6$. We see that the population density starts to accumulate at two attracting points and the population density is higher in low x_{1}-high x_{2} state as proved in Section 7. The weights w_{1} and w_{2} in the asymptotic solution depend on the initial popu-

Fig. 9. Monostable: $k_{1}=k_{2}=2$ but all other parameters are as in (9.1)-(9.3). (a) $t=0.05$, (b) $t=0.2$, (c) $t=5$.
lation density. If most of the population density is initially in the attraction basin of low x_{1}-low x_{2} state, then the weight for the Dirac function with center at low x_{1}-low x_{2} state would be higher (not shown here).

Fig. 10. Bistable (BS-ll,lh): $\sigma_{1}=\sigma_{2}=2, \gamma_{1}=30, \gamma_{2}=1, k_{1}=5, k_{2}=0.6$ and all other parameters are as in (9.1)-(9.3). (a) $t=0.05$, (b) $t=0.2$, (c) $t=1$.

9.2.3. Asymptotic four-peak solution

In Fig. 11, the population density becomes highly concentrated at four attracting points as we expect from Theorem 8.1. The weights $w_{11}, w_{u 1}, w_{1 u}$ and $w_{u u}$ depend on the parameters of the system as well as on initial population density. The parameters chosen satisfy the condition (B1)' and (B2)' (and (6.6) is also satisfied). Note that the mutual inhibition is small (i.e., γ_{1} and γ_{2} are large).

9.2.4. Effect of the stimulus

In the previous subsections we have assumed that $C_{i}(t) \equiv 0$ (no external stimulus). We now want to examine the effect of these stimuli. We take the parameters as in (9.1)-(9.3): Fig. 12 shows how with no stimuli (i.e., with $C_{1}(t) \equiv C_{2}(t) \equiv 0$) the uniform populations begin to evolve and move into low x_{1}-low x_{2} peak; this is interpreted biologically as no cell differentiation. In Fig. 13 we choose $C_{1}(t) \exp ^{-G(t)}=0.5$ and $C_{2}(t) \exp ^{-G(t)}=1.5$ for all $t>0$. We see that the solution develops a twopeak solution. Due to the larger stimulus of x_{2} (i.e., $C_{2}(t)>C_{1}(t)$), as well as the stronger inhibition of x_{1} by x_{2}, the low x_{1}-high x_{2} peak appears instead of high x_{1}-low x_{2} peak.

In Fig. 14 we use the same stimuli as in Fig. 13, but have taken ψ_{0} to be constant for $x_{1}<A_{1} / 5$ and zero elsewhere. Thus we give GATA-3 initial density advantage as well as stimulus advantage. We see that the population density moves again toward two-peak solution, low x_{1}-low x_{2} and low x_{1} high x_{2}, but the population density at the low x_{1}-high x_{2} is larger than in Fig. 13. In both Figs. 13 and 14, the low x_{1}-high x_{2} can be interpreted biologically as a population of differentiated Th2 cells.

10. Conclusions

In this paper, we considered a conservative law of the form

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\frac{\partial}{\partial x_{1}}\left(f_{1} \phi\right)+\frac{\partial}{\partial x_{2}}\left(f_{2} \phi\right)=g \phi, \quad \phi=\phi\left(t, x_{1}, x_{2}\right), \tag{10.1}
\end{equation*}
$$

where the velocity vector $f=\left(f_{1}, f_{2}\right)$ is a nonlinear nonlocal function of ϕ. This equation arises as a model of T cell differentiation where $x=\left(x_{1}, x_{2}\right)$, and x_{1}, x_{2} are the concentrations of transcription factors T-bet and GATA-3, respectively. A precursor T cell growing at rate g with x_{1} large (small) and x_{2} small (large) will differentiate into Th1 (Th2) T cell. Th1 and Th2 have different functions: Th1 T cells combat intracellular pathogens while Th 2 T cells induce the activation of B cells to combat extracellular pathogens. A 'good' balance between these two populations of cells is maintained in homeostasis. The function $\phi\left(t, x_{1}, x_{2}\right)$ represents the population density of T cells with concentrations $\left(x_{1}, x_{2}\right)$ at time t. Within an individual cell the concentrations of x_{1} and x_{2} vary according to the equations

$$
\begin{equation*}
\frac{d x_{i}}{d t}=f_{i}\left(t, x_{1}, x_{2}, \phi(t, \cdot)\right), \quad i=1,2 \tag{10.2}
\end{equation*}
$$

and the dependence on t and $\phi(t, \cdot)$ arises from stimuli $S_{i}(t)$ consisting of a stimulus which arises from within the entire population of the T cells and of an external stimulus C_{i}.

It is natural to ask what is the behavior of ϕ at intermediate and large times and how this depends on $C_{i}(t)$ and on the initial condition. In this paper, we have depicted six regions from the space of parameters that are introduced in the definition of the f_{i}. We proved that for the first regime the function $\phi\left(t, x_{1}, x_{2}\right)$ converges to a 1-peak solution as $t \rightarrow \infty$; for regimes $2,3,4$, and $5, \phi$ converges to a 2-peak solution, and for regime $6, \phi$ converges to a 4 -peak solution; this was illustrated in Figs. 9-11 when $C_{i}(t) \equiv 0$.

Numerical simulations given in Figs. 12-14, show how the location of these peaks depends on the external signals $C_{i}(t)$ and the initial conditions. We interpret a peak centered at (x_{1}^{0}, x_{2}^{0}) with x_{1}^{0}, x_{2}^{0} small as a population of T cell that do not differentiate. A peak with x_{1}^{0} small, x_{2}^{0} large represents a population of T cells that differentiate into Th2. In a similar way, we interpret the case of x_{1}^{0} large, x_{2}^{0} small. Finally, a situation where both x_{1}^{0} and x_{2}^{0} are large in viewed as abnormal: Since the concentrations of both T-bet and GATA-3 are large, the cell receive conflicting instructions to differentiate

Fig. 11. Quadstable: $\sigma_{1}=\sigma_{2}=2, \gamma_{1}=\gamma_{2}=30, k_{1}=k_{2}=0.6$ and all other parameters are as in (9.1)-(9.3). (a) $t=0.05$, (b) $t=0.2$, (c) $t=1$.
simultaneously to Th1 and Th2. This situation arises in Fig. 11 where the mutual inhibition is weak (namely, $\gamma_{1}=\gamma_{2}=30$). Hence one of the conclusions of our simulations is that, in homeostasis, the mutual inhibition cannot be too weak.

Fig. 12. Monostable result: the parameters are as in (9.1)-(9.3). The population density moves toward low x_{1}-low x_{2} state at (a) $t=0.05$, (b) $t=1.0$ and (c) $t=5$.

The results of the paper are obtained by approximating the full dynamical system (10.2) from above and below by a sequence of dynamical systems where in each step of approximation the total signaling is constant but is 'sharper' than in the previous step. This method is quite general and could be applied to more general functions $f(t, x, \phi(\cdot))$ and in any number of dimensions for the x variable.

Fig. 13. The parameters are as in (9.1)-(9.3). A uniform density evolves toward two stable points under external stimulus $C_{1}(t) e^{-G(t)}=0.5, C_{1}(t) e^{-G(t)}=1.5$. (a) $t=0.01$, (b) $t=0.1$ and (c) at $t=1$.

Fig. 14. The parameters are as in (9.1)-(9.3). A uniform density at $x_{1}<A_{1} / 5$ evolves toward two stable points under external stimulus $C_{1}(t) e^{-G(t)}=0.5, C_{1}(t) e^{-G(t)}=1.5$. (a) $t=0.01$, (b) $t=0.1$ and (c) at $t=1$.

Acknowledgments

A. Friedman was partially supported by the National Science Foundation under Agreement No. 0112050. C.-Y. Kao was partially supported by the National Science Foundation grant DMS0811003. C.-W. Shih was partially supported by the NSC and NCTS of Taiwan; he is grateful to the MBI at OSU for the hospitality and support during his visit in 2007-2008; he also thanks Y.-H. Wan for helpful discussion.

References

[1] B.D. Aguda, A. Friedman, Models of Cellular Regulation, Oxford Univ. Press, 2008.
[2] C.Y. Cheng, K.H. Lin, C.W. Shih, Multistability in recurrent neural networks, SIAM J. Appl. Math. 66 (4) (2006) 1301-1320.
[3] J. Cherry, F. Adler, How to make a biological switch, J. Theoret. Biol. 203 (2) (2000) 117-133.
[4] O. Cinquin, J. Demongeot, High-dimensional switches and the modeling of cellular differentiation, J. Theoret. Biol. 233 (2005) 391-411.
[5] O. Cinquin, K. Page, Generalized switch-like competitive heterodimerization networks, Bull. Math. Biol. 69 (2007) 483-494.
[6] A. Friedman, Mathematics in Industrial Problems, IMA Vol. Math. Appl., vol. 16, Springer-Verlag, New York, 1988.
[7] A. Friedman, B. Ou, A model of crystal precipitation, J. Math. Anal. Appl. 137 (1989) 550-575.
[8] A. Friedman, B. Ou, D.S. Ross, Crystal precipitation with discrete initial data, J. Math. Anal. Appl. 137 (1989) 576-590.
[9] A. Friedman, D.S. Ross, Mathematical Models in Photographic Science, Springer-Verlag, Berlin, 2002.
[10] B. Gustafsson, H.-O. Kreiss, J. Oliger, Time-Dependent Problems and Difference Methods, Wiley-Interscience, New York, 1995.
[11] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, Basel, 1990.
[12] K.H. Lin, C.W. Shih, Multiple almost periodic solutions in nonautonomous delayed neural network, Neural Comput. 19 (12) (2007) 3392-3420.
[13] L. Mariani, M. Lohning, A. Radbruch, T. Hofer, Transcriptional control networks of cell differentiation: Insights from helper T lymphocytes, Biophys. Mol. Biol. 86 (2004) 45-76.
[14] C.W. Shih, J.P. Tseng, Convergent dynamics for multistable delayed neural networks, Nonlinearity 21 (2008) 2361-2389.
[15] A. Yates, R. Callard, J. Stark, Combining cytokine signaling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: A model for cellular decision-making, J. Theoret. Biol. 231 (2004) 181-196.
[16] J. Zhang, A nonlinear nonlocal multidimensional conservation law, J. Math. Anal. Appl. 204 (1996) 353-388.

[^0]: * Corresponding author. Fax: +886 35724679.

 E-mail address: cwshih@math.nctu.edu.tw (C.-W. Shih).

