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Abstract. For certain real analytic data, we show that the eigenvalue sequence of the
associated transfer operator L is insensitive to the holomorphic function space on which L
acts. Explicit bounds on this eigenvalue sequence are established.

1. Introduction

For compact X ⊂ Cd, and appropriate real analytic Ti : X → X and wi : X → C, Ruelle
[Rue1] considered the action of the transfer operator Lf :=

∑
i wi ·f ◦Ti on U(D), where D is

a common domain of holomorphy for the Ti and wi, and U(D) consists of those holomorphic
functions on D which extend continuously to D̄. Ruelle proved that L : U(D) → U(D) is
nuclear, hence in particular compact, and that its eigenvalue sequence {λn(L)}∞n=1, henceforth
referred to as the Ruelle eigenvalue sequence, is given by the reciprocals of the zeros of a
dynamical determinant ∆ (see (9) for the definition).

In view of its various interpretations and applications (e.g. correlation decay rates [Bal,
CPR], Fourier resonances [Rue2], Laplacians for hyperbolic surfaces [Pol1, PR], Feigen-
baum period-doubling [AAC, CCR, JMS, Pol2]), it is desirable to establish explicit bounds
on the Ruelle eigenvalue sequence. In the case where D may be chosen as a ball, and the
Ti all map D within the concentric ball whose radius is r < 1 times that of D, we establish
(Theorem 3.2) the stretched-exponential bound

|λn(L)| < W

rd
n1/2 r

d
d+1

(d!)1/dn1/d

for all n ≥ 1 , (1)

where W := supz∈D

∑
i |wi(z)|.

We go on to investigate properties of transfer operators acting on other spaces of holo-
morphic functions, and prove (Theorem 4.2) that the Ruelle eigenvalue sequence is in a sense
universal : for a wide range of domains of holomorphy D, and a broad class of spaces A(D)
of holomorphic functions on D, the eigenvalue sequence of L : A(D) → A(D) is precisely
the Ruelle eigenvalue sequence. This universality suggests the possibility of sharpening the
estimate (1), by adapting the proof of Theorem 3.2 to some other space A(D). In particular,
the choice of A(D) as the Hardy space H2(D) is known to yield a concrete eigenvalue bound
for L : H2(D) → H2(D) (see [BJ]). Intriguingly, this bound turns out to be complementary
to (1): in every dimension d, and for every r < 1, (1) is superior for sufficiently small n,
while the Hardy space bound is superior for sufficiently large n. If N(r, d) denotes the integer
such that (1) gives the sharper bound on |λn(L)| precisely for 1 ≤ n ≤ N(r, d), then both
r 7→ N(r, d) and d 7→ N(r, d) are increasing (cf. Corollary 4.4, Remark 4.5); in other words,
(1) is more useful if the Ti are weakly contracting, or if the ambient dimension is high.

2. Transfer operators on favourable spaces of holomorphic functions

2.1. Notation. Let N denote the set of strictly positive integers, and set N0 := N ∪
{0}. For d ∈ N, equip Cd with the Euclidean inner product (·, ·)Cd , the corresponding
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norm ‖ · ‖Cd , and the induced Euclidean metric, denoted δ. For X ⊂ Cd we use ∆ε(X) ={
z ∈ Cd | δ(z, X) < ε

}
for the Euclidean ε-neighbourhood of X. The set of all bounded

domains (non-empty connected open subsets) in Cd will be denoted by Dd. For two bounded
open sets ∆1,∆2 ⊂ Cd we write ∆1 ⊂⊂ ∆2 to mean that ∆1 ⊂ ∆2.

Let B = (B, ‖·‖B) be a Banach space. We often write ‖·‖ instead of ‖·‖B whenever this
does not lead to confusion. For X ⊂ Cd compact and D ∈ Dd define

Hol(D,B) := {f : D → B | f holomorphic}
C(X, B) := {f : X → B | f continuous} , ‖f‖C(X,B) := sup

x∈X
‖f(x)‖B

U(D,B) :=
{
f : D → B | f ∈ C(D,B) ∩Hol(D,B)

}
, ‖f‖U(D,B) := sup

z∈D

‖f(z)‖B .

Note that C(X, B) and U(D,B) are Banach spaces when equipped with the indicated norms,
while Hol(D,B) is a Fréchet space when equipped with the topology of uniform convergence
on compact subsets of D. If (B, ‖ · ‖) = (C, | · |) then we use C(X), Hol(D), and U(D) to
denote C(X, C), Hol(D, C), and U(D, C) respectively.

We use L(B) to denote the space of bounded linear operators from a Banach space (B, ‖·‖)
to itself, always equipped with the induced operator norm.

If T is holomorphic on some D ∈ Dd, its derivative at z ∈ D is denoted by T ′(z).

2.2. Definition. Let I be a non-empty countable set. For D ∈ Dd, a collection (Ti)i∈I =
(Ti, D)i∈I of holomorphic maps Ti ∈ U(D, Cd) is called a holomorphic map system (on D) if
∪i∈ITi(D) ⊂⊂ D.

Write Ti := Tin ◦ · · · ◦ Ti1 for i = (i1, . . . , in) ∈ In, n ∈ N.
For X ⊂ Cd compact, a collection (Ti)i∈I = (Ti, X)i∈I of maps Ti : X → X is a Cω map

system (on X) if there exists D ∈ Dd with X ⊂⊂ D such that each Ti extends holomorphically
to D and (Ti, D)i∈I is a holomorphic map system. Any such D is called admissible for the
Cω map system (Ti, X)i∈I .

For n ∈ N, a Cω map system (Ti, X)i∈I is called complex n-contracting (or simply complex
contracting) if there exists D ∈ Dd with X ⊂⊂ D, such that T ′

i ∈ U(D,L(Cd)) for every i ∈ In

and

sup
i∈In

∥∥T ′
i

∥∥
U(D,L(Cd))

< 1 . (2)

Note that if I is finite then (2) is implied by the condition supi∈In ‖T ′
i‖C(X,L(Cd)) < 1.

2.3. Example. If X = [0, 1] ⊂ C, define the Gauss map system (Ti)i∈N by Ti(x) =
1/(i + x) (the Ti are the inverse branches to the Gauss map x 7→ 1/x (mod 1) on X). This
is a Cω map system on X: for example if D ⊂ C is the open disc of radius 3/2 centred
at the point 1 then (Ti, D)i∈I is a holomorphic map system. The system is also complex
contracting, because supi∈I2 ‖T ′

i‖U(D) = |T ′
(1,1)(−1/2)| = 4/9 < 1 (note we cannot choose

n = 1 in (2), because T ′
1(0) = −1).

Complex contraction guarantees the existence of an admissible domain, and this domain
may be chosen arbitrarily close to X:

2.4. Lemma. If a Cω map system on X is complex contracting then there exists a family
{Dθ}θ∈(0,Θ) of admissible domains, such that ∩θ∈(0,Θ)Dθ = X.

Proof. Let (Ti)i∈I denote the Cω map system on X. Choose n ∈ N and D ∈ Dd such
that γ := supi∈In ‖T ′

i‖U(D,L(Cd)) < 1. From the several variables mean value theorem [Ave,
Thm. 2.3], for each i ∈ In, the map Ti is γ-Lipschitz, with respect to Euclidean distance δ,
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on any convex subset of D. Now set β := γ1/n < 1, and define the distance

dist(x, y) = sup
i∈In−1

n−1∑
k=0

βn−1−kδ(TPk(i)(x), TPk(i)(y)) ,

where for 1 ≤ k ≤ n − 1, Pk : In−1 → Ik denotes the projection Pki = (i1, . . . , ik) onto
the first k coordinates, with the convention that TP0i = id. Note that for each i ∈ I, the
map Ti is β-Lipschitz, with respect to dist, on any convex subset of D. Moreover, dist and
δ generate the same topology on δ-compact subsets of D. To see this observe that on the
one hand we clearly have δ(x, y) ≤ β1−ndist(x, y) for every x, y ∈ D. On the other hand, if
K is a δ-compact convex subset of D, then by Cauchy’s theorem there is C > 0 such that
‖T ′

i‖C(K,L(Cd)) ≤ C for every i ∈ Ik, 1 ≤ k ≤ n − 1. Thus by the mean value theorem
dist(x, y) ≤ C

∑n−1
k=0 βn−1−kδ(x, y) for every x, y ∈ K.

Since X is compactly contained in the domain D, there exists ε > 0 such that the
Euclidean neighbourhood ∆ε(X) is contained in D. Setting Θ := εβn−1, we see that Dθ :={
z ∈ Cd |dist(z,X) < θ

}
⊂ ∆ε(X) for all θ ∈ (0,Θ], and that ∩θ∈(0,Θ]Dθ = X. If z ∈ Dθ,

and x ∈ X satisfies dist(z,X) = dist(z, x), then x, z ∈ ∆ε(x), a convex subset of D, so
dist(Ti(z), Ti(x)) ≤ β dist(z, x). Therefore dist(Ti(z), X) ≤ dist(Ti(z), Ti(x)) ≤ β dist(z, x) =
β dist(z,X), and hence ∪i∈ITi(Dθ) ⊂ Dβθ ⊂⊂ Dθ, so Dθ is admissible for (Ti, X)i∈I . �

2.5. Remark. The above proof shows that if a Cω map system on X is complex 1-
contracting then all sufficiently small Euclidean ε-neighbourhoods ∆ε(X) are admissible.
This is not the case for the Gauss map system Ti(z) = 1/(z + i) on X = [0, 1] ⊂ C: no
Euclidean ε-neighbourhood is admissible, since δ(T1(−ε), X) > ε.

2.6. Definition. Let I be a non-empty countable set. A holomorphic weight system on
D ∈ Dd is a collection (wi)i∈I = (wi, D)i∈I of holomorphic functions (called weight functions)
wi ∈ U(D) such that

∑
i∈I ‖wi‖U(D) < ∞.

For X ⊂ Cd compact, a collection (wi)i∈I = (wi, X)i∈I of maps wi : X → C is a Cω weight
system (on X) if there exists D ∈ Dd with X ⊂⊂ D such that (wi, D)i∈I is a holomorphic
weight system. Any such D is called admissible for (wi, X)i∈I .

If (Ti)i∈I is a holomorphic (respectively, Cω) map system and (wi)i∈I is a holomorphic
(respectively, Cω) weight system then (Ti, wi)i∈I is called a holomorphic (respectively, Cω)
map-weight system. A domain D ∈ Dd is called admissible for a Cω map-weight system
(Ti, wi)i∈I if it is admissible for both (Ti, X)i∈I and (wi, X)i∈I .

With each holomorphic map-weight system (Ti, wi)i∈I we associate a linear operator,

Lf =
∑
i∈I

wi · f ◦ Ti , (3)

called the transfer operator. It will be seen that the transfer operator L preserves, and acts
compactly upon, the following class of spaces of holomorphic functions.

2.7. Definition. For D ∈ Dd, a Banach space A = A(D) of functions f : D → C
holomorphic on D is called a favourable space of holomorphic functions (on D) if
(i) for each z ∈ D, the point evaluation functional f 7→ f(z) is continuous on A, and
(ii) A contains U(D), and the natural embedding1 U(D) ↪→ A has norm 1.

2.8. Remark. Let D ∈ Dd. Then U(D) is trivially a favourable space of holomorphic
functions. Other examples include, for p ∈ [1,∞], Bergman spaces Lp

Hol(D) (see [Ran,
Ch. I, Cor. 1.7, 1.10]) and Hardy spaces Hp(D) (see [Kra, Ch. 8.3]). If p = 2 and D has
C2 boundary, then H2(D) can be identified with the L2(∂D, σ)-closure of U(D), where σ

1The embedding U(D) ↪→ A is automatically continuous: continuity of point evaluation on both A and
U(D) implies that it has closed graph; cf. the proof of Lemma 2.9.
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denotes (2d− 1)-dimensional Lebesgue on the boundary ∂D, normalised so that σ(∂D) = 1.
In particular, H2(D) is a Hilbert space with inner product given by (f, g) =

∫
∂D f∗ g∗ dσ,

where, for h ∈ H2(D), the symbol h∗ denotes the corresponding nontangential limit function
in L2(∂D, σ) — see [Kra, Ch. 1.5 and 8].

Recall (see e.g. [Pie, 1.7.1]) that a linear operator L : B → B on a Banach space2

B is p-nuclear if there exist sequences bi ∈ B and li ∈ B∗ (the strong dual of B) with∑
i(‖bi‖ ‖li‖)p < ∞, such that L(b) =

∑∞
i=1 li(b)bi for all b ∈ B. The operator is strongly

nuclear (or nuclear of order zero) if it is p-nuclear for every p > 0. It turns out that certain
natural embeddings between favourable spaces are strongly nuclear:

2.9. Lemma. Let D and D′ be domains in Cd such that D′ ⊂⊂ D. Let A and A′ be
favourable Banach spaces of holomorphic functions on D and D′ respectively. Then A ⊂ A′,
and the natural embedding J : A ↪→ A′, defined by Jf = f |D′, is strongly nuclear.

Proof. Choose D′′ ∈ Dd with D′ ⊂⊂ D′′ ⊂⊂ D, and consider the natural embeddings

A
J1
↪→ Hol(D′′)

J2
↪→ U(D′)

J3
↪→ A′ .

Clearly J = J3J2J1. The unit ball of U(D′) is a neighbourhood in Hol(D′′), so the map J2 is
bounded. But the Fréchet space Hol(D′′) is nuclear [Gro, II, Cor., p. 56], so J2 is p-nuclear
for every p > 0 by [Gro, II, Cor. 4, p. 39, Cor. 2, p. 61]. It thus suffices to show that J1 and
J3 are continuous by [Gro, I, p. 84, II, p. 9].

Now, J3 is continuous since A′ is favourable. Finally, to see that J1 is continuous we note
that, by the closed graph theorem (see e.g. [Scha, Ch. III, 2.3]), it is enough to show that
if fn → f in A, and J1fn → g in Hol(D′′), then g = J1f = f |D′′ . Since point evaluation
is continuous on A, fn(z) → f(z) for all z ∈ D and in particular for all z ∈ D′′. But point
evaluation is also continuous on Hol(D′′), so fn(z) = J1fn(z) → g(z) as n → ∞ for all
z ∈ D′′. Therefore g = f |D′′ . �

Favourable spaces A are always invariant under the transfer operator L, and the restricted
operator (henceforth denoted by LA) is always compact, indeed strongly nuclear:

2.10. Proposition. Let (Ti, wi, D)i∈I be a holomorphic map-weight system. The corre-
sponding transfer operator leaves invariant every favourable space A of holomorphic functions
on D, and LA : A → A is strongly nuclear.

Proof. Choose D′ ∈ Dd with ∪i∈ITi(D) ⊂⊂ D′ ⊂⊂ D. We claim that L̂f :=
∑

i∈I wi·f◦Ti

defines a continuous operator L̂ : U(D′) → U(D). To see this, fix f ∈ U(D′) and note that
wi · f ◦ Ti ∈ U(D) with ‖wi · f ◦ Ti‖U(D) ≤ ‖wi‖U(D) ‖f‖U(D′) for every i ∈ I. But since
‖L̂f‖U(D) ≤

∑
i∈I ‖wi‖U(D) ‖f‖U(D) and

∑
i∈I ‖wi‖U(D) < ∞ by hypothesis, we conclude

that L̂f ∈ U(D) and that L̂ is continuous.
Since A is favourable, the embedding Ĵ : U(D) ↪→ A is continuous, and J : A ↪→ U(D′)

is p-nuclear for every p > 0 by Lemma 2.9. Moreover, if f ∈ A then Lf = ĴL̂Jf ∈ A. Thus
A is L-invariant, and the operator LA = ĴL̂J is p-nuclear for any p > 0. �

2.11. Remark. Strong nuclearity of the transfer operator on spaces of holomorphic func-
tions is not new (the original result of this kind is [Rue1], but see also e.g. [GLZ, JP,
May3]); the novelty of Proposition 2.10 is in the breadth of spaces covered.3

2See [Gro, II, Déf. 1, p. 3] for the generalisation to locally convex spaces.
3Actually the result can be further extended to certain locally convex spaces of holomorphic functions,

including Hol(D).
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3. Eigenvalue bounds

For favourable A, the compactness of LA means its spectrum consists of a countable set
of eigenvalues, each with finite algebraic multiplicity, together with a possible accumulation
point at 0. We wish to obtain bounds on the eigenvalue sequence λ(LA) := {λn(LA)}∞n=1,
i.e. the sequence of all eigenvalues of LA counting algebraic multiplicities and ordered by
decreasing modulus.4

If L : B1 → B2 is a continuous operator between Banach spaces then for k ≥ 1, its k-th
approximation number ak(L) is defined as

ak(L) = inf {‖L−K‖ |K : B1 → B2 linear with rank(K) < k} .

3.1. Proposition. For a Cω map-weight system (Ti, wi)i∈I such that (Ti)i∈I is complex
contracting, and a favourable space A = A(D) such that D ∈ Dd is admissible,

|λn(LA)| ≤ Wn1/2
n∏

k=1

ak(J)1/n for all n ≥ 1 , (4)

where W := supz∈D

∑
i∈I |wi(z)|, D′ ∈ Dd is such that ∪i∈ITi(D) ⊂ D′ ⊂⊂ D, and J :

A(D) ↪→ U(D′) is the canonical embedding.

Proof. Since A(D) is favourable, the embedding Ĵ : U(D) ↪→ A(D) is continuous of
norm 1. Observe that L̂f =

∑
i∈I wi · f ◦Ti defines a continuous operator L̂ : U(D′) → U(D)

(see the proof of Proposition 2.10) with ‖L̂‖ ≤ W . To see the latter note that for f ∈ U(D′)
we have |f(Ti(z))| ≤ ‖f‖U(D) for every z ∈ D, i ∈ I; thus by the maximum principle
‖L̂f‖U(D) = supz∈D |(L̂f)(z)| ≤ supz∈D

∑
i∈I |wi(z)| |f(Ti(z))| ≤ W ‖f‖U(D).

Now clearly LA = ĴL̂J , so

ak(LA) ≤ ‖ĴL̂‖ak(J) ≤ Wak(J) for all k ≥ 1 , (5)

since in general ak(L1L2) ≤ ‖L1‖ ak(L2) whenever L1 and L2 are bounded operators be-
tween Banach spaces (see [Pie, 2.2]). Moreover, since LA is compact, Weyl’s inequality5 (see
e.g. [Hin]) asserts that

∏n
k=1 |λk(LA)| ≤ nn/2

∏n
k=1 ak(LA) for every n ∈ N. Together with

(5) this yields (4), because |λn(LA)| ≤
∏n

k=1 |λk(LA)|1/n. �

Taking A(D) = U(D), the Ruelle eigenvalue sequence λ(LU(D)) can be bounded as fol-
lows:

3.2. Theorem. Suppose the Euclidean ball D ⊂ Cd is an admissible domain for a Cω

map-weight system (Ti, wi)i∈I , and that ∪i∈ITi(D) is contained in the concentric ball whose
radius is r < 1 times that of D. Setting W := supz∈B

∑
i∈I |wi(z)|, the Ruelle eigenvalue

sequence λ(LU(D)) can be bounded by

|λn(LU(D))| <
W

rd
n1/2 r

d
d+1

(d!)1/dn1/d

for all n ≥ 1 . (6)

If d = 1 then
|λn(LU(D))| ≤ Wn1/2 r(n−1)/2 for all n ≥ 1 . (7)

Proof. Without loss of generality let D = D1 be the open unit ball, and let the smaller
concentric ball be Dr, the ball of radius r centred at 0. Let J : U(D1) ↪→ U(Dr) be the
canonical embedding. From [Far, Prop. 2.1 (a)] it follows that al(J) ≤ rtl , where tl := k

for
(
k−1+d

d

)
< l ≤

(
k+d

d

)
, hence

∏n
l=1 al(J)1/n ≤ r

1
n

Pn
l=1 tl . If d = 1 then 1

n

∑n
l=1 tl =

4By convention distinct eigenvalues with the same modulus can be written in any order (see e.g. [Pie,
3.2.20]).

5This is a Banach space version of Weyl’s original inequality in Hilbert space (see [Wey]).
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1
n

∑n
l=1(l − 1) = (n − 1)/2, and (7) follows from (4). More generally tl ≥ (d!)1/dl1/d − d, so

that
1
n

n∑
l=1

tl ≥ −d + (d!)1/d 1
n

n∑
l=1

l1/d > −d + (d!)1/d d

d + 1
n1/d

using the estimate
∑n

l=1 l1/d >
∫ n
x=0 x1/d = d

d+1n1+1/d, and (6) follows from (4). �

4. Universality of the Ruelle eigenvalue sequence

If (Ti, wi)i∈I is a Cω map-weight system with complex contracting (Ti)i∈I then, in view
of Lemma 2.4 and Proposition 2.10, there is some freedom in the choice of an admissible
D, and a favourable space A = A(D) on which to consider the transfer operator LA. The
purpose of this section is to show that the eigenvalue sequence of LA is in fact independent of
A: it is always equal to the Ruelle eigenvalue sequence λ(LU(D)) (see Corollary 4.3). For this,
we first require some facts from the Fredholm theory originally developed by Grothendieck
[Gro]. If B is a Banach space, we denote by Np(B) (p > 0) the quasi-Banach operator ideal
of p-nuclear operators on B (cf. [Pie, D.1.4, 1.7.1]). If p ≤ 2/3 then Np(B) admits a unique
continuous trace τ and a unique continuous determinant det (see [Pie, 1.7.13, 4.7.8, 4.7.11]),
related for a fixed L ∈ Np(B) by

det(I − zL) = exp

(
−

∞∑
n=1

zn

n
τ(Ln)

)
, (8)

for all z ∈ C in a suitable neighbourhood of 0 (see [Pie, 4.6.2]). Moreover, both τ and det are
spectral, which means that τ(L) =

∑∞
n=1 λn(L) and that, counting multiplicities, the zeros

of the entire function z 7→ det(I − zL) are precisely the reciprocals of the eigenvalues of L
(see [Pie, 4.7.14, 4.7.15]).

4.1. Definition. To any holomorphic map-weight system (Ti, wi)i∈I , the associated dy-
namical determinant is the entire function ∆ : C → C, defined for all z of sufficiently small
modulus by

∆(z) = exp

−∑
n∈N

zn

n

∑
i∈In

wi(zi)
det(I − T ′

i (zi))

 , (9)

where wi :=
∏n

k=1 wik ◦ TPk−1i, Pk : In → Ik denotes the projection Pki = (i1, . . . , ik) with
the convention that TP0i = id, and zi denotes the (unique, by [EH]) fixed-point of Ti in D.

Ruelle [Rue1] showed that ∆ is the determinant of the strongly nuclear operator L :
U(D) → U(D). Therefore, if the zeros z1, z2, . . . of ∆ are listed according to increasing
modulus and counting multiplicity, then the reciprocal sequence {z−1

n }∞n=1 is precisely the
Ruelle eigenvalue sequence.

4.2. Theorem. Let (Ti, wi, D)i∈I be a holomorphic map-weight system. Then the asso-
ciated transfer operator preserves every favourable space of holomorphic functions on D, and
its determinant on each of these spaces is precisely the dynamical determinant ∆.

Proof. Comparison of (8) and (9) means we require the trace formula6

τ(Ln
A) =

∑
i∈In

wi(zi)
det(I − T ′

i (zi))
for all n ≥ 1 , (10)

for every favourable space A on the admissible domain D.

6This trace formula (10) generalises the original one of Ruelle [Rue1] for A = U(D), as well as that
of Mayer [May1, May2, May3]. Our method of proof is rather direct, reducing to a simple Hilbert space
computation; in particular, we do not need to explicitly evaluate the eigenvalues of each weighted composition
operator f 7→ wi · f ◦ Ti (a more complicated procedure, particularly in higher dimensions, cf. [May2, §III]).
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First consider the holomorphic map-weight system (T,w,D) consisting of a single map
and weight. Since T (D) ⊂⊂ D, the Earle-Hamilton theorem [EH] implies that T has a unique
fixed-point z0 ∈ D, and the eigenvalues of T ′(z0) lie in the open unit disc [May2, Thm. 1].
If Lf = w · f ◦ T is the corresponding transfer operator, we claim that

τ(LA) =
w(z0)

det(I − T ′(z0))
. (11)

The admissibility of D and favourability of A = A(D) are invariant under affine coordinate
changes, and τ is invariant under continuous similarities, so we may assume that z0 = 0 and
‖T ′(0)‖L(Cd) < 1. Therefore, by Lemma 2.4 and Remark 2.5, there exists R > 0 such that,
for r ∈ (0, R), the radius-r Euclidean ball Br centred at 0 is admissible.

Let H2
r = H2(Br) denote the Hardy space on Br, a favourable Hilbert space (see Remark

2.8) with inner product (f, g)H2
r

=
∫
Sr

f g dσr, where Sr = ∂Br, σr(Sr) = 1, and with
orthonormal basis (cf. [Rud, Prop. 1.4.8, 1.4.9])

{
pn,r |n ∈ Nd

0

}
, where pn,r(z) = Knr−|n|zn

and Kn =
√

(|n|+d−1)!
(d−1)! n! , n = (n1, . . . , nd), zn = zn1

1 · · · znd
d , n! = n1! · · ·nd!, |n| = n1 + · · ·+ nd.

The canonical embedding Jr : A ↪→ H2
r has dense range, because complex polynomials

are dense in H2
r , and JrLA = LH2

r
Jr. An intertwining argument of Grabiner [Gra, Lem. 2.3]

then implies that λ(LA) = λ(LH2
r
), and hence that τ(LA) = τ(LH2

r
) because τ is spectral.

The strong nuclearity of LH2
r

means it is trace class, so τ(LH2
r
) equals the sum of the diagonal

entries of the matrix representation of LH2
r

with respect to an orthonormal basis. Thus, for
any r ∈ (0, R),

τ(LA) = τ(LH2
r
) =

∑
n∈Nd

0

(Lpn,r, pn,r)H2
r

=
∫

Sr

w(z)
∑
n∈Nd

0

K2
nr−2|n|T (z)n zn dσr(z)

=
∫

Sr

w(z)

(1− (r−1T (z), r−1z)Cd)d
dσr(z) =

∫
S1

w(rz)

(1− (r−1T (rz), z)Cd)d
dσ1(z) .

Letting r → 0 gives

τ(LA) =
∫

S1

w(0)

(1− (T ′(0)z, z)Cd)d
dσ1(z) =

w(0)
det(I − T ′(0))

by an elementary integration, and (11) is proved.
Returning to the case of the holomorphic map-weight system (Ti, wi)i∈I , the factorisation

argument used in the proof of Proposition 2.10 shows that for n ∈ N, the series
∑

i∈In Li

converges in N2/3(A) to Ln
A, where Li : A → A is given by Lif = wi · f ◦ Ti. Since τ is

continuous, τ(Ln
A) =

∑
i∈In τ(Li), and the required trace formula (10) follows from (11). �

4.3. Corollary. Let (Ti, wi)i∈I be a Cω map-weight system such that (Ti)i∈I is complex
contracting. Then the associated transfer operator preserves every favourable space on every
admissible domain, and its eigenvalue sequence on each of these spaces is precisely the Ruelle
eigenvalue sequence.

In view of Corollary 4.3, the Ruelle eigenvalue sequence associated with a complex con-
tracting Cω map-weight system will henceforth be denoted simply by λ(L) = {λn(L)}∞n=1.

4.4. Corollary. Under the hypotheses of Theorem 3.2, the Ruelle eigenvalue sequence
λ(L) can be bounded by

|λn(L)| < min

(
n1/2 ,

√
d

(1− r2)d/2
n(d−1)/(2d)

)
W

rd
r

d
d+1

(d!)1/dn1/d

. (12)
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Proof. Hardy space H2(D) is favourable, so Corollary 4.3 implies that λ(LH2(D)) is the
Ruelle eigenvalue sequence. The bound

|λn(L)| < W
√

d

rd(1− r2)d/2
n(d−1)/(2d) r

d
d+1

(d!)1/dn1/d

then follows from [BJ, Thm. 1]. The other part of (12) is immediate from Theorem 3.2. �

4.5. Remark. For a given (Ti, wi)i∈I , if r < 1 is chosen as small as possible then the
part of (12) arising from [BJ] is asymptotically superior as n → ∞. For sufficiently small
n, the part of (12) arising from Theorem 3.2 is sharper. For example, in dimension d = 1
this latter bound on |λn(L)| is superior whenever n2 < 1/(1− r2); this is always the case for
n = 1, and may be true for many n if r is large (i.e. the map system is weakly contracting).
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