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Abstract. A self-reconfigurable robot is a robotic device that can change
its own shape. Self-reconfigurable robots are commonly built from mul-
tiple identical modules that can manipulate each other to change the
shape of the robot. The robot can also perform tasks such as locomotion
without changing shape. Programming a modular, self-reconfigurable
robot is however a complicated task: the robot is essentially a real-time,
distributed embedded system, where control and communication paths
often are tightly coupled to the current physical configuration of the
robot. To facilitate the task of programming modular, self-reconfigurable
robots, we have developed a declarative, role-based language that allows
the programmer to associate roles and behavior to structural elements
in a modular robot. Based on the role declarations, a dedicated middle-
ware for high-level distributed communication is generated, significantly
simplifying the task of programming self-reconfigurable robots. Our lan-
guage fully supports programming the ATRON self-reconfigurable robot,
and has been used to implement several controllers running both on the
physical modules and in simulation.

1 Introduction

A self-reconfigurable robot is a robot that can change its own shape. Self-
reconfigurable robots are built from multiple identical modules that can manip-
ulate each other to change the shape of the robot [2, 6, 7, 9–11, 16, 15]. The robot
can also perform tasks such as locomotion without changing shape. Changing the
physical shape of a robot allows it to adapt to its environment, for example by
changing from a car configuration (best suited for flat terrain) to a snake con-
figuration suitable for other kinds of terrain. Programming self-reconfigurable
robots is however complicated by the need to (at least partially) distribute con-
trol across the modules that constitute the robot and furthermore to coordinate
the actions of these modules. Algorithms for controlling the overall shape and
locomotion of the robot have been investigated (e.g. [3, 13]), but the issue of
providing a high-level programming platform for developing controllers remains
largely unexplored. Moreover, constraints on the physical size and power con-
sumption of each module limits the available processing power of each module.

In this paper, we present a role-based approach to programming a con-
troller for a distributed robot system. We have implemented a prototype role-
based programming language, named “RAPL”, for the ATRON modular, self-
reconfigurable robot [7, 8]. Our implementation is based on roles as the main



Fig. 1. The ATRON self-reconfigurable robot. Seven modules are connected in a car-
like structure.

abstraction of behavior and implements a remote method invocation framework
based on the roles and their structural interconnections. RAPL allows the pro-
grammer to construct a controller for a structure of ATRON modules in less
time and with less knowledge of hardware than was the case before. Moreover,
we argue that the controller constructed is less error-prone and is more intuitive
to comprehend.

The contributions of our work are as follows: We use the concept of role-based
programming to identify the central entities in a distributed robot controller. We
increase the level of abstraction in the process of programming robot controllers
by means of a domain specific language (DSL), which is built upon these con-
cepts. The structural information from the DSL is used to provide a lightweight
remote method invocation framework appropriate for the physical constraints of
the ATRON modules. Moreover, our language allows the programmer to specify
the behavior of the robot as a whole from the constituent parts. Our compiler
generates an application framework either in embedded C code for execution on
the physical modules or in well-structured Java code for execution in a virtual
simulation environment.

2 The ATRON Self-Reconfigurable Robot

The ATRON self-reconfigurable robot is a 3D lattice-type robot [7, 8]. Figure 1
shows an example ATRON car robot built from 7 modules. Two sets of wheels
(ATRON modules with rubber rings providing traction) are mounted on ATRON
modules playing the role of an axle; the two axles are joined by a single module
playing the role of “connector.” As a concrete example of self-reconfiguration,
this car robot can change its shape to become a snake (a long string of modules);
such a reconfiguration can for example allow the robot to traverse obstacles such
as crevices that cannot be traversed using a car shape.

An ATRON module has one degree of freedom, is spherical, is composed of
two hemispheres, and can actively rotate the two hemispheres relative to each
other. A module may connect to neighbor modules using its four actuated male



and four passive female connectors. The connectors are positioned at 90 degree
intervals on each hemisphere. Eight infrared ports, one below each connector,
are used by the modules to communicate with neighboring modules and sense
distance to nearby obstacles or modules. A module weighs 0.850kg and has a
diameter of 110mm. Currently 100 hardware prototypes of the ATRON modules
exist. Motion constraints on the modules affect their ability to self-reconfigure.
The single rotational degree of freedom of a module makes its ability to move
very limited: in fact a module is unable to move by itself. The help of another
module is always needed to achieve movement. All modules must also always stay
connected to prevent modules from being disconnected from the robot. They
must avoid collisions and respect their limited actuator strength: one module
can lift two others against gravity.

Other examples of self-reconfigurable robots include the M-TRAN and the
SuperBot self-reconfigurable robots [9, 11]. These robots are similar from a soft-
ware point of view, but differ in mechanical design e.g. degrees of freedom per
module, physical shape, and connector design. This means that algorithms con-
trolling change of shape and locomotion often will be robot specific, however
general software principles are more easily transferred.

Programming the ATRON robot is complicated by the distributed, real-time
nature of the system coupled with limited computational resources and the dif-
ficulty of abstracting over the concrete physical configuration when writing con-
troller programs. General approaches to programming the self-reconfigurable
ATRON robot include metamodules [3], motion planning and rule-based pro-
gramming. In the context of this article, we are however interested in role-based
control. Role-based control is an approach to behavior-based control for modu-
lar robots where the behavior of a module is derived from its context [14]. The
behavior of the robot at any given time is driven by a combination of sensor
inputs and internally generated events. Roles allow modules to interpret sensors
and events in a specific way, thus differentiating the behavior of the module
according to the concrete needs of the robot.

3 A Role-based Conceptual Model

The level of abstraction offered by focusing on the behavior of a specific module
in a given context is somewhat similar to that of role-based programming [12].
We use this approach as a basis for our language by making roles the fundamental
concept for expressing the desired behavior. A fundamental difference between
previous work and our approach is however that previous role-based experiments
have focused on performing cyclic behavior, e.g., locomotion, and not event
routing and reactive behavior. Moreover, all implementations presented in earlier
work have been constructed in an ad-hoc manner with little or no language
support.

Our conceptual view of a role is that it defines the module structure and the
active and reactive behavior of each module in a robot. In other words, it defines
what the module can do and what it will do. There is a one-to-one mapping



between a role and a module, but modules can change their roles (and thus their
behavior) as a reaction to messages from other modules or internal events. The
behavior of a role is thus determined by the physical state of the module (as
reported by sensors), program state stored in the memory of the module, and
messages received from other modules. The behavior is encapsulated in methods
that are activated either through external messages or internal events.

An ATRON robot as a whole is implicitly assigned a role using the object-
oriented concept of a whole-part structure (as known from the whole-part design
pattern [1]). Behavior for the robot is declared for each individual role. For ex-
ample, all modules in a car may be able to play the role of a “car” by receiving
messages for the “car” role. A module may either process such a message or
forward it to another module, as designated by the programmer. The function-
ality of the whole and the role that it can play is thus created in coordination
between the individual modules, corresponding to how the control of a modular
robot necessarily must be implemented in practice.

4 The RAPL Compiler

We have implemented a role specification language for the ATRON modules,
named RAPL (Role-based ATRON Programming Language). RAPL can be com-
piled either to Java, for use with the ATRON simulator, or to C, for execution
directly on the modules. The Java backend simply generates an implementation
of the proxy and state design patterns [5]. The C backend compiles a role to
a skeleton that invokes C functions written by the programmer and to a proxy
represented as a collection of C functions that can be used to send messages to
other modules implementing this role.

4.1 RMI based communication

RAPL implements a remote procedure calling functionality to facilitate dis-
tributed communication. A RAPL program declares a list of functions each
belonging to a specific role. Functions can be tied to an event or provide a
default behavior for a role; an event can be a message from a neighbor-module
or an internal event signal (e.g. timer, tilt sensor, etc.). Having a list of func-
tions for each role is sufficient to generate a stub/skeleton proxy framework that
provides abstraction over communication which is critical to our approach. The
issue of addressing the correct modules is resolved by exploiting the structural
information from the roles.

4.2 Whole-part design architecture

The whole-part design pattern is integrated in the implementation of the RMI
framework, providing a whole-part functionality for the entire structure of ATRON
modules. Functions declared on a controller level expose the controllers main
functionality to other controllers or external clients, which would not normally
know, e.g., how to make the car drive or turn.



4.3 A domain specific language with simple logic

RAPL is a domain-specific language used to express roles and functions; allow-
ing control structures and other imperative language constructs would hamper
the intention of defining behavior at a higher abstraction level. Moreover, we
believe that general-purpose languages such as Java and C are better suited for
specifying more complex, internal behavior in controllers. To facilitate practical
experiments, we do however enable RAPL to directly express primitive actu-
ation operations and message forwarding with simple arithmetic processing of
arguments. More advanced functionality will have to be included from externally
linked code supplied directly by the programmer. To this end, we have defined a
simple programmatic interface between RAPL and each of the platforms that it
supports: RAPL methods can be implemented in the target language and code
written in the target language can call RAPL methods. We currently use XML
as the concrete syntax for writing RAPL declarations; in the future we envision
providing one or more high-level syntaxes, as exemplified in Figure 2.

5 Example

We now outline a few simple examples of using RAPL to program an ATRON
car. We refer to the first author’s MS for more detailed examples [4].

5.1 A simple car program

As a concrete example, consider the ATRON car shown earlier in Figure 1. Sim-
ple reactive control of this robot can be implemented using the role declarations
shown in Figure 2, left. A role has a name and declares its structural dependen-
cies on other roles, and can moreover extend another role creating a hierarchy
of roles (not shown). Structure is specified in terms of the roles of the neighbor-
ing modules and the physical communication port used to contact the module
(auto-detection of neighboring modules, although possible, is currently slightly
problematic on the physical modules due to hardware difficulties). Behaviors are
simply declared as functions that are attached to roles.

In the program of Figure 2, when a move event is delivered to the “connector”
it forwards it to the two axles, which again forwards it to the wheels. The action
performed by the wheel is a primitive actuation of the main joint, implemented
by all modules (similarly to the methods provided by Object in Java). Similarly
for the turn event. To increase readability, we are currently investigating a more
human-friendly syntax resembling Java declarations, as shown in Figure 2, right.

The roles thus provide a means of denoting the behavior of each module as it
is used for a specific purpose in the robot. Moreover, the roles provide a simple
and very light-weight way of (albeit manually) routing events through the topol-
ogy of the robot. This is particularly interesting given the resource constraints
of the ATRON module, which only has 4K of RAM available for communication
buffers, operating system functionality, and program state. (Program size on the
other hand is not so much of a problem since there is 128K of flash memory
available for storing programs.)



<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Controller>

<Controller Name="Car" xsi="Xatron.xsd">

<Role RoleName="Connector" ...>

<Structure RoleToUse="Axle"

StructureName="axleFront"

Channel="2"/>

<Structure RoleToUse="Axle"

StructureName="axleRear"

Channel="6"/>

</Role>

<Role RoleName="Axle" ...> ...</Role>

<Role RoleName="Wheel" ...> ...</Role>

<Function FunctionName="move" Target="Connector">

<Action ActionName="move"

Target="axleFront"

Value="value"/>

...

</Function>

<Function FunctionName="turn" Target="Connector">

<Action ActionName="rotate"

Target="axleFront"

Value="value/2"/>

<Action ActionName="rotate"

Target="axleRear"

Value="value/2"/>

</Function>

...

</Controller>

role Connector implements Car {

Axle frontAxle = Axle(channel#2);

Axle rearAxle = Axle(channel#6);

move(int value) {

frontAxle.move(value);

rearAxle.move(value);

}

turn(int value) {

frontAxle.rotate(value/2);

rearAxle.rotate(-value/2);

}

}

role Axle implements Car {

Wheel leftWheel = Wheel(channel#0);

Wheel rightWheel = Wheel(channel#2);

move(int value) {

leftWheel.move(value);

rightWheel.move(-1*value);

}

}

role Wheel implements Car {

Axle axle = Axle(channel#5);

}

Fig. 2. A simple car controller implemented in RAPL (left) and in our proposed Java-
like syntax (right)

Fig. 3. The ATRON car rebuilding itself after a tilt



<Function FunctionName="Run" Target="Connector">

<Action ActionName="extTiltTurnLogic" Target="EXT" Value="0"/>

<Action ActionName="extTiltGetupLogic" Target="EXT" Value="0"/>

</Function>

<Function FunctionName="drive" Target="Car">

<Action ActionName="move" Target="connector" Value="value"/>

</Function>

<Function FunctionName="drive" Target="Car">

<Action ActionName="move" Target="connector" Value="value"/>

</Function>

<Function FunctionName="getup" Target="Car">

<Action ActionName="getupimpl" Target="connector" Value="value"/>

</Function>

<Function FunctionName="getupimpl" Target="Connector">

<Action ActionName="rotate" Target="Connector" Value="1"/>

<Action ActionName="pause" Target="Connector" Value="2000"/>

<Action ActionName="rotate" Target="Connector" Value="1"/>

...

<Action ActionName="pause" Target="Connector" Value="2000"/>

<Action ActionName="rotateDegrees" Target="axleFront" Value="-25"/>

</Function>

Fig. 4. A tilt-aware Car controller in RAPL

5.2 Adding proactive behavior

Our working example of a car is shown in action in Figure 3. Here, we have added
custom functionality which fires events based on the internal tilt-sensor. Tilting
makes the car turn towards higher grounds (the car will move towards the top
of a hill) whereas an extreme tilt-level (indicating that the car has fallen over)
triggers a series of reconfigurations which rises the car. The RAPL declarations
for this more advanced controller extend those of Figure 2 and are shown in
Figure 4. In this example we specify several functions and some custom code
functionality to exemplify the diversity of the RAPL language.

The behavior of the controller for the tilting car is defined in the Run method
on the connector. This tells the connector module to call the two external
tilt-functions, which are shown in Figure 5. These two functions monitor the
y-axis tilt sensor for a minor or severe change in tilt level. The first method
extTiltLogic reacts upon tilt changes in steps of 10, and for each step it calls
the Connector method turn, thus turning the axles. Should the car tilt over
completely, we would normally be stuck with a car that cannot move, since its
wheels are not touching the ground anymore. This is resolved in the controller
by the extTiltToGetup method which senses an extreme tilt level (currently set
to 70 degrees) and triggers a self-reconfiguration sequence of several rotations.
The sequence of rotations can be seen in Figure 4 in the function getupimpl.
The two functions in the custom code of Figure 5 display an obvious example



#include "rapl.h" /* header file generated by RAPL for the car */

char isGettingup = 0;

void extTiltLogic() {

signed char x = getTiltY();

if(abs(x-last)>10) {

if ((x - last) < 0)

Connector_turn_impl(-20);

else

Connector_turn_impl(20);

last = x;

}

}

void extTiltToGetup() {

signed char x = getTiltY();

setNorthIOPort(abs(x));

if(abs(x)>70) {

if (isGettingup == 0) {

isGettingup = 1;

Connector_getup_impl();

}

}

}

Fig. 5. The custom code for the tilt-logic

of functionality that would be laborious to provide in our RAPL compiler and
thus should be supplied in native code.

6 Conclusion

In this paper, we have presented the RAPL system, a role-based approach to
abstraction of hardware and communication in the ATRON system. Based on
our experiments, we conclude that supporting role-based programming at the
language level makes programming distributed robots less tedious and thereby
more accessible and less error prone. We believe that providing a high-level pro-
gramming interface is critical for improving the maturity of the ATRON robotic
system and is an important first step in moving towards concrete applications of
self-reconfigurable robots. In terms of language design, we are interested by the
interplay between role-based programming and object-oriented design principles
such as whole-part. Furthermore, we believe that the use of roles and object
oriented principles like whole-part will appeal to people less minded for hard-
ware. Or to put it to the point: never before has a constructor made as much
sense as seeing a car being built! Reusability could be much higher in the future
when programmers can concentrate on what is to be done instead of how to pro-
vide the infrastructure that supports it. Architecture-oriented programmers can
leave the basic behavioral programming to people more focused on the modules
and “orchestrate” a structure of ATRON modules by choosing a combination of
control strategies.
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