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Abstract

We propose a novel approach to generate a high quality
photometric compensated projection which, to our knowl-
edge, is the first one, which does not require a radiometrical
pre-calibration of cameras or projectors. This improves the
compensation quality using devices which cannot be easily
linearized, such as single chip DLP projectors with complex
color processing. In addition, the simple workflow signifi-
cantly simplifies the compensation image generation. Our
approach consists of a sparse sampling of the projector’s
color gamut and a scattered data interpolation to generate
the per-pixel mapping from projector to camera colors in
real-time. To avoid out-of-gamut artifacts, the input image
is automatically scaled locally in an optional off-line op-
timization step maximizing the achievable luminance and
contrast while still preserving smooth input gradients with-
out significant clipping errors.

1. Introduction
Photometric projector compensation is used in various

application fields such as entertainment, cultural heritage

and augmented reality. Its preparation, however, still is

a laborious process. While several algorithms have been

presented within the last decade which generate a compen-

sated projection with impressive quality, they all require the

devices to be, at least partially, radiometrically calibrated.

This can be a cumbersome and time consuming process

which reduces the overall flexibility of the system, while

it also limits the compensation quality on devices such as,

for example, certain DLP projectors which offer complex,

non-monotonic color processing algorithms and additional

primaries as well as transparent components in their color

wheels [14, 13].

1.1. Motivation

The main motivation to develop a novel projector com-

pensation algorithm has been the lack of an existing

straightforward method which does not require any radio-

Figure 1. Our method computes a compensation image without

any knowledge of the device’s response curves. The input image

(a) is projected (f) onto a textured surface (e) leading to color arti-

facts (b). Our method computes a compensation image (g) which

reduces the errors (c). A global optimization step further mini-

mizes saturation artifacts (d). Although the used DLP projector

contains complex color processing, our compensation method is

able to generate a high quality compensation image (h).

metric pre-calibration and thus can be widely applied in, for

example, mobile and cheap off-the-shelf projection setups.

Our method is based on the application of scattered data in-

terpolation to describe the mapping of projector to camera

pixels in a non-linear manner. We used thin plate splines

(TPS) [7] to compute the mapping which, besides their

relatively low computational complexity using radial basis

functions (RBF), guarantee an optimally smooth transition

between the captured color samples.

1.2. Background and Related Work

In this section an introduction to photometric compen-

sation will be given and the existing methods will be sum-

marized. The interested reader is referred to Bimber’s et al.
state of the art report [4] for details.

The main purpose of photometric compensated projections

is the neutralization of non-perfectly white or textured sur-

face reflectance. This is accomplished by using a projector-
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camera system to evaluate the reflectance properties for

each pixel and to calculate colors which, if projected onto

the surface pigments, modulate to the expected intensity

when captured by the camera. Therefore a geometric cal-

ibration is required to map projector to camera pixels which

is usually carried out by projecting a series of well defined

structured light patterns. Depending on the method, several

patterns are projected in addition to estimate the color trans-

formation needed to compute the compensation images. To

our knowledge, all existing methods require the projector or

camera to be at least partially radiometrically calibrated to

enable a linear modeling of the light modulation.

The oldest algorithms focused on modeling the compensa-

tion without taking the input image content into account and

mostly varied in their complexity as well as their prerequi-

sites. In Bimber et al. [3], a multi-projector approach was

presented in which the devices are assumed to be fully lin-

earized and their rgb color channels to be completely inde-

pendent. While this approach is able to also compensate for

environmental illumination, most real-world setups require

a modeling of the overlapping color channels to achieve a

high quality compensation. In Nayar et al. [14], a 3x3 ma-

trix was used to model this color channel mixing which gen-

erates a more accurate compensation. This method was in-

tegrated into a real-time feedback system in [8] to support

dynamic projection surfaces. Yoshida et al. [22] extended

this approach to a 3x4 matrix which also considers the un-

controllable, ambient illumination. In [5] it was shown that

the color mixing matrix can also be separated from the spa-

tially varying surface reflection and thus it only has to be

stored once for a setup. An extended approach enabling the

compensation of global, complex illumination effects such

as caustics, refractions and scattering has been presented in

[21]. It’s based on the idea of measuring the full light trans-

port between the projector and camera and inverting it to

compute the compensation image. This approach requires,

besides the device linearization, up to several hours of scan-

ning time depending on the scene complexity which makes

it quite impractical for real-world applications.

While these algorithms are able to achieve satisfying results

under well calibrated conditions, image contrast will be lost

and color artifacts might occur due to intensity saturation of

the projector on dark surface pigments.

More recent compensation methods are focused on content

dependent adaptation to increase the visual quality of the

projected images by maximizing perceived contrast and lu-

minance while still suppressing saturation artifacts at the

same time. The methods optimize the projection images

with different computational complexities, depending on

the application scenarios. They all, however, also require

a radiometrically calibrated projector-camera setup.

The first adaptive photometric compensation method was

presented by Wang et al. [20], in which the input image

is scaled automatically by a global scaling factor until the

saturation artifacts approach the per-pixel visibility thresh-

old.The presented algorithm is only able to compensate gray

scale images which constrains its applicability. This idea

was extended for color images by Ashdown et al. In [2]

they describe a compensation framework which operates in

the CIE L*u*v* color space and applies a luminance and

chrominance rescaling of the input image based on the hu-

man visual perception. This rescaling is optimized such

that the visual impression after applying the photometric

compensation still is close to the desired input. This al-

gorithm was further improved in [15] enabling smoother

chrominance adaptations. Another algorithm presented by

Grundhöfer et al. [9] focused on a GPU accelerated real-

time adaptation to enable the system to also work with

real-time content. A sophisticated compensation method

was recently presented by Aliaga et al. [1] which applies a

globally optimized compensation using the measured light

transport matrix between a camera and multiple projectors.

It, however, also requires radiometrically calibrated projec-

tors and cameras.

While those methods show that high quality compensated

projections can be achieved with radiometrically calibrated

devices, the latter makes the usage quite cumbersome for

several reasons: Any change in the hardware settings e.g.

adapting the projectors’ brightness to a new setup or re-

placing it with a different model requires a radiometric re-

calibration; furthermore, some DLP projectors apply com-

plex, multi-primary color processing and thus are difficult

to accurately linearize. While projection-based illumina-

tion on public spaces becomes more and more popular, the

surface colors are mostly not compensated at all because of

the missing expertise and hardware to adequately calibrate

the response curves of the projection system.

1.3. Our contribution

Our approach computes a compensation image by gener-

ating a non-linear per-pixel color mapping between the ra-

diometrically uncalibrated projector-camera pair. Scattered

data interpolation based on TPS is used to calculate an ac-

curate color transformation. The advantage of the applied

RBF compared to the ones used in other scattered interpo-

lation techniques, such as Shepard’s interpolation method

[19] or multiquadrics [11], is its ability to smoothly inter-

polate between given sample points as well as to adequately

extrapolate the colors. It is able to compensate for non-

monotonic responses as well as inter-channel color modu-

lations.

We present two compensation image generation methods:

The first one processes images in real-time, while the sec-

ond optimizes the input image off-line in a global optimiza-

tion step to further minimize local clipping errors while pre-

serving a high overall luminance and contrast.
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2. Uncalibrated Photometric Projector Com-
pensation

Instead of having to pre-calibrate the cameras and pro-

jectors, the proposed method can be applied immediately

after setting up the devices. Uncalibrated projectors and

cameras, however, require a per-pixel non-linear mapping

function to accurately describe the unknown color transfor-

mation from the camera to the projector via the surface ma-

terial. While, theoretically, this can generated by a dense

sampling to populate a 3D look-up table, this would require

several millions of images to be captured and stored which

is impractical considering acquisition time and memory re-

quirements. The number of required samples can be min-

imized by sparsely sampling the colors and applying inter-

polation methods to compute the remaining values. While

tri-linear interpolation obviously won’t generate satisfying

results, more complex interpolation methods as, for exam-

ple, presented in [17], are able to minimize the errors signif-

icantly. This method, however, still requires more than 700

images to be acquired and thus is still not practical, espe-

cially if the data has be calculated and stored for each indi-

vidual pixel. To further reduce the number of color samples

while nevertheless being able to achieve high quality com-

pensation results, we apply TPS interpolation [7], which

guarantees a smooth transition while interpolating between

the known projected and captured sample points.

2.1. Prerequisites

For image acquisition, a camera device is required whose

image sensor has to be able to capture the whole dynamic

range of the projector without clipping. If this precondition

is satisfied, no further calibration is required. As with other

camera based calibration algorithms, a color channel adjust-

ment should be carried out to adjust the projector’s white

point to match the desired perceived impression of the hu-

man observer 1. It should be noted that, like in any camera

based photometric projector compensation technique, the

resulting quality largely depends on the camera used.

2.2. Color Mapping Method

Instead of assuming a linear color relationship described

by a per-pixel matrix multiplication, we define it by a color

mapping function:

c∗c = f (c∗in) (1)

transforming the input colors c∗in into the compensation col-

ors c∗c required to generate the desired intensities of c∗in
on the camera’s image plane (∗ denotes all three rgb color

channels). Our algorithm uses TPS interpolation to define

1To accurately achieve desired color values independent of the camera

settings used, a color calibration using a color checker chart can be applied

beforehand, but this is not required for the algorithm to work.

this function. To gather the required parameters, the color

space of the projector is sparsely sampled in a regular man-

ner. While this regularity does not have to be strict, it should

sample the extremes as well as the interior of the full rgb
color cube evenly. This is achieved by generating colors

with n increasing intensity levels from 0 to 255 in all three

color channels as well as their combinations which leads to

n3 color samples. If knowledge about the rough shape of

the projector response curve exists, the samples can be ad-

justed accordingly. For our algorithm, we used either n = 4
or 5 (cf. section 4 for an error analysis). These samples are

sequentially projected and captured by the camera.

After acquisition, the input colors and the corresponding

captured images are used to compute the weights for each

per-pixel interpolation function:

f (c∗in) =
N∑
i=1

ω∗i ϕ (‖c∗in − c∗i ‖)+

ω∗N+1+

N+4∑
i=N+2

ω∗i ·
⎧⎨
⎩

crin, i = N + 2
cgin, i = N + 3
cbin, i = N + 4

(2)

where c∗in is the input color sample, N is the number of

captured color samples, ω∗i a series of N + 4 weighting

coefficients per color channel, ‖·‖ the distance in Euclidean

space, c∗i the captured reference color samples, and ϕ is

chosen to be the TPS RBF:

ϕ (d) =

{
0, d = 0

d2 log d, otherwise
(3)

which minimizes the integral of the squared second deriva-

tive of f (c∗in) and thus is well suited to generate a smooth

color mapping. d is the Euclidean distance of the normal-

ized sample color c∗in to the normalized reference colors c∗i .

The per-pixel computation of ω∗i has to be carried out only

once per projector-camera setup and is calculated as de-

scribed in Donato et al. [6]. To reduce the influence of out-

liers in the measurement resulting from noise and sampling,

a small regularization term is added to the thin plate spline

weights computation as proposed in the same paper. Dur-

ing run-time, equation 2 has to be evaluated once for each

surface point to calculate the projector pixel intensities for

the compensation image.

2.2.1 Photometric Compensation

Having computed the weighting factors for each pixel, arbi-

trary input images can be transformed from the camera’s

into the projector’s color space by computing the color

transformation using equation 2. While this, in theory, ac-

curately approximates the desired color values, errors might

occur because of out-of-gamut clipping which might arise
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Figure 2. Another result of the proposed method: (a): input

image; (e): highly non-uniform projection surface (illuminated

white); (b): captured projection of (a) onto (e); (c): compensa-

tion without adjustments shows significant clipping errors. (d):

reduced clipping errors after applying the global optimization step.

(f-h): geometrically warped projection images generating camera

images (b-d).

from too bright or low rgb values that cannot be reproduced

on dark or colorful surface pigments or on grounds of am-

bient illumination. To avoid this, the input image can be

globally adjusted by adapting the overall brightness and sat-

uration such that the color values required for the compen-

sation still can be generated by the projector. As already

described in [2] an adaptive, spatially varying adjustment

of the input image, however, has the potential to increase

the overall perceived image quality even further, especially

if the surface contains high spatially reflectance variations

as the one shown in figures 1 and 2.

2.2.2 Global Optimization

Two main factors influence the occurrence of regional clip-

ping errors: on the one hand they depend on the local re-

flection properties of the surface, while on the other hand

the intensities of the image content are crucial. While the

former is static, the latter can be reduced by optimizing the

input colors and slightly changing the content similar to the

approaches presented in [2, 9]. We smoothly adapt the lu-

minance of the input colors by a spatially varying scaler p
to avoid clipping. To achieve this goal, a non-linear opti-

mization is applied to the input image minimizing the sum

of the following per-pixel errors:

• Saturation error, occurring due to limited maximum

projector brightness and will generate perceived image

artifacts:

errsat(x, y) =

{
(c∗c(x, y)− 1.0)

2
, c∗c(x, y) > 1.0

0, else
(4)

• Intensity error, resulting from an intensity reduction at

the current pixel which will reduce the image bright-

ness (an increase in intensity is accepted):

errint(x, y) =

{
(1.0− p(x, y))

2
, p(x, y) < 1.0

0, else
(5)

• Gradient variation error resulting from the spatially

varying intensity adjustments leading to potentially

visible local intensity variations:

errgrad(x, y) = (p(x, y)− p(x− 1, y))
2
+

(p(x, y)− p(x+ 1, y))
2
+

(p(x, y)− p(x, y − 1))
2
+

(p(x, y)− p(x, y + 1))
2

(6)

Independent weights are applied to these errors to generate

an acceptable tradeoff between the image degradation from

clipping errors as well as global and smooth local luminance

reduction in the final error term:

err =
width−1∑

x=0

height−1∑
y=0

ωsat · errsat(x, y)+

ωgrad · errgrad(x, y)+
ωint · errint(x, y)

(7)

We used error weights of wsat = 200, wgrad = 1, and

wint = 50 for our setup.

To speed up the optimization process, the optimization is

only applied to a sub-sampled input image. This is applied

such that only the darkest value in each image rectangle

defining one pixel in the low-resolution representation is

stored for the compensation data calculation, while only the

brightest value is stored for the input image. This ensures

that the worst case is considered during the optimization

step. Currently we use a sub-sampling of 40 × 30 pixels

which seemed to be a good trade-off in terms of accuracy

as well as computation time for our test setups. Note that

this sub-sampling should be adjusted depending on the spa-

tial frequency of the surface texture. To solve this relatively

large number of variables in a reasonable amount of time,

a bound constrained optimization not requiring derivatives

was applied [16]. After computation, the result is smoothly

up-sampled into its original resolution and used to adjust

the luminance of the image used as input for equation 2.

3. Experimental Setup
Different projector-camera pairs projecting onto multi-

colored surfaces were used for evaluation. The ambient il-

lumination was kept at a low and constant level. Results for
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three different setups are shown in figures 1,2, and 5.

Hardware The method was tested using a LCD and

a single-chip DLP projector 2 with activated brilliant
color[12] processing and a manually adjusted white point.

For image acquisition, a Canon DSLR 3 was used. We cap-

tured JPEG images instead of RAW since our method does

not require linearized images. Camera noise and color shifts

from sequential DLP processing were minimized by averag-

ing 8 images of each projection. For computation, a state-

of-the art PC was used 4

Geometric Calibration The mapping between projector

and camera pixels was generated via a robust structured

light scan based on gray codes with additional line shift pat-

terns adapted from [10].

Implementation We implemented the algorithm in C++

with OpenMP based parallelization. For acceleration, the

compensation was written using a GLSL fragment program

as well. While it requires a large amount of GPU memory,

it enables a significant speedup achieving real-time process-

ing. Computation including image download took ∼ 40ms
(compared to 7s in the CPU version) for a 1080p input im-

age, which is sufficient for video playback.

4. Quality Comparison
We compared our method to the one presented in [3],

which was applied by assuming the color spaces of the de-

vices to be sRGB. While the camera used actually generates

images encoded in this color profile, the DLP projector’s

response curve was not described accurately by this pro-

file. A comparison is given in figure 3. While the method

mentioned also compensates for the majority of the errors

occurring, it’s visibly apparent that the nonlinear method is

able to more closely reproduce the desired colors if no ac-

curate device calibration data is available.

2LCD: Epson TW3200, DLP: BenQ W1100
3Canon EOS 600D
4Intel i7 3930, 32GB RAM, Nvidia Geforce 670

Figure 3. Comparison to the method presented in [3] assuming

a sRGB response of the devices. The absence of an accurate rep-

resentation of the sRGB color space in the current settings of the

DLP projector reduces the compensation quality in (a,d) compared

to our approach (c,f). The input images are shown in (b) and (e).

The surface of figures 1 and 2 has been used for the comparison.

Figure 4. Compensation accuracy with respect to the number of

samples used to compute the TPS weights: The diagram shows the

average ΔE∗
00 [18] of the two sample image series shown on the

left. While there is a clear quality improvement between 43 and

53 samples, the extension to 63 samples only marginally improves

the result, while requiring almost twice as many images.

5. Summary and Conclusion
In this paper we showed that a high quality photometric

compensation can be carried out without the need of any ra-

diometric device pre-calibration. By projecting and captur-

ing a reasonable number of images 5 a non-linear color map-

ping can be generated which enables an accurately com-

pensated projection even on strongly textured surfaces. The

proposed method offers several advantages compared to ex-

isting methods:

• Linearization errors resulting from inaccurate or noisy

radiometric calibration don’t influence the compensa-

tion quality

• The algorithm is able to compensate for the complex,

multi-primary processing of many single-chip DLP

projectors

• No further calibration hardware is required which

makes the compensation straightforward to deploy

The overall memory requirement, however, is significantly
higher compared to linear mapping algorithms. In our sys-
tem, we require up to 254 ∗ 3 floating point values for each
pixel which, depending on the resolution, requires several
gigabytes of memory. While this is not a serious problem
on modern computers, the GPU implementation might suf-
fer from this requirement on hardware with limited VRAM.
We could, however, show that current consumer level GPUs
are able to process this data in real-time. A comparison with
other existing methods as well as a thorough analysis on the
optimum tradeoff between input samples and compensation
accuracy as presented in figure 4 is part of our further inves-
tigations. While the compensation is calculated in real-time,
the global optimization takes, depending on the setup, five
to 30 minutes to converge. An optimized GPGPU based

5currently we use up to 125 images for the data acquisition

914922922928



Figure 5. Additional samples of the proposed method using difference setups. The upper row (a-d) shows the desired input images, the

bottom row (e-h) the captured projections. In (i-k) the surfaces are shown under white projector illumination: In (a) a home cinema LCD

projector is used, in (b-d) a DLP projector is used projecting from the right hand side.

non-linear optimization might even be able to achieve in-
teractive frame rates including the content-dependent opti-
mization. Adding local chrominance adaptation as well as
content preservation in image regions darker than the ambi-
ent illumination to the optimization is another area of future
research.
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