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An analytical impedance model and a small-signal equivalent circuit are derived for the impedance spectra of Li-air batteries with
porous cathodes. The model takes into consideration the effects of the oxygen diffusion, double layer, and faradaic processes in the
cathode and can be applied to Li-air batteries with organic and aqueous electrolytes operating under d.c. discharge. It is shown that
the cathode of Li-air batteries can create two slightly asymmetrical semicircles on the Nyquist diagram: one at low frequencies,
where the oxygen diffusion dominates the operation of the cell and one at medium frequencies due to the combined effects of the
double-layer capacitance and faradaic processes. The second semicircle becomes negligibly small at low values of the cathode width
or oxygen concentration. Both semicircles can degenerate into one large semicircle when the double layer capacitance is large enough
and masks the effects of the faradaic processes, which happens at large values of the specific area of the cathode and double layer
capacitance, or when the oxygen diffusion coefficient in the electrolyte is relatively large. They also degenerate into one semicircle
when the porosity is decreased, for instance during the final period of the discharge of Li-air batteries with organic electrolyte, when
the cathode is partly clogged with the deposit reaction products. The elements of the small-signal equivalent circuit are expressed in
terms of the oxygen diffusion coefficient, oxygen concentration, discharge current, and other material and kinetic parameters, which
make our model instrumental for extracting information about the material structure, reaction processes, and diffusion in the cathode.
Based on the derived analytical results, we also propose a method to extract the effective value of the oxygen diffusion coefficient and
reaction rate constant from the experimental impedance spectra of the cells. A simplified small-signal equivalent circuit model is also
presented. This model contains only elementary components such as resistors and capacitors and can be implemented numerically
in circuit simulators.
© 2013 The Electrochemical Society. [DOI: 10.1149/2.046311jes] All rights reserved.
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Li-air batteries have attracted much attention in the last years
particularly because of their high energy densities and specific
capacities.1–3 Depending on the type of the battery, the specific capac-
ity is estimated to vary between 1,000-3,840 mAh/g,4–6 which is a few
times to more than one order of magnitude larger than the energy den-
sity of Li-ion batteries. This high specific capacity is mostly due to the
fact that Li-air batteries use oxygen from the air instead of storing it
internally and lithium metal at the anode instead of a composite mate-
rial. Additionally, Li-air batteries are environmental safe and provide
an oil-independent source of energy, which make them attractive in a
broad area of applications including transportation, portable electronic
devices, and green energy storage.

Impedance analysis methods are often employed as convenient,
nondestructive ways to analyze and predict the performance of bat-
teries and other energy storage devices.7 These methods can be used
to extract information about the reaction and diffusion processes in-
side electrochemical devices, as well as about the state-of-charge,
state-of-health, ohmic losses, and reliability of these devices. For in-
stance, in the case of Li-ion batteries, one can predict the voltage
and monitor the state-of-charge of the cells,8,9 diagnose and investi-
gate the electrochemical properties and determine the values of the
Li diffusion coefficient, reaction rate, and other parameters using
impedance spectroscopy.10,11 In the case of proton exchange mem-
brane fuel cells one can use impedance spectroscopy measurements
to study the degradation and stability of these cells,12 and determine
the values of the catalyst layer resistance,13 reaction rates, and proton
and oxygen diffusivities.14,15 In general, to extract these information
we need to develop a physics-based model for the total impedance
spectra in terms of the material and electrochemical properties of the
system, such as the structure, geometry, kinetic, and diffusion pa-
rameters, and then fit this model to the experimental data. It is often
preferable that the model be given in terms of relatively simple a.c.
circuits involving resistors, capacitors, and inductors, whose values
are related to the physical properties of the system.16

In this article we develop an electrochemical impedance spec-
tra model for Li-air batteries and relate the characteristics of the
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spectra of these batteries to their geometrical dimensions, kinetic
parameters, diffusion coefficient, porosity, and pore structure. We
also propose a method to extract the effective value of the oxygen
diffusion coefficient and reaction rate constant from the experimen-
tal impedance spectra of the cells. The results for the impedance
spectra are derived under relatively general assumptions of the struc-
ture and type of the battery, by looking at the oxygen diffusion and
faradaic processes in the porous cathode. Since the operation of Li-air
batteries is dominated by these processes the effects of other phe-
nomena such as the anode reaction rate or ion transport though the
electrolyte can be neglected. We expect this model to be valid for
a large number of Li-air or Li-oxygen systems, in which the oxy-
gen diffusion-reaction plays a limiting factor. In particular, the model
can be applied to primary and secondary Li-air batteries with or-
ganic and aqueous electrolytes as we will also discuss in the next
section.

Most of the existing work on the theoretical modeling of impedance
spectra of electrochemical system is related to the study of Li-ion,
other metal-ion or metal batteries, and electrocapacitors, which are
dominated by Warburg diffusion or various versions and improve-
ments the Warburg diffusion model (e.g. bounded Warburg models).
These models are usually represented in the form of small-signal
transmission line circuit models. They are relatively accurate for sys-
tems that can be modeled with a semi-infinite or bounded diffusion
region and where the reaction takes place on the boundary of this
region.16 However, Warburg diffusion models cannot be applied to
Li-air systems with porous cathodes, in which the local concentration
of one of the reactants (i.e. oxygen) varies significantly from point to
point leading to a large spatial distribution of reaction rates. Such sys-
tems contain a diffusion-reaction region that can often be described by
Gerischer or modified versions of the Gerischer impedance.17,18 The
Gerischer impedance has been applied to a number of electrochemical
systems including batteries and fuel cells12,19 and has been developed
under the assumption of zero d.c. discharge during the small-signal
measurement.20 In this article we develop a reaction-diffusion model
for Li-air batteries, in which the impedance spectra are measured
under non-zero d.c. discharge. We show that the value of the d.c.
discharge current can be used as an additional controlling variable,
under which the spectra are measured and, thus, provides additional
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information about the physical processes and material properties of
the cell.

The article is structured as follows. The first section summarizes
the model equations and the approximations that we use to derive the
impedance spectra of Li-air batteries. The next section summarizes the
closed-form formulas for the electrochemical impedance spectra and
presents a general small-signal circuit model for these batteries. The
detailed derivation of the impedance spectra is shown in the Appendix.
The next section presents approximations for the impedance spectra in
the cases of large and small cathode widths and discharge currents and
presents a simplified small-signal (a.c.) circuit model for the battery. In
addition, it discusses how the values of the circuit elements depend on
the physical and electrochemical properties of the system. Concluding
remarks are presented in the last section.

Model Equations and Steady-State Analysis

In this section we present the mathematical model and the main ap-
proximations that were used to derive the analytical expression for the
impedance of lithium-air batteries. The model presented below can be
applied to both Li-air batteries with organic and aqueous electrolytes.
These batteries are usually composed of a Li metallic anode, a solid
separator, and a porous carbon cathode filled with organic or aqueous
electrolyte. The space between the anode and the separator is usually
filled with a thin organic electrolyte layer. External air penetrates the
pores of the cathode from the right, diffuses through the electrolyte,
and reacts with the Li ions according to the following reactions (see
Fig. 1):3,4

Li-air with organic electrolyte:

2Li+ + O2 + 2e− → Li2O2(deposit) [1]

Li+ + O2 + e− → LiO2(deposit) [2]

Li-air with aqueous electrolyte (before saturation):

4Li+ + O2 + 2H2O + 4e− → 4Li+ + 4OH− [3]

Li-air with aqueous electrolyte (after saturation):

4Li+ + O2 + 6H2O + 4e− → 4LiOH · H2O(deposit) [4]

In the case of Li-air batteries with organic electrolyte the reaction
product is insoluble in the electrolyte and deposits in the cathode. In
the case of Li-air batteries with aqueous electrolyte we distinguish two
regimes of operation depending on the concentration of the aqueous
electrolyte in the cathode: (a) before saturation when the concentration
of Li+ and OH− ions is smaller than the concentration of saturation
of Li+OH− in water, and (b) after saturation when the concentration

Figure 1. Structure of a Li-air battery system with (a) organic and (b) aqueous
electrolyte.

of Li+ and OH− ions is equal to the concentration of saturation of
Li+OH− in water. When the concentration of Li+ and OH− ions
reaches saturation, the reaction product LiOH · H2O deposits on the
surface of the carbon, thus filling in the pores of the cathode and
eventually interrupting the flow of the O2 in the cathode. In both types
of batteries, when all the pores from the air side of the cathode are
clogged or when the resistance of the deposit product at the cathode
is too large, reactions 1-4 cannot take place anymore and the battery
cannot be further discharged. These are the main reasons for the
relatively short life of Li-air batteries.

More accurate and complex models for the simulation of Li-air
batteries with organic electrolyte been developed by Andrei et al.21

and Albertus et al.22 Models for the simulation of Li-air batteries
with aqueous electrolyte before and after saturation are presented in
Ref. 23. However, due to the increased complexity of these models
it is practically impossible to derive any closed-form solutions for
the impedance spectra analytically, and one should employ numerical
simulations to compute the impedance diagrams.

Basic equations and assumptions.— In order to derive an analyti-
cal model for the impendence spectra in Li-air batteries we assume that
the discharge of these batteries is limited by the oxygen diffusion in
the cathode. This fact has been observed and discussed by a number of
authors in the last years and it is commonly accepted that the reduced
power density of Li-air batteries is due to the slow oxygen diffusion
in the porous cathode material. Considering one-dimensional mass
transfer, the oxygen concentration satisfies the following diffusion
equation

∂
(
εcO2

)
∂t

= ∂

∂x

(
DO2,e f f

∂cO2

∂x

)
− rC

2F
[5]

where rC is the specific reaction rate at the cathode, which can
be approximated by the following simplified Butler-Volmer (Tafel)
equation24,25

rC = 2FkcO2 a (ε) e− nβ
VT

η
, η < 0 (discharge) [6]

Note that we have included only the forward reaction current and have
neglected the reverse current in the Butler-Volmer equation. This ap-
proximation is good when the battery is operated under relatively large
discharge currents, but it fails when the battery is either being charged
or operated at very low discharge rates such that the forward and re-
verse currents are comparable to each other. Hence, in the analysis
that follows we discuss only about the case when the battery is oper-
ated under discharge and eq. 6 holds. The charge transfer coefficient
n in eq. 6 is equal to two if the rate-determining step in eqs. 1-4 is a
two-electron transfer and is equal to 1 if it is a one-electron transfer. It
is important to stress that eq. 6 captures the dependence of the current
density on the oxygen concentration only qualitatively and more re-
search is needed to establish the nature of the equilibrium reactions at
the cathode exactly. We also prefer to write the reaction rate in form
6 because it can be applied to both Li-air batteries with organic and
aqueous electrolytes and, as we will show next, leads to closed-form
solutions for the discharge current and impedance spectra. Notice that
other similar functional forms for the reaction current also exist in the
literature.22

An important approximation made in 5 and 6 is that we assume
the oxygen concentration at the surface is equal to the oxygen concen-
tration in the middle of the pores, i.e. ∂cO2

/
∂r � 0 as also discussed

by Sandhu et al.25 This approximation simplifies the analysis by lead-
ing to one-dimensional diffusion equations but can result in some
transport phenomena at the solid-electrolyte interface that are being
ignored, and which could in principle result in additional features
on the impedance spectra diagrams. Such phenomena might include
traditional Warburg impedance effects.

It is also worthwhile noting that by using eq. 5 we exclude flow
batteries or other Li-air batteries in which the electrolyte in the cathode
region is oxygenated by stirring processes. In these types of batteries
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convection plays an important role in the oxygen transport and eq. 5
needs to be modified accordingly.

The specific surface area of the cathode depends on the local
porosity according to a function, a (ε). The functional form of this
dependence is given by the exact microstructure of the cathode. A few
idealized cases are discussed in Appendix A. Factor 2 in eqs. 5 and 6
appears because each molecule of oxygen participating in the cathode
reaction produces two electrons.

For the sake of simplicity, the cell voltage v is related to the over-
voltage η by

v = V0 + η − V� [7]

where V0 is the open cell voltage and V� denotes the combined voltage
drops across the separator, anode and deposit layers, interfaces, and
electrolyte; in addition, V� includes any other ohmic losses such as
losses at the contacts of losses due to the electron transport in the
cathode. In general, we expect for V� to depend on the value of the
discharge current. For instance, if the deposit layer at the cathode is
insulator, the electrons have to tunnel through this deposit layer and
the total current depends nonlinearly on the overvoltage as suggested
by a number of recent publications.3,26,27 Quantum tunneling results in
a strongly nonlinear dependence of V� as a function of the discharge
current.

Eq. 5 is subject to the following boundary conditions

dcO2 (x, t)

dx

∣∣∣∣
x=L

= 0 [8]

cO2 (0, t) = C∗
O [9]

and initial condition

cO2 (x, 0) = C∗
O [10]

where we have assumed that the oxygen enters at x = 0 and diffuses
toward the separator, which is located at x = L . As it usually done
in the literature,28,29 we assume that the discharge current can be split
into a faradaic component, iF , and a component due to the discharge
of the double layer, id , and can be computed as

i = iF + id = A
∫ L

0
rC dx + A

∫ L

0
aCd

dη

dt
dx [11]

where Cd is the capacitance of the depletion layer per unit area and iF

and id refer to the two integrals in eq. 11, respectively.
To derive closed-form equations for the impedance spectra we

assume that the porosity of the battery varies slowly in time during
discharge and this variation can be neglected during the time the
a.c. impedance measurement is performed. Indeed, in Li-air batteries
with organic electrolyte the porosity decreases slowly in time when
the reaction product deposits on the surface of the carbon. In Li-
air batteries with aqueous electrolyte the porosity might change or
not in time depending on whether the electrolyte in the cathode is
saturated or not. In both cases, the impedance spectra measurements
are performed within few seconds or minutes, which is much faster
than the lifetime of the battery. In addition, it is convenient to assume
that the porosity of the battery is uniformly constant throughout the
cathode, which is usually the case when the battery is completely
charged or if it was partially discharged at a very low discharge rate.
With these assumptions, eq. 5 becomes

ε
∂cO2

∂t
= DO2,e f f

∂2cO2

∂x2
− rC

2F
[12]

and the cell discharge current

i = iF + id = 2AFkae− nβ
VT

η

∫ L

0
cO2 (x, t) dx + AaCd

∫ L

0

dη

dt
dx

[13]

Steady state (d.c.) analysis.— Let us consider the case of steady-
state, i.e. when the time derivatives in eqs. 12 and 13 can be neglected.
As mentioned before, during discharge, Li-air batteries are never in a
perfect steady-state because the reaction products deposit slowly but
continuously in time. However, since the change in porosity is very
slow in time we can approximate that the battery is at steady-state
during the time the impedance spectra are measured. Next, we denote
the steady-state value of the overvoltage by η0 and the steady-state
values of all other quantities using capital letters; for instance CO2 (x)
is the d.c. oxygen concentration, I is the d.c. value of current i, etc.
The oxygen diffusion equation at steady-state is

∂2CO2

∂x2
− ka

DO2,e f f
CO2 e− nβ

VT
η0 = 0 [14]

with the following solution

CO2 (x) = C∗
O2

[
cosh

( x

λ

)
− tanh

(
L

λ

)
sinh

( x

λ

)]
[15]

where we have used boundary conditions 8 and 9 and introduced
notation

λ =
√

DO2,e f f

ka (ε)
e

nβ
VT

η0 [16]

Function CO2 (x)
/

C∗
O2

is represented in Fig. 2 for different values
of the λ parameter. Parameter λ characterizes the diffusion length
of oxygen in the cathode (for instance, if L � λ, λ represents the
distance after which the oxygen concentration is decreased by 31%).

The discharge current at steady-state is equal to the faradaic current
and can be evaluated from eq. 13

I = 2AFka (ε) C∗
O e− nβ

VT
η0

∫ L

0

[
cosh

( x

λ

)
− tanh

(
L

λ

)
sinh

( x

λ

)]
dx

[17]

which leads to the following condition between the d.c. discharge
current and λ

Iλ

2AF DO2,e f f C∗
O

= tanh

(
L

λ

)
[18]

Equations 16 and 18 are important because they allow us to compute
the steady-state (d.c.) current when the overvoltage is given. Indeed,
if η0 is given we can compute λ from 16, and the steady-state current
I from 18. Alternatively, if the discharge current I is given, we can
compute λ by solving nonlinear equation 18 and η0 from 16. Hence,
η0 can always be expressed as a function of I , i.e. η0 (I ). Eq. 18
can also be regarded as an expression for the oxygen diffusion length
parameter λ as a function of the discharge current I. For large cathode
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Figure 2. Oxygen concentration as a function of the distance from the oxygen
boundary.
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widths, we obtain

λ = 2AF DO2,e f f C∗
O

I
, when L/λ → ∞ [19]

which shows that to increase the diffusion length of the oxygen in the
cathode we need to either increase the effective diffusion coefficient
of the oxygen or the oxygen concentration at x = 0.

General Expression for Impedance Spectra

The impedance spectra can be computed by superposing a small
a.c. signal perturbation ṽe jωt to the d.c. value of the applied voltage
and computing the variation of the cell current ĩ e jωt . Indeed, any
small variation in the cell voltage ṽe jωt translates into small variations
of the overvoltage η̃e jωt , faradaic and double-layer currents, and a
variation c̃O2 (x) e jωt of the oxygen concentration, where η̃, ṽ, and ĩ
are complex numbers, while c̃O2 is a complex function that needs to
be determined. If we explicitly separate the d.c. from the a.c. parts of
the signals we can write

v = V + ṽe jωt [20]

i = I + ĩ e jωt [21]

iF = IF + ĩ F e jωt [22]

id = Id + ĩd e jωt [23]

η = η0 + η̃e jωt [24]

By superimposing an a.c. signal over different d.c. discharge cur-
rents we are actually considering the case a.c. voltammetry. The total
impedance can be computed using eq. 7; we obtain:

Z = − ṽ

ĩ
= R� ĩ − η̃

ĩ
= R� − η̃

ĩ F + ĩd
= R� − η̃

ĩ F + jωaL ACd η̃

= R� + Z F

1 + jωCD Z F
[25]

where

R� = −∂V�

∂ I
[26]

CD = aL ACd [27]

are the small-signal ohmic resistance and double layer capacitance,
and Z F = − η̃

ĩF
is the faradaic component of the impedance. The

negative sign in the first equation in 25 and in eq. 26 appears because
any increase in the cell voltage results in a decrease of the cell current
during the discharge of the cell. In writing 25 we have assumed that the
capacitance of the double layer does not depend significantly on the
discharge current, and the derivative ∂Cd

∂ I can be neglected with respect
to the other terms. This fact as a good approximation as indicated by
previous experimental results by Baert et al.30

It is shown in Appendix B that the faradaic impedance depends on
the discharge current I and frequency as

Z F (I, ω) = VT

nβI
× F

[
ωελ (I )2

DO2,e f f
,

L

λ (I )

]
[28]

where we have introduced function

F (�, l) = j�
tanh

√
1+ j�l√

1+ j� tanh l
+ j� − 1

[29]

and have indicated explicitly that λ is a function of the discharge
current I (see eq. 18). Function F is complex and depends on the
discharge current and cathode length. Nyquist plots and approximate
expressions for this function at large and low discharge currents,
frequencies, and cathode lengths are given in Appendix C.

Equations 25-29 represent the general form of the impedance of
Li-air batteries as a function of the discharge current, reaction rate
parameter, oxygen diffusion coefficient, capacitance of the double
layer, porosity, and geometrical dimensions. If the discharge current
is known we can compute λ from eq. 18, Z F from 28 and 29, and the
total impedance Z from 25. It is worthwhile comparing result 29 to the
Gerischer impedance ZG (�) = 1√

1+ j�
or the finite length Gerischer

impedance20 ZG (�) = tanh
√

1+ j�l√
1+ j�

, which were obtained under the

assumption that the d.c. value of the discharge current is zero.20 All
these expressions contain the same functional term

√
1 + j�, which

seems to be characteristic to diffusion-reaction processes in general,
and result in relatively similar spectra. However, the expression of the
normalized frequency � is different in eq. 29 from the expression that
appears in the Gerischer impedance. In addition, the Nyquist plot of
the Gerischer spectra starts at an angle of approximately 45 degrees
at high frequencies, while expression 29 leads to a much more abrupt
slope, close to 90 degrees. The relatively high initial slope is also
evidenced by recent experimental results on Li-air systems.31 The
equation for the Gerischer impedance cannot be derived as a limiting
case of eq. 29 at low currents, because the assumptions that were made
in deriving 29 do not hold at low discharge currents; in particular, the
reaction rate in expression 6 is valid only when the overvoltage is
much higher than the thermal voltage.

The validity of our results 25-29 is expected to depend on how
accurately the system can be described by eqs. 5 and 6. Hence, the
model will not be appropriate when the spectra are measured under
zero or low d.c. discharge current or when the electrolyte is stirred. We
also expect the model to fail when the cathode porosity is not uniform,
for instance when the discharge product is deposited nonuniformly
throughout the cathode.

For the remaining of this section we present numerical results
for a standard Li-air battery with the parameters specified in Table I
and discuss the conditions under which the faradaic impedance Z F

is hidden by other effects induced by the double layer capacitance.
These parameters were either computed or taken from the literature.
The reaction constant was estimated such that the specific reaction
rate constant, a(ε)k is in agreement with previous simulations.21 The
capacitance of the double layer depends on the type of the electrolyte

Table I. Values for the parameters Li-air batteries with organic
and aqueous electrolyte.

Parameter Value Units Reference

DO2 (organic
electrolyte)

7 × 10−6 cm2/s 2

DO2 (aqueous
electrolyte)

1.3 × 10−5–5.5 × 10−5 cm2/s 35

brugg 1.5 cm2/s 21

L 0.01 cm 31

A 1 cm2 Assumed
C∗

O 3.26 × 10−6 mol/cm3 Calculated*

a 104 cm2/cm3 21

n 2 31

β 0.5 Assumed
ε 0.75 Assumed

Cd 10 μF/cm2 Assumed
I 1 mA/cm2
k 1.3 × 10−8 cm/s 21

*Calculated assuming the external oxygen concentration in air is
9.46 10−6 mol/cm3 air and the solubility factor is 0.345
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and usually ranges between 10 μF/cm2 and 30 μF/cm2. In the com-
putations presented in this section we used Cd = 10 μF/cm2, in order
to emphasize the effects of the faradaic component of the impedance
and also be able to compare with recent results by Adam et al.,31 who
found that the capacitance of the double layer in Li-air batteries can be
as low as 7 μF/cm2. However, computations for larger capacitances
are also presented. The oxygen diffusion coefficient was considered
equal to the value in organic electrolyte. To investigate the effect of
various parameters on the impedance spectra we plot the Nyquist di-
agrams by varying one or more of these parameters while keeping the
remaining parameters fixed. The angular frequency is always varied
from 1 mHz to 1 MHz. To simplify the analysis we assume R� = 0
in eq. 25, but one can easily introduce the effect of R� by properly
shifting the Nyquist diagram along the horizontal axis. Resistance R�

can depend significantly on the type of the battery and includes the
resistance of the electrolyte, contacts, deposit layer in the cathode,
and also the effects of the anode or anode-separator interface. These
additional effects are neglected in this section but we will re-consider
them in the next section when we discuss a small-signal equivalent
circuit.

A parameter that modifies the shape of the impedance spectra
significantly is the specific area of the cathode that, depending on the
material and fabrication process of the cathode, can change over a
few orders of magnitude from a = 103 cm2/cm3 to 105 cm2/cm3 or
even more. As it will be shown in this article, the specific area directly
affects the total capacitance of the double layer, CD, and can hide the
effects of the faradaic impedance. Hence, we will present and discuss
the results for the cases when a = 104 cm2/cm3 and a = 105 cm2/cm3

separately.
Fig. 3 presents the Nyquist diagram of the impedance for dif-

ferent values of the discharge current ranging from 0.2 mA/cm2 to
5 mA/cm2 and for two specific areas of the cathode, a = 104 cm2/cm3

and a = 105 cm2/cm3. As shown in these figures and also suggested by
eq. 28 the magnitude of the impedance spectra decreases proportion-
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Figure 3. Nyquist plot of the cathode impedance at different values of the
discharge current I (from bottom to top I = 5 mA, 2 mA, 1 mA, 0.5 mA, and
0.2 mA) for two separate specific areas of the cathode.
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Figure 4. Nyquist plot of the cathode impedance for different values of the
double layer capacitance Cd (from bottom to top Cd = 1 μm/cm2, 10 μm/cm2,
20 μm/cm2, and 30 μm/cm2).

ally with the value of the discharge current. For currents smaller than
0.1 mA/cm2, the approximation of using the Tafel equation instead of
the complete Butler-Volmer equation does not hold and we expect the
magnitude of the impedance spectra to saturate at some point if the
current is decreased even more. All the impedance spectra have a ca-
pacitive behavior (i.e. Im (Z F ) < 0) and become purely resistive when
ω → 0 or ω → ∞. The Nyquist diagram shows two semicircles, one
at medium frequencies due to the existence of the double layer and
one at low frequencies due to the mass transport of the oxygen. At
large discharge currents, the two semicircles merge with each other
because the faradaic impedance Z F become negligible and the total
impedance is dominated by the capacitance of the double layer. It is
important to note that by increasing the specific area of the cathode
the faradaic effects are hidden by the capacitance of the double layer
and the two semicircles will merge into one bigger semicircle on the
Nyquist plot. This shows that in order to be able to observe the effects
of the faradaic impedance derived in eq. 28 we need to use cathodes
with relatively low specific area of the cathode and high reaction rate
constants; otherwise the faradaic effects are masked by the charge
transfer and double layer capacitance.

Next, we investigate the effects of the capacitance of the double
layer on the total impedance of the battery. Fig. 4 shows the Nyquist
diagram for four values of Cd, ranging from 1 μF/cm2 (which can be
considered a negligible capacitance) to 30 μF/cm2. The effect of the
capacitance of the double layer is to hide the effects of the faradaic
impedance Z F . For values of Cd larger than 20 μF/cm2, Z F becomes
negligible even for relatively low values of the specific area.

It is known that the performance of the Li-air batteries is limited
by the relatively low diffusion coefficient of the oxygen in the cath-
ode electrolyte and, in order to improve the power density of these
batteries, it is imperative to increase this diffusion coefficient. Hence,
Fig. 5 shows the Nyquist diagram for various values of the oxygen dif-
fusion coefficient, starting from 10−7 cm2/s to 2.4 × 10−5 cm2/s. It is
worthwhile noting that the low frequency semicircle vanishes for large
values of the diffusion coefficient and is masked by the double layer
capacitance for small values. For this reason, it is easier to observe
the above features of faradaic impedance in organic Li-air batteries,
which have a slightly lower diffusion coefficient than the aqueous bat-
teries. Fig. 6 shows the Nyquist diagram for three values of the oxygen
concentration ranging from C∗

O = 7.1 × 10−7 mol/cm3 to 1.4 × 10−5

mol/cm3; the lowest value corresponds to a 5% oxygen concentration
while the highest value to 100% oxygen at 1 atm and room tempera-
ture. Large values of the oxygen concentration can improve the power
density of Li-air batteries and can be obtained particularly in flow
batteries.32 It is apparent from Fig. 6 that the impedance spectra can
change significantly as a function of the oxygen concentration, partic-
ularly for low specific areas. The effect of the oxygen concentration is
somewhat similar to the effect of the oxygen diffusion coefficient, in
the sense that the faradaic impedance becomes noticeable for a limited
range of value of the oxygen concentration.
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Figure 5. Nyquist plot of the cathode impedance for different values of the
oxygen diffusion coefficient DO2 (from bottom to top DO2 = 2.4 × 10−4

cm2/s, 10−5 cm2/s, 3 × 10−6 cm2/s, 10−6 cm2/s, and 10−7 cm2/s) for two
separate specific areas of the cathode.

Fig. 7 shows the Nyquist diagram for different values of the poros-
ity equal to ε = 0.4. 0.5, 0.6, 0.7, 0.8, and 0.9. The specific area of the
cathode is kept constant and equal to a = 104 cm2/cm3 and a = 105

cm2/cm3 for the simulations shown in Fig. 7a and Fig. 7b respectively.
These computations correspond to the case of Li-air batteries with or-
ganic electrolyte when the deposit layer is decreasing the porosity.
Notice that the effects of the faradaic impedance Z F are suppressed
during the deposition of the cathode material, which suggests that the
faradaic impedance can be used as a way to determine the state-of-
charge of the battery. These results predict that the diameter of the
semicircles created by the cathode on the Nyquist plot should slightly
increase while the battery is being discharged.

Fig. 8 shows the Nyquist diagram for various values of the cathode
length varying from L = 50 μm to 0.12 mm and for the same two
values of the specific area. The effect of increasing the cathode length
is somewhat equivalent to decreasing the diffusion coefficient or the
oxygen concentration in the cathode, however, the corresponding fre-
quencies on the Nyquist diagram are different (compare Fig. 5 with
Fig. 8). For cathode lengths larger than 2 mm (not shown in the figure)
the cathode length does not influence the shape of the impedance di-
agram and the Nyquist plot displays one semicircle due to the double
layer.

Depending on the exact reaction steps and on the final reaction
products (e.g. LiO2, Li2O2, LiOH · H2O, etc.) the number of electrons
involved in the chemical reaction can vary. Hence, Fig. 9 shows the
Nyquist diagram for five values of the charge transfer coefficient,
n = 1, 1.5, 2, 3, and 4. The effect of increasing the charge transfer
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Figure 6. Nyquist plot of the cathode impedance for different values of the
oxygen concentration C∗

O (from bottom to top C∗
O = 1.4 × 10−5 mol/cm3,
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cathode.
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Figure 9. Nyquist plot of the cathode impedance for different values of the
charge transfer coefficient n (from bottom to top n = 4, 3, 2, 1.5, and 1) and
two separate specific areas of the cathode.

coefficient is mostly to decrease the magnitude of the Nyquist plot as
shown by these results.

Finally, it is worthwhile summarizing some of the characteristics
of the spectra given by eqs. 28 and 29.

1. First, the impedance at low frequencies is resistive and does not
have a capacitive behavior like in the case of Warburg impedance.
This is a characteristic of the fact that the measurements are
performed under d.c. discharge.

2. Second, the slope of the impedance curve on Nyquist plots at
high frequencies is close to 90 degrees, and is different from
the slope of 45 degrees as predicted by the Gerischer or War-
burg impedances, which were obtained under zero d.c. discharge
currents.

3. If the specific area of the cathode is small enough so the dou-
ble layer capacitance is negligible and does not mask the faradaic
component of the impedance, the cathode diffusion-reaction layer
creates two low frequency semicircles on the Nyquist plot dia-
gram (notice that, the anode and anode-separator interface can
create additional semicircles on the diagram). The diameter of
the first semicircle is R = VT

nβI and depends on the type of the
electrolyte (through the charge transfer coefficient, n); this diam-
eter is inversely proportional to the d.c. discharge current, I, and
does not depend on the oxygen concentration. The diameter of
the second semicircle varies between 0 and R and depends on the
operating conditions and cathode properties.

4. If the specific area of the cathode is large enough the double layer
capacitance hides the faradaic effects by creating one large semi-
circle with the diameter between R and 2R, depending on the
relative oxygen diffusion length in the cathode, l. The diameter
of this semicircle is inversely proportional to the d.c. discharge
current, is independent on the cathode fabrication technique and
might depend slightly on the type of the electrolyte in the cath-
ode, through the charge transfer coefficient, n. At large discharge
currents, this diameter becomes equal to 2R and does not depend
on the value of the oxygen concentration because l � 1; at low
discharge currents the oxygen concentration affects parameter l
(see eq. 18) and the diameter of the semicircle can decrease to the
lower limit R.

As we will present in the next section, it is remarkable that all of
the above characteristics were recently observed experimentally by
Adams et al.31 who measured the impedance spectra of Li-air batter-
ies with organic electrolyte for a variety of oxygen concentrations,
separators, and electrolytes.

Small-Signal Equivalent Circuit and Parameter Determination

In this section we focus on establishing the small-signal equivalent
circuit for Li-air batteries and developing a parameters determination
technique for the model. Eq. 25 shows that the total impedance of the
circuit can be represented as a resistor R� in series with a parallel
combination of the double-layer capacitance with impedance Z F

Z = R� + 1

jωCD
‖Z F [30]

where R� represents the resistance of the electrolyte and also includes
the effects of the anode and anode-separator interface, which might
play a significant role in Li-air batteries as suggested by recent exper-
imental results by Adams et al.31 In such cases R� might be modeled
with resistors in series with one or more parallel resistor-capacitor (or
constant phase element) pairs connected in series.

The circuit corresponding to model 30 is represented in Fig. 10.
In this circuit, the faradaic impedance Z F is given in terms of the
geometric and material properties of the battery by equations 28-
29. This circuit can be compared to the standard Randles equivalent
circuit.

Next, we present a technique to extract information about the
reaction rate, specific surface area, ohmic dissipation, and effective
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Figure 10. Small-signal equivalent circuit of Li-air batteries. Z F denotes the
faradaic impedance given by eq. 28-29, CD is the capacitance of the double
layer, R� is the combined resistance of the electrolyte, Li-ions, and electrons
in the cathode matrix.

diffusion coefficient in the cathode. Depending on whether the faradaic
impedance is masked or not by the double layer capacitance we
distinguish two cases: (1) the case when the effects of the faradaic
impedance are separated from the effects of the double layer capac-
itance so the Nyquist plot present two different semicircles corre-
sponding to the cathode diffusion-reaction layer, and (2) the case
when the effects of the faradaic impedance are hidden by the effects
of the double layer capacitance and the Nyquist plot presents only one
large semicircle corresponding to the cathode diffusion-reaction re-
gion. The first technique is more accurate as it uses more experimental
data from the Nyquist plot, however, if the specific area of the cathode
is larger than 104 cm2/cm3 it might be impossible to identify the two
semicircles, in which case one needs to use the second technique. In
this section we assume that all the other semicircles corresponding to
the anode or anode-separator interface have been eliminated from the
Nyquist plot.

Parameter determination at low cathode specific areas.— When
the specific area of the cathode is relatively low the impedance spectra
present two semicircles, one due to oxygen diffusion and the other to
charge transfer, as shown in Fig. 11a. To find equations for the effective
oxygen diffusion coefficients and reaction rate it is instrumental to
replace 28 into 30 and re-write it into normalized form as

Z = R� + RF (ω/ω0, L/λ)

1 + jωRCD F (ω/ω0, L/λ)
[31]

where

R = VT

nβI
[32]

ω0 = DO2,e f f

ελ2
[33]

and λ can be computed from the d.c. discharge current using
eq. 18. Using the mathematical properties of function F presented
in Appendix C, one can show that:

lim
�→0

Z = R� + R
2 sinh 2l

sinh 2l + 2l
[34]

lim
�→∞

Z = R� [35]

where

l = L

λ
[36]

If we denote the values of the impedance at very low frequencies
(ω → 0) by Z0 and at very high frequencies (ω → ∞) by Z∞,
equation 31 becomes

Z = Z∞ + F (ω/ω0, L/λ)
2 sinh 2l

(Z0−Z∞) sinh 2l+2l + jωCD F (ω/ω0, L/λ)
[37]

Figure 11. Possible low frequency impedance spectra of Li-air batteries with
low specific area of (a) and high specific area of the cathode (b). The dashed
lines show that the Nyquist spectra might contain other semicircles at high
frequencies, which are usually due to the anode and anode-separator interface.

The last equation needs to be fitted to the experimental impedance
spectra to compute Z0, Z∞, CD , ω0, and λ. Once these parameters are
determined one can use the value of λ to extract the effective oxygen
diffusion coefficient

DO2,e f f = Iλ

2AFC∗
O

coth

(
L

λ

)
[38]

If one can estimate the value of the overvoltage η0 from d.c. mea-
surements the reaction rate (product ka is expressed in s−1) can be
computed using:

ka = DO2,e f f

λ2
e

nβ
VT

η0 [39]

which can be derived from 16. When fitting eq. 37 to experimental data
it is important to note that most fitting parameters can be determined
with relatively little effort. Indeed, Z0 and Z∞ are the low and high
frequencies impedances and can be read directly from the data, while
parameter λ can be computed using the ratio of the diameter of the low
frequency semicircle to the diameter of the high frequency semicircle
(see notations in Fig. 11a), i.e.:

R1

R2
= 1

1
2 + l

sinh 2l

−1 = sinh 2l − 2l

sinh 2l + 2l
= sinh 2L/λ − 2L/λ

sinh 2L/λ + 2L/λ
[40]

which can be derived from eq. C4, Appendix C.
To summarize the parameter determination technique, one first

computes ratio L/λ by solving nonlinear eq. 40, then the effective
oxygen diffusion coefficient from 38 and the reaction rate from 39.
The remaining two parameters, CD and ω0, can be identified using
nonlinear least-square estimations or alternative numerical techniques.

Parameter determination at high cathode specific areas.— When
the specific area of the cathode is relatively high the faradaic compo-
nent of the impedance is masked by the high capacitance of the double
layer and the impedance spectrum of the cathode presents only one
semicircle as shown in Fig. 11b. In this case, eqs. 37-39 still hold,
however, one cannot identify R1 and R2 using eq. 40. In this case it
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is more convenient to determine resistance R12 from the experimental
spectra and use the following equation

R12 = VT

nβI

2 sinh 2l

sinh 2l + 2l
= VT

nβI

2 sinh 2L/λ

sinh 2L/λ + 2L/λ
[41]

In this case, one computes ratio L/λ by solving eq. 41 and, then, the
effective oxygen diffusion coefficient from and the reaction rate using
38 and 39, respectively. It should be noted that in order to compute L/λ
from eq. 41 one needs to know the value of charge transfer coefficient,
n; this coefficient can be computed either using discharge curves or
by fitting the experimental and theoretical values of frequency ω0.

Next, we apply the technique presented above to the modeling of
impedance spectra in a Li-air batteries, by comparing our theoretical
predictions to experimental data by Adams et al.,31 who measured
the impedance spectra for rechargeable Li-air batteries with cathodes
made using different fabrication techniques: separate cast and dual cast
cathodes with soaked and embedded electrolytes, room temperature
ionic liquid embedded cathodes, and PFTE-calendered cathodes.

The capacitance of the diffusion layer Cd = 7 μF/cm2 and the
specific area of the cathode a = 5 × 104 cm2/cm3 were measured ex-
perimentally. The high value of the specific area of the cathode show
that the double layer hides the faradaic impedance by creating one
semicircle at low frequencies with the diameter equal to R12. Hence,
we identified Z0 = 19 � and Z∞ = 570 � from the experimental data,
and solved eq. 41 to compute l = L/λ = 1.96. For a cathode with L
= 0.01 mm (such as the one used in Ref. 31), eq. 38 gives an effective
value of the diffusion coefficient of DO2,e f f = 5.6 × 106 cm2/s. For a
standard cathode with porosity ε = 75% and Bruggeman coefficient
of 1.5, DO2 = 8.6 × 106 cm2/s, which is in good agreement with pre-
dictions by Read et al.2 who obtained DO2 = 7 × 106 cm2/s. Our the-
oretical predictions are compared to experimental data in Fig. 12. The
frequency was varied between 1 mHz and 1 MHz in agreement with
the experimental data. The low frequency points were not used in the
parameter determination because, as mentioned by the authors, those
points were subject to high experimental errors due to the long mea-
surement time. Notice that the experimental spectra do not start with
a slope of 45 degrees at high frequencies like in the case of traditional
Gerischer type spectra but at a much higher slope as predicted by our
analytical results. The high frequency semicircle of the cell simulated
in Fig. 12 is due to the anode-separator interface and we have mod-
eled it with a constant phase element 1/( jω)α Q, where parameters
α = 0.8 and Q = 8.2 × 10−3 were measured experimentally.31

Our analytical model predicts the experimental values of resistance
R12 (which is denoted as R2 in Ref. 31) remarkably well. Indeed, at
relatively large discharge currents, eq. 18 predicts large values for l,
so R12 = 2VT

nβI . Hence, for a d.c. discharge current of 0.1 mA/cm2 and
n = 2, we obtain R12 =1 K�, which agrees very well with the value
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Figure 12. Comparison between the theoretical and experimental impedance
spectra. R1 and R2 are the diameters of the two semicircles along the real
axis and can be used to determine the effective value of the oxygen diffusion
coefficient and the reaction rate in the cathode using equations 38-40.

of (1 ± 0.02) K� presented in Fig. 14 from Ref. 31. At a discharge
current of 0.6 mA/cm2, by keeping the same value of the charge
transfer coefficient n = 2, we obtain R12 = 166 �, which agrees
relatively well with the value of (145 ± 25) � data from the same
reference. The slight overestimate in the value of R12 is due to the fact
that in reality n is slightly increasing with the value of the discharge
current. In addition, it was shown experimentally that at relatively
large discharge currents the values of this resistance do not depend
on the cathode fabrication technique and oxygen concentration, in
agreement with our theoretical predictions. At low discharge currents,
the value of l become sensitive to the oxygen concentration and can
vary from l = ∞ when the oxygen concentration is large to l = 0
when the oxygen concentration is very small. Hence, by decreasing
the oxygen concentration one can double the value of R12 from R
to 2R (as implied by 41 and C4). This effect is clearly observed in
the experimental data presented Ref. 31, where R12 increases from
860 � to 1570 � when the oxygen concentration is decreased from
100% to 5%.

Approximations for the Impedance Spectra and Small-Signal
Equivalent Circuit

Depending on the value of L
λ

it is worthwhile investigating two
special cases: one for large currents and cathode widths (L � λ) and
the other one for small currents and cathode widths (L 	 λ). The
condition L � λ implies that

I L

A
� 2F DO2,e f f C∗

O [42]

which can be obtained directly from 18. For instance, in the case of
Li-air batteries with organic electrolyte if we use Bruggeman condi-
tion DO2,e f f = εbrugg DO2 this condition implies (see values given in
Table I)

I L

A
� 4.4 × 10−6

[
A

cm

]
[43]

This condition is often satisfied during the normal operation of Li-air
batteries particularly when the discharge current and cathode widths
are large enough. Therefore, we consider this case in detail in the next
section.

Cells with large cathode widths and operating at large
discharge/charge currents.— If both the cathode width and discharge
current are large enough so that condition 42 is satisfied, l � 1 and
the total faradaic impedance can be approximated to

Z F � VT

nβI

j�

j� − 1 + 1√
1+ j�

[44]

The last equation was derived using the approximations presented
in Appendix C. The Nyquist diagram of the faradaic impedance is
represented in Fig. 13 with continuous line. Notice that the real part
of the impedance extends from R = VT

nβI at high frequencies to 2VT
nβI

at low frequencies and the absolute value of the imaginary part has a

Figure 13. Nyquist plot of the faradaic impedance at large discharge currents
and cathode widths (i.e. L � λ).
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Figure 14. Approximate small-signal equivalent circuit of Li-air batteries op-
erating at large discharge currents and with large cathode width (L � λ). The
values of R�, CD, R, and C can be expressed in terms of physical parameters
using eqs. 26, 27, 32, and 48, respectively. This circuit should be used with care
in practical applications and instead one should use the more general circuit
from Fig. 10.

maximum at �max = 0.647, for which Re [Z F (�max)] = 1.521×VT
nβI and

Im [Z F (�max)] = 0.471×VT
nβI . At this maximum we can write

ωmaxελ
2

DO2,e f f
= �max = 0.647 [45]

The impedance spectra represented in Fig. 13 can be approximated
with a semicircle with radius equal to R and centered at 1.5 × R,
where R is given by eq. 32 (see the dashed line in Fig. 13). It is known
that such a semicircle can be modeled by a resistor R in series with
another resistor of the same value R in parallel with a capacitor C (see
the network encircled with dash line in Fig. 14). The impedance of
this network is

Z F0 = R

(
1 + 1

1 + jωRC

)
= R

(
1 + 1

1 + jω/ωmax

)
[46]

where

ωmax = 1

RC
[47]

is the frequency at which the absolute value of the imaginary compo-
nent of Z F0 is maximum. Eqs. 32, 45, and 47 can be solved to compute
C as a function of the parameters of the battery

C = ελ2

RDO2,e f f �max
= 4A2 F2εnβDO2,e f f C∗2

O

VT �max I
[48]

where we have also used 19. Hence, small-signal equivalent circuit
of Li-air batteries can be approximated with the one shown in Fig. 14
with R and C given by equations 32 and 48,where �max = 0.647. The
circuit represented in Fig. 14 and eq. 48 should be used with care
in practical applications because it requires large discharge currents
under which the porosity of the cathode can change significantly in
time over the duration of the impedance measurements.

One can show that ‖Z F0 (�) − Z (�)‖ < 4.3% for all values of
�. Hence, in the case of Li-air batteries with wide cathode width, we
obtain an error less than 4.3% if we use the small-signal equivalent
circuit shown in Fig. 14 instead of the complex circuit elements shown
Fig. 10. Equations 32 and 48 are instrumental because they relate the
small-signal circuit elements to the geometrical and electrochemical
properties of the battery. By properly fitting the experimental data to
the small-signal equivalent circuit shown in Fig. 14 one can extract
information about the effective oxygen diffusion coefficient and the
reaction rate constant.

Cells with narrow cathode widths and operating at small
discharge/charge currents.— If both the cathode width and discharge
current are small enough than

I L

A
	 2F DO2,e f f C∗

O [49]

and L 	 λ. Eq. 16 implies

VT

nβη0
ln

kaL2

DO2,e f f
� 1 [50]

where we have used the fact that η0 < 0 because the battery is
discharging. For standard Li-air batteries this condition implies that
the absolute value of the overvoltage is of the same order or rela-
tively small with respect to the thermal voltage, which implies that
the reverse reaction current in the Butler-Volmer equation cannot
be neglected. It can be shown that, when condition 50 is satisfied,
model 5-11 predicts a real impedance, which slightly depends on the
discharge current. However, in this case, it is worthless performing
a quantitative comparison with experimental data because our results
for the impedance spectra do not hold. Instead, one should use equa-
tions 25-29 for relatively large and medium discharge currents and
cathode widths.

Conclusions

We have investigated the faradaic impedance of Li-air batteries and
derived closed-form equations for the total electrochemical impedance
in terms of the effective value of the diffusion coefficient of oxygen,
specific cathode area, porosity, discharge current, reaction rate, oxy-
gen concentration, and cathode width. It was shown that the relatively
low effective diffusion coefficient of the oxygen in the cathode results
in two slightly asymmetrical semicircles on the Nyquist diagram: one
at low frequencies, where the oxygen diffusion dominates the opera-
tion of the cell and one at medium frequencies due to the combined
effects of the double-layer capacitance and faradaic processes. De-
pending on the values of the effective diffusion coefficient, oxygen
concentration, porosity, and cathode width the two semicircles can
appear separately on the Nyquist plot, can merge into each other, or
the effects at medium frequency can dominate. This model is valid for
non-zero d.c. discharge currents and cannot be applied for zero d.c.
currents, where the approximations made to derive it do not hold.

Using the analytical result for the spectral impedance we proposed
a technique to obtain the effective diffusion coefficient of oxygen
in the cathode and the reaction rate coefficient. This technique was
tested on recent experimental data published by Adams et al.31 for
rechargeable organic Li-air batteries with different cathode structures.
A very good agreement between our theoretical predictions and the
published experimental results was obtained. The theory can predict
quantitatively well the value of resistances on the Nyquist diagram for
a large range of the oxygen concentration and discharge currents.

We have also developed a small-signal equivalent circuit for Li-air
batteries and expressed the elements of the circuit in terms of the oxy-
gen diffusion coefficient, oxygen concentration, discharge current,
and other material and kinetic parameters, which make the model
instrumental for extracting information about the material structure,
reaction processes, and diffusion in the cathode. A high discharge
current approximation is also presented for the small-signal equiva-
lent circuit model. The approximate circuit contains only elementary
components such as resistors and capacitors and can be implemented
numerically easy in circuit simulators and used to fit the experimental
data.

Appendix A

Dependence of Specific Area on the Structure of the Cathode

The microstructure of the cathode of Li-air batteries depends on the type of the
material itself and on the fabrication process. Most often, the electron conductive material
can be approximated as spheres with average radius r̄ part that touch each other in order
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Figure A1. Possible approximations for the cathode structure in Li-air bat-
teries: (a) the cathode is granulated, (b) the electron conductive material is
cylindrical (such as in CNT networks), and (c) the pores are cylindrical (mostly
used in theoretical models).

to conduct electric current.33 In this case the reaction product deposits on the surface of
the conductive spheres (see Fig. A1(a)) and the specific area is

a (ε) = 3 (1 − ε)

r̄ part
[A1]

In other cases, for instance in the case of carbon nanotube networks (CNT) the electron
conducting material can be approximated as cylinders with average radius r̄cyl and the
pores are the remaining space.33,34 In this case the reaction product may deposit on
the surface of the conductive cylinders like in Fig. A1(b), and the specific area can be
found as

a (ε) = 2 (1 − ε)

r̄cyl
[A2]

In both cases, it is often convenient to approximate the pores of the cathode with cylindrical
conduction channels with an initial average radius r̄ pore and porosity ε.25 By inspecting
Fig. A1(c) the specific area of the materials can be determined as

a (ε) = 2ε

r̄ pore
[A3]

The specific area in real batteries is usually smaller than the values computed from A1-A3
because there exist regions on the cathode that are not accessible to the oxygen and those
regions need to be eliminated.

Appendix B

Derivation of Eqs. 28-29

Variation of the oxygen concentration

Let c̃O2 (x) e jωt be the variation in the oxygen concentration corresponding to a
small-signal voltage perturbation ṽe jωt . The variation of the oxygen concentration can be
computed by expending eq. 5 in power series and keeping only the first-order terms

ε
∂[CO2 (x) + c̃O2 (x)e jωt ]

∂t
= DO2 ,e f f

d2[CO2 (x) + c̃O2 (x)e jωt ]

dx2

− (Uη + ũηe jωt )[CO2 (x) + c̃O2 (x)e jωt ] [B1]

where CO2 (x) is the oxygen concentration at steady-state given by eq. 15 and

Uη = ka (ε) e
− nβ

VT
η0 = DO2 ,e f f

λ2
[B2]

ũη = − nβka (ε)

VT
e
− nβ

VT
η0

η̃ [B3]

After linearizing B1, one obtains the following differential equation for the small-signal
oxygen concentration

d2 c̃O2 (x)

dx2
− 1 + j�

λ2
c̃O2 (x) − ũηCO2 (x)

DO2 ,e f f
= 0 [B4]

where � is

� = ωελ2

DO2 ,e f f
= ωε

ka (ε)
e

nβ
VT

η0 [B5]

and λ is given by 16. Eq. B4 is subject to the following boundary conditions

dc̃O2 (x)

dx

∣∣∣∣
x=L

= 0 [B6]

c̃O2 (x)
∣∣
x=0

= 0 [B7]

which are obtained by linearizing 9 and 10. If we introduce notation

l = L

λ
[B8]

and change the variable

y = x

λ
[B9]

eqs. 15 and B4 lead to the following differential equation

d2 c̃O2 (y)

dy2
− (1 + j�) c̃O2 (y) = ũηC∗

O λ2

DO2,e f f
(cosh y − tanh l sinh y) [B10]

subject to

dc (y)

dy

∣∣∣∣
x=l

= 0 [B11]

c (y)|y=0 = 0 [B12]

The general solution of B10 is

c̃O2 (y) = ũηC∗
O λ2

DO2 ,e f f

(
A cosh

√
1 + j�y + B sinh

√
1 + j�y − cosh y − tanh l sinh y

j�

)

[B13]

where A and B are two integration constants that can be found using boundary conditions
B11 and B12. We obtain:

A = 1

j�
[B14]

B = − tanh
√

1 + j�l

j�
[B15]
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which gives the following expression for the small-signal variation of the oxygen concen-
tration

c̃O2 (x) = ũηc∗
O λ2

DO2 ,e f f

1

j�

[
− tanh

√
1 + j�l sinh

√
1 + j�x

λ
+ tanh l sinh

x

λ

− cosh
x

λ
+ cosh

√
1 + j�x

λ

]
[B16]

Small-signal current

The small-signal current i can by computed by substituting 6 and 21-23 into 11

ĩ e jωt = ĩ F e jωt + ĩd e jωt = 2AF
∫ L

0
[CO2 (x) + c̃O2 (x)e jωt ](Uη + uη)dx

+ A
∫ L

0
Cd

d

dt
(η0 + η̃e jωt )dx [B17]

Expending B17 in power series and keeping only the first-order terms we obtain

ĩ = ĩ F + ĩd = 2AFUη

∫ L

0
c̃O2 (x) dx

+ 2AFũη

∫ L

0
CO2

(x) dx + jωCD η̃ [B18]

where ĩ F refers to the sum of the two integrals and ĩd to the last term in B17. CD = ALCd

is the total capacitance of the double layer. By substituting B16 and 15 into B18 and
computing the integrals we obtain

ĩ F = 2AFũηC∗
Oλ tanh l

1 + j�

1

j�

(√
1 + j�

tanh
√

1 + j�l

tanh l
− 1

)

+ 2AFũηC∗
Oλ tanh l

j�

1 + j�
[B19]

Eq. 18 shows that Iλ
2AF DO2 ,e f f C∗

O
= tanh l and together with eq. B2 results in

I

Uη

= 2AFλC∗
O tanh l [B20]

Substituting B20 into B19 we obtain

ĩ F = I

Uη

ũη

1 + j�

[
1

j�

(√
1 + j�

tanh
√

1 + j�l

tanh l
− 1

)
+ j�

]
[B21]

Using eq. B3, the faradaic impedance can now be computed as

Z F = − η̃

ĩ F
= − η̃

ũη

ũη

ĩ F
= VT

nβka (ε)
e

nβ
VT

η0 × ũη

ĩ F
[B22]

which leads to the following expression for Z F

Z F = VT

nβka (ε)
e

nβ
VT

η0 × 1
I

Uη

1
1+ j�

[
1
j�

(√
1 + j� tanh

√
1+ j�l

tanh l − 1
)

+ j�
] [B23]

By substituting B2 into B23 we obtain 28.

Appendix C

Mathematical Properties of Function F Defined in Eq. 28

Function F (�, l) has the following properties:

lim
l→∞

F (�, l) = j� (1 + j�)√
1 + j� − 1 + ( j�)2 = j�

( j�)2−1
1+ j� + 1√

1+ j�

= j�

j� − 1 + 1√
1+ j�

[C1]

lim
l→0

F (�, l) = lim
l→0

j� (1 + j�)

1 + j� − 1 + ( j�)2 = 1 [C2]

lim
�→∞

F (�, l) = 1 [C3]

lim
�→0

F (�, l) = 1
1
2 + l

sinh 2l

∈ [1, 2] [C4]

Im [F (�, l)] ≤ 0 [C5]

The Nyquist plot of function F is represented in Fig. C1 for different values of l. This
impedance function displays a capacitive behavior at all frequencies (i.e. Im (F) < 0) and
become purely resistive when � → 0 or � → ∞.

Figure C1. Nyquist plot of function F or different values of parameter l
(starting from the smaller to the largest semicircle l = 0.5, 0.8, 1, 1.4, 2,
3, 4, and 10). Lower values of l corresponds to smaller discharge currents
and narrow cathode widths; larger values of l corresponds to larger discharge
currents and wider cathode widths.

List of Symbols

a specific surface area of the porous material, cm2/cm3

A cross-sectional of the cell, cm2

brugg Bruggeman constant
Cd capacitance of the double-layer per unit area, F/cm2

CD capacitance of the double-layer, F
cO2

oxygen concentration (depends on x and t), mol/cm3

CO2
oxygen concentration at steady state (depends on x),
mol/cm3

C∗
O initial oxygen concentration, mol/cm3

DO2,e f f effective oxygen diffusion constant in the cathode, cm2/s
DO2 diffusion constant of the oxygen in the electrolyte liquid,

cm2/s
F Faraday’s constant, 96,487 C/mol; also denotes function

F defined in eq. 29
i cell current, positive during discharge and negative during

charge, A
iF faradaic component of the cell current, A
id double-layer component of the cell current, A
I cell current at steady-state, positive during discharge and

negative during charge, A
IF faradaic component of the cell current at steady-state, A
Id double-layer component of the cell current at steady-

state, A
k reaction rate constant, cm/s
l normalization cathode length (see eq. B8)
L cathode length, cm
n charge transfer coefficient
q absolute value of electron charge, 1.6 × 10−19 C
r̄ pore average radius of the pores (cm)
R resistance defined in eq. 32, �
R� combined resistance of the anode, separator, Li-ions,

electrons, deposited layer, and contacts, �
rC reaction rate at the cathode, A/cm3

t time, s
T temperature, 300 K
ũη factor defined in eq. B3, s−1

Uη factor defined in eq. B2, s−1

v cell voltage, V
V cell voltage at steady state, V
V0 open cell voltage, V
VT thermal voltage (VT = RT

F ), V
Z total impedance, �
Z F faradaic impedance, �

Greek Symbols

β symmetry factor
ε cathode porosity
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λ oxygen diffusion length as defined in 16, cm
η overvoltage, V
η0 overvoltage at steady-state, V
ω angular frequency of a.c. perturbations (rad/s)
� normalized angular frequency defined in eq. B5

A tilde “∼” symbol above a quantity denotes a small-signal (complex)
variation

References

1. J. Read, Journal of the Electrochemical Society, 149, A1190 (2002).
2. J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, and D. Foster,

Journal of the Electrochemical Society, 150, A1351 (2003).
3. J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky,

R. Liedtke, J. Ahmed, and A. Kojic, Journal of the Electrochemical Society, 159,
R1 (2012).

4. J. P. Zheng, P. Andrei, M. Hendrickson, and E. J. Plichta, Journal of the Electrochem-
ical Society, 158, A43 (2011).

5. B. Kumar and J. Kumar, Journal of the Electrochemical Society, 157, A611
(2010).

6. M. Mirzaeian, P. J. Hall, F. B. Sillars, I. Fletcher, M. M. Goldin, G. O. Shitta-bey,
and H. F. Jirandehi, Journal of the Electrochemical Society, 160, A25 (2013).

7. E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment,
and Applications, Wiley (2005).

8. R. Mingant, J. Bernard, V. Sauvant-Moynot, A. Delaille, S. Mailley, J. L. Hognon, and
F. Huet, in Battery/Energy Technology, N. Dudney, C. Johnson, and M. Yakovleva
Editors, p. 41 (2011).

9. Z. F. Deng, Z. A. Zhang, Y. Q. Lai, J. Liu, J. Li, and Y. X. Liu, Journal of the
Electrochemical Society, 160, A553 (2013).

10. J. Xie, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto, X. B. Zhao, and G. S. Cao,
Thin Solid Films, 519, 3373 (2011).

11. S. Yang, X. Wang, X. Yang, Y. Bai, Z. Liu, H. Shu, and Q. Wei, Electrochimica Acta,
66, 88 (2012).

12. S. H. Jensen, A. Hauch, R. Knibbe, T. Jacobsen, and M. Mogensen, Journal of the
Electrochemical Society, 160, F244 (2013).

13. D. Malevich, B. R. Jayasankar, E. Halliop, J. G. Pharoah, B. A. Peppley, and
K. Karan, Journal of the Electrochemical Society, 159, F888 (2012).

14. F. Jaouen and G. Lindbergh, Journal of the Electrochemical Society, 150, A1699
(2003).

15. F. Jaouen, G. Lindbergh, and K. Wiezell, Journal of the Electrochemical Society,
150, A1711 (2003).

16. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Appli-
cations, Wiley (2000).

17. E. Levillain, A. Demortier, and J. P. Lelieur, Journal of Electroanalytical Chemistry,
394, 103 (1995).

18. S. B. Adler, J. A. Lane, and B. C. H. Steele, Journal of the Electrochemical Society,
143, 3554 (1996).

19. B. A. Boukamp, M. Verbraeken, D. H. A. Blank, and P. Holtappels, Solid State Ionics,
177, 2539 (2006).

20. B. A. Boukamp and H. J. M. Bouwmeester, Solid State Ionics, 157, 29 (2003).
21. P. Andrei, J. P. Zheng, M. Hendrickson, and E. J. Plichta, Journal of the Electrochem-

ical Society, 157, A1287 (2010).
22. P. Albertus, G. Girishkumar, B. McCloskey, R. S. Sanchez-Carrera, B. Kozinsky,

J. Christensen, and A. C. Luntz, Journal of the Electrochemical Society, 158, A343
(2011).

23. P. Andrei, J. P. Zheng, M. Hendrickson, and E. J. Plichta, Journal of the Electrochem-
ical Society, 159, A1 (2012).

24. X. Li and A. Faghri, Journal of the Electrochemical Society, 159, A1747 (2012).
25. S. S. Sandhu, J. P. Fellner, and G. W. Brutchen, Journal of Power Sources, 164, 365

(2007).
26. V. Viswanathan, K. S. Thygesen, J. S. Hummelshoj, J. K. Norskov, G. Girishkumar,

B. D. McCloskey, and A. C. Luntz, The Journal of Chemical Physics, 135, 214704
(2011).

27. J. Z. Chen, J. S. Hummelshoj, K. S. Thygesen, J. S. G. Myrdal, J. K. Norskov, and
T. Vegge, Catal Today, 165, 2 (2011).

28. I. J. Ong and J. Newman, Journal of the Electrochemical Society, 146, 4360 (1999).
29. M. Doyle, J. P. Meyers, and J. Newman, Journal of the Electrochemical Society, 147,

99 (2000).
30. D. H. J. Baert and A. A. K. Vervaet, in Telecommunications Energy Conference,

2003. INTELEC ‘03. The 25th International, p. 733 (2003).
31. J. Adams, M. Karulkar, and V. Anandan, Journal of Power Sources, 239, 132 (2013).
32. L. Wang, X. Zhao, Y. Lu, M. Xu, D. Zhang, R. S. Ruoff, K. J. Stevenson, and

J. B. Goodenough, Journal of the Electrochemical Society, 158, A1379 (2011).
33. Y. Wang, Electrochimica Acta, 75, 239 (2012).
34. G. Q. Zhang, J. P. Zheng, R. Liang, C. Zhang, B. Wang, M. Au, M. Hendrickson, and

E. J. Plichta, Journal of the Electrochemical Society, 158, A822 (2011).
35. X.-Z. Wu, T. Morikawa, K. Uchiyama, and T. Hobo, The Journal of Physical Chem-

istry B, 101, 1520 (1997).

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 130.203.136.75Downloaded on 2016-10-07 to IP 

http://dx.doi.org/10.1149/1.1498256
http://dx.doi.org/10.1149/1.1606454
http://dx.doi.org/10.1149/2.086202jes
http://dx.doi.org/10.1149/1.3515330
http://dx.doi.org/10.1149/1.3515330
http://dx.doi.org/10.1149/1.3356988
http://dx.doi.org/10.1149/2.036301jes
http://dx.doi.org/10.1002/0471716243
http://dx.doi.org/10.1002/0471716243
http://dx.doi.org/10.1149/2.026304jes
http://dx.doi.org/10.1149/2.026304jes
http://dx.doi.org/10.1016/j.tsf.2010.12.092
http://dx.doi.org/10.1016/j.electacta.2012.01.061
http://dx.doi.org/10.1149/2.023303jes
http://dx.doi.org/10.1149/2.023303jes
http://dx.doi.org/10.1149/2.007301jes
http://dx.doi.org/10.1149/1.1624294
http://dx.doi.org/10.1149/1.1624295
http://dx.doi.org/10.1016/0022-0728(95)04002-6
http://dx.doi.org/10.1149/1.1837252
http://dx.doi.org/10.1016/j.ssi.2006.03.002
http://dx.doi.org/10.1016/S0167-2738(02)00185-6
http://dx.doi.org/10.1149/1.3486114
http://dx.doi.org/10.1149/1.3486114
http://dx.doi.org/10.1149/1.3527055
http://dx.doi.org/10.1149/2.010206jes
http://dx.doi.org/10.1149/2.010206jes
http://dx.doi.org/10.1149/2.043210jes
http://dx.doi.org/10.1016/j.jpowsour.2006.09.099
http://dx.doi.org/10.1063/1.3663385
http://dx.doi.org/10.1016/j.cattod.2010.12.022
http://dx.doi.org/10.1149/1.1392643
http://dx.doi.org/10.1149/1.1393162
http://dx.doi.org/10.1016/j.jpowsour.2013.03.140
http://dx.doi.org/10.1149/2.068112jes
http://dx.doi.org/10.1016/j.electacta.2012.04.137
http://dx.doi.org/10.1149/1.3590736
http://dx.doi.org/10.1021/jp961896q
http://dx.doi.org/10.1021/jp961896q
http://ecsdl.org/site/terms_use

